Cationic Ruthenium for C-H Activation Reactions

Page: [55 - 61] Pages: 7

  • * (Excluding Mailing and Handling)

Abstract

C-C bond formation in a regiospecific and atom economic manner has been a challenge, which was tried to be resolved through directing group and organometals-based C-H activation strategy. The C-H activation and its advantages are well explored in the field of organic chemistry, with the relevant mechanistic approach of the regioselective C-H activation of the aryl group. Organometals like Ru, Pd, Pt, Ni, etc. have been best discovered for the innate C-H activation where the pre-activation of the inert C-H bond was not found necessary. In the progress of these reactions through organometals, the various forms of ruthenium have been tried with the different directing groups as well as the substrate. Here in we are focusing mainly on cationic ruthenium, and its use in the C-H activation. The cationic ruthenium shows unique characteristics like reactivity with an inert substrate, which is been highlighted here in the examples. The formation and its, mechanistic role is also exemplified with the diagrammed representation of C-H activation and its catalytic cycle. The application of the cationic ruthenium will give complete knowledge about cationic ruthenium and its application in C-H activation.

Graphical Abstract

[1]
Nielsen, A.T.; Houlihan, W.J. The aldol condensation. Org. React., 2004, 16, 1-438.
[2]
Perrin, C.L.; Chang, K.L. The complete mechanism of an aldol condensation. J. Org. Chem., 2016, 81(13), 5631-5635.
[http://dx.doi.org/10.1021/acs.joc.6b00959] [PMID: 27281298]
[3]
Khiar, N.; Fernández, I.; Alcudia, A.; García, M.V.; Recio, R. Reaction of Enolates. In: Carbohydrates-Tools for Stereoselective Synthesis; Wiley Online: Hoboken, New Jersey, 2013; pp. 47-63.
[http://dx.doi.org/10.1002/9783527654543.ch3]
[4]
Miyaura, N.; Suzuki, A. Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem. Rev., 1995, 95(7), 2457-2483.
[http://dx.doi.org/10.1021/cr00039a007]
[5]
Dyker, G. Transition metal catalyzed coupling reactions under C− H activation. Angew. Chem. Int. Ed., 1999, 38(12), 1698-1712.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19990614)38:12<1698::AIDANIE1698>3.0.CO;2-6] [PMID: 29711186]
[6]
Dalton, T.; Faber, T.; Glorius, F. C–H activation: Toward sustainability and applications. ACS Cent. Sci., 2021, 7(2), 245-261.
[http://dx.doi.org/10.1021/acscentsci.0c01413] [PMID: 33655064]
[7]
Rogge, T.; Kaplaneris, N.; Chatani, N.; Kim, J.; Chang, S.; Punji, B.; Schafer, L.L.; Musaev, D.G.; Wencel-Delord, J.; Roberts, C.A.; Sarpong, R.; Wilson, Z.E.; Brimble, M.A.; Johansson, M.J.; Ackermann, L. C–H activation. Nat. Rev. Methods Primers, 2021, 1(1), 43.
[http://dx.doi.org/10.1038/s43586-021-00041-2]
[8]
Crabtree, R.H.; Lei, A. Introduction: CH Activation. Chem. Rev., 2017, 117(13), 8481-8482.
[http://dx.doi.org/10.1021/acs.chemrev.7b00307] [PMID: 28697603]
[9]
Wu, Y.; Wan, Y.; Zhang, F. Characteristics and trends of CH activation research: a review of literature. Curr. Org. Synth., 2018, 15(6), 781-792.
[http://dx.doi.org/10.2174/1570179415666180426115417]
[10]
Kochi, J. Organometallic Mechanisms and Catalysis: The Role of Reactive Intermediates in Organic Processes; Elsevier, 2012.
[11]
Banerjee, A.; Scott, R.W. Nanocatalysts for Hiyama, Stille, Kumada, and Negishi C–C coupling reactions. In: Nanocatalysis Synthesis and Applications; Wiley Online: Hoboken, New Jersey, 2013; pp. 133-187.
[12]
Campeau, L.C.; Hazari, N. Cross-coupling and related reactions: Connecting past success to the development of new reactions for the future. Organometallics, 2019, 38(1), 3-35.
[http://dx.doi.org/10.1021/acs.organomet.8b00720] [PMID: 31741548]
[13]
Bergman, R.G. C–H activation. Nature, 2007, 446(7134), 391-393.
[http://dx.doi.org/10.1038/446391a] [PMID: 17377575]
[14]
Roudesly, F.; Oble, J.; Poli, G. Metal-catalyzed C H activation/functionalization: The fundamentals. J. Mol. Catal. Chem., 2017, 426, 275-296.
[http://dx.doi.org/10.1016/j.molcata.2016.06.020]
[15]
Yang, Y.; Nishiura, M.; Wang, H.; Hou, Z. Metal-catalyzed C H activation for polymer synthesis and functionalization. Coord. Chem. Rev., 2018, 376, 506-532.
[http://dx.doi.org/10.1016/j.ccr.2018.08.017]
[16]
Chua, M.H.; Png, Z.M.; Zhu, Q.; Xu, J. Synthesis of conjugated polymers via transition metal catalysed C−H bond activation. Chem. Asian J., 2021, 16(19), 2896-2919.
[http://dx.doi.org/10.1002/asia.202100749] [PMID: 34390547]
[17]
Naota, T.; Takaya, H.; Murahashi, S.I. Ruthenium-catalyzed reactions for organic synthesis. Chem. Rev., 1998, 98(7), 2599-2660.
[http://dx.doi.org/10.1021/cr9403695] [PMID: 11848973]
[18]
Munish, P.; Priyank, P.; Prabhat, U. Ruthenium Metal: Uplifting regioselective C-H activation. Lett. Org. Chem., 2022, 19(7), 520-531.
[19]
Taglang, C.; Martínez-Prieto, L.M.; del Rosal, I.; Maron, L.; Poteau, R.; Philippot, K.; Chaudret, B.; Perato, S.; Sam Lone, A.; Puente, C.; Dugave, C.; Rousseau, B.; Pieters, G. Enantiospecific C-H activation using ruthenium nanocatalysts. Angew. Chem. Int. Ed., 2015, 54(36), 10474-10477.
[http://dx.doi.org/10.1002/anie.201504554] [PMID: 26371960]
[20]
Liang, Y.F.; Yang, L.; Rogge, T.; Ackermann, L. Ruthenium(IV) intermediates in C−H activation/annulation by weak O -Coordination. Chemistry, 2018, 24(62), 16548-16552.
[http://dx.doi.org/10.1002/chem.201804734] [PMID: 30251441]
[21]
Kumar, N.Y.P.; Bechtoldt, A.; Raghuvanshi, K.; Ackermann, L. Ruthenium(II)-Catalyzed decarboxylative C−H activation: Versatile routes to meta -Alkenylated arenes. Angew. Chem. Int. Ed., 2016, 55(24), 6929-6932.
[http://dx.doi.org/10.1002/anie.201600490] [PMID: 26996920]
[22]
Schischko, A.; Ren, H.; Kaplaneris, N.; Ackermann, L. Bioorthogonal diversification of peptides through selective ruthenium(II)‐catalyzed C–H activation. Angew. Chem. Int. Ed., 2017, 56(6), 1576-1580.
[http://dx.doi.org/10.1002/anie.201609631] [PMID: 28074503]
[23]
Wang, X.G.; Li, Y.; Liu, H.C.; Zhang, B.S.; Gou, X.Y.; Wang, Q.; Ma, J.W.; Liang, Y.M. Three-component ruthenium-catalyzed direct meta-selective C–H activation of arenes: A new approach to the alkylarylation of alkenes. J. Am. Chem. Soc., 2019, 141(35), 13914-13922.
[http://dx.doi.org/10.1021/jacs.9b06608] [PMID: 31394035]
[24]
Wang, X.; Sun, H.; Liu, J.; Dai, D.; Zhang, M.; Zhou, H.; Zhong, W.; Lu, X. Ruthenium-promoted C–H activation reactions between DNA-conjugated acrylamide and aromatic acids. Org. Lett., 2018, 20(16), 4764-4768.
[http://dx.doi.org/10.1021/acs.orglett.8b01837] [PMID: 30080052]
[25]
Li, Y.; Qi, Z.; Wang, H.; Yang, X.; Li, X. Ruthenium(II)‐Catalyzed C−H Activation of imidamides and divergent couplings with diazo compounds: Substrate‐Controlled Synthesis of Indoles and 3 H ‐Indoles. Angew. Chem. Int. Ed., 2016, 55(39), 11877-11881.
[http://dx.doi.org/10.1002/anie.201606316] [PMID: 27558084]
[26]
Li, J.; Korvorapun, K.; De Sarkar, S.; Rogge, T.; Burns, D.J.; Warratz, S.; Ackermann, L. Ruthenium(II)-catalysed remote C–H alkylations as a versatile platform to meta-decorated arenes. Nat. Commun., 2017, 8(1), 15430.
[http://dx.doi.org/10.1038/ncomms15430] [PMID: 28598411]
[27]
Li, G.; Liu, Q.; Vasamsetty, L.; Guo, W.; Wang, J. Ruthenium(II)‐catalyzed asymmetric inert c−h bond activation assisted by a chiral transient directing group. Angew. Chem. Int. Ed., 2020, 59(9), 3475-3479.
[http://dx.doi.org/10.1002/anie.201913733] [PMID: 31869489]
[28]
Wu, C.; Zhou, J.; He, G.; Li, H.; Yang, Q.; Wang, R.; Zhou, Y.; Liu, H. Ruthenium(II)-catalyzed selective C–H bond activation of imidamides and coupling with sulfox-onium ylides: An efficient approach for the synthesis of highly functional 3-ketoindoles. Org. Chem. Front., 2019, 6(8), 1183-1188.
[http://dx.doi.org/10.1039/C9QO00048H]
[29]
Raghuvanshi, K.; Zell, D.; Ackermann, L. Ruthenium (II)-catalyzed C–H oxygenations of reusable sulfoximine benzamides. Org. Lett., 2017, 19(6), 1278-1281.
[http://dx.doi.org/10.1021/acs.orglett.6b03898] [PMID: 28234011]
[30]
Warratz, S.; Burns, D.J.; Zhu, C.; Korvorapun, K.; Rogge, T.; Scholz, J.; Jooss, C.; Gelman, D.; Ackermann, L. meta ‐C−H Bromination on purine bases by heterogeneous ruthenium catalysis. Angew. Chem. Int. Ed., 2017, 56(6), 1557-1560.
[http://dx.doi.org/10.1002/anie.201609014] [PMID: 28044396]
[31]
Sauermann, N.; Meyer, T.H.; Qiu, Y.; Ackermann, L. Electrocatalytic C–H activation. ACS Catal., 2018, 8(8), 7086-7103.
[http://dx.doi.org/10.1021/acscatal.8b01682]
[32]
Korvorapun, K.; Kaplaneris, N.; Rogge, T.; Warratz, S.; Stückl, A.C.; Ackermann, L. Sequential meta-/ortho-C–H functionalizations by one-pot ruthenium (II/III) cataly-sis. ACS Catal., 2018, 8(2), 886-892.
[http://dx.doi.org/10.1021/acscatal.7b03648]
[33]
Li, Z.Y.; Lakmal, H.H.C.; Qian, X.; Zhu, Z.; Donnadieu, B.; McClain, S.J.; Xu, X.; Cui, X. Ruthenium-catalyzed enantioselective C–H functionalization: A practical access to optically active indoline derivatives. J. Am. Chem. Soc., 2019, 141(40), 15730-15736.
[http://dx.doi.org/10.1021/jacs.9b07251] [PMID: 31536341]
[34]
Li, Z.Y.; Li, L.; Li, Q.L.; Jing, K.; Xu, H.; Wang, G.W. Ruthenium-catalyzed meta-selective C-H Mono- and difluoromethylation of arenes through ortho-metalation strategy. Chemistry, 2017, 23(14), 3285-3290.
[http://dx.doi.org/10.1002/chem.201700354] [PMID: 28120380]
[35]
Leitch, J.A.; McMullin, C.L.; Mahon, M.F.; Bhonoah, Y.; Frost, C.G. Remote C6-selective ruthenium-catalyzed C–H alkylation of indole derivatives via σ-activation. ACS Catal., 2017, 7(4), 2616-2623.
[http://dx.doi.org/10.1021/acscatal.7b00038]
[36]
Wakamatsu, H.; Blechert, S. A new highly efficient ruthenium metathesis catalyst. Angew. Chem. Int. Ed., 2002, 41(13), 2403-2405.
[http://dx.doi.org/10.1002/1521-3773(20020703)41:13<2403::AIDANIE2403>3.0.CO;2-F] [PMID: 12203607]
[37]
Singh, K. Recent advances in C–H bond functionalization with ruthenium-based catalysts. Catalysts, 2019, 9(2), 173.
[http://dx.doi.org/10.3390/catal9020173]
[38]
Bu, Q.; Rogge, T.; Kotek, V.; Ackermann, L. Distal weak coordination of acetamides in Ruthenium(II)‐Catalyzed C−H activation processes. Angew. Chem. Int. Ed., 2018, 57(3), 765-768.
[http://dx.doi.org/10.1002/anie.201711108] [PMID: 29141119]
[39]
Mandal, A.; Dana, S.; Sahoo, H.; Grandhi, G.S.; Baidya, M. Ruthenium (II)-catalyzed ortho-C–H chalcogenation of benzoic acids via weak O-coordination: Synthesis of chalcogenoxanthones. Org. Lett., 2017, 19(9), 2430-2433.
[http://dx.doi.org/10.1021/acs.orglett.7b00996] [PMID: 28429594]
[40]
Padala, K.; Jeganmohan, M. Ruthenium-catalyzed ortho-alkenylation of aromatic ketones with alkenes by C-H bond activation. Org. Lett., 2011, 13(23), 6144-6147.
[http://dx.doi.org/10.1021/ol202580e] [PMID: 22039976]
[41]
Padala, K.; Jeganmohan, M. Highly regio- and stereoselective ruthenium(II)-catalyzed direct ortho-alkenylation of aromatic and heteroaromatic aldehydes with activated alkenes under open atmosphere. Org. Lett., 2012, 14(4), 1134-1137.
[http://dx.doi.org/10.1021/ol3000684] [PMID: 22316177]
[42]
Hashimoto, Y.; Ortloff, T.; Hirano, K.; Satoh, T.; Bolm, C.; Miura, M. Ru/Ag-catalyzed oxidative alkenylation of benzamides and phenylazoles through regioselective C–H bond cleavage. Chem. Lett., 2012, 41(2), 151-153.
[http://dx.doi.org/10.1246/cl.2012.151]
[43]
Reddy, M.C.; Manikandan, R.; Jeganmohan, M. Ruthenium-catalyzed aerobic oxidative cyclization of aromatic and heteroaromatic nitriles with alkynes: A new route to isoquinolones. Chem. Commun., 2013, 49(54), 6060-6062.
[http://dx.doi.org/10.1039/c3cc42683a]
[44]
Ma, W.; Graczyk, K.; Ackermann, L. Ruthenium-catalyzed alkyne annulations with substituted 1H-pyrazoles by C-H/N-H bond functionalizations. Org. Lett., 2012, 14(24), 6318-6321.
[http://dx.doi.org/10.1021/ol303083n] [PMID: 23234384]
[45]
Li, J.; Ackermann, L. Ruthenium-catalyzed oxidative alkyne annulation by C–H activation on ketimines. Tetrahedron, 2014, 70(20), 3342-3348.
[http://dx.doi.org/10.1016/j.tet.2013.10.003]
[46]
Chinnagolla, R.K.; Jeganmohan, M. Ruthenium‐catalyzed regioselective cyclization of aromatic ketones with alkynes: An efficient route to indenols and benzofulvenes. Eur. JOC, 2012, 26(4), 417-423.
[47]
Li, J.; Kornhaaß, C.; Ackermann, L. Ruthenium-catalyzed oxidative C–H alkenylation of aryl carbamates. Chem. Commun., 2012, 48(92), 11343-11345.
[http://dx.doi.org/10.1039/c2cc36196e] [PMID: 23073351]
[48]
Ma, W.; Ackermann, L. Ruthenium(II)-catalyzed C-H alkenylations of phenols with removable directing groups. Chemistry, 2013, 19(41), 13925-13928.
[http://dx.doi.org/10.1002/chem.201301988] [PMID: 24018977]
[49]
Chinnagolla, R.K.; Jeganmohan, M. Regioselective synthesis of isocoumarins by ruthenium-catalyzed aerobic oxidative cyclization of aromatic acids with alkynes. Chem. Commun., 2012, 48(14), 2030-2032.
[http://dx.doi.org/10.1039/c2cc16916a]
[50]
Chinnagolla, R.K.; Jeganmohan, M. Ruthenium-catalyzed ortho-arylation of acetanilides with aromatic boronic acids: An easy route to prepare phenanthridines and carbazoles. Chem. Commun. (Camb.), 2014, 50(19), 2442-2444.
[http://dx.doi.org/10.1039/C3CC49398A] [PMID: 24452525]
[51]
Lanke, V.; Ramaiah Prabhu, K. Regioselective synthesis of 4-substituted indoles via C-H activation: a ruthenium catalyzed novel directing group strategy. Org. Lett., 2013, 15(24), 6262-6265.
[http://dx.doi.org/10.1021/ol4031149] [PMID: 24274038]
[52]
(a) Ramu Yadav, M.; Kuram, M. Ru (ii)-catalyzed intermolecular ortho-C–H amidation of aromatic ketones with sulfonyl azides. Chem. Commun., 2013, 49(45), 5225-5227.;
b) Hubrich, J.; Himmler, T.; Rodefeld, L.; Ackermann, L. Ruthenium (II)‐Catalyzed C- H arylation of anilides with boronic acids, borinic acids and potassium tri-fluoroborates. Adv. Synth. Catal., 2015, 357(2‐3), 474-480.
[53]
Ackermann, L.; Lygin, A.V. Cationic ruthenium(II) catalysts for oxidative C-H/N-H bond functionalizations of anilines with removable directing group: Synthesis of indoles in water. Org. Lett., 2012, 14(3), 764-767.
[http://dx.doi.org/10.1021/ol203309y] [PMID: 22242646]
[54]
Ackermann, L.; Pospech, J.; Graczyk, K.; Rauch, K. Versatile synthesis of isocoumarins and α-pyrones by ruthenium-catalyzed oxidative C-H/O-H bond cleavages. Org. Lett., 2012, 14(3), 930-933.
[http://dx.doi.org/10.1021/ol2034614] [PMID: 22273364]
[55]
Deponti, M.; Kozhushkov, S.I.; Yufit, D.S.; Ackermann, L. Ruthenium-catalyzed C–H/O–H and C–H/N–H bond functionalizations: Oxidative annulations of cyclopro-pyl-substituted alkynes. Org. Biomol. Chem., 2013, 11(1), 142-148.
[http://dx.doi.org/10.1039/C2OB26250A] [PMID: 23111695]
[56]
Ackermann, L.; Wang, L.; Wolfram, R.; Lygin, A.V. Ruthenium-catalyzed oxidative C-H alkenylations of anilides and benzamides in water. Org. Lett., 2012, 14(3), 728-731.
[http://dx.doi.org/10.1021/ol203251s] [PMID: 22264030]
[57]
Yadav, M.R.; Rit, R.K.; Shankar, M.; Sahoo, A.K. Sulfoximine-directed ruthenium-catalyzed ortho-C-H alkenylation of (hetero)arenes: Synthesis of EP3 receptor antago-nist analogue. J. Org. Chem., 2014, 79(13), 6123-6134.
[http://dx.doi.org/10.1021/jo5008465] [PMID: 24905413]
[58]
Naruto, M.; Saito, S. Cationic mononuclear ruthenium carboxylates as catalyst prototypes for self-induced hydrogenation of carboxylic acids. Nat. Commun., 2015, 6(1), 8140.
[http://dx.doi.org/10.1038/ncomms9140] [PMID: 26314266]
[59]
Naskar, S.; Bhattacharjee, M. Selective N-monoalkylation of anilines catalyzed by a cationic ruthenium(II) compound. Tetrahedron Lett., 2007, 48(19), 3367-3370.
[http://dx.doi.org/10.1016/j.tetlet.2007.03.075]
[60]
Trost, B.M.; Ball, Z.T. Alkyne hydrosilylation catalyzed by a cationic ruthenium complex: Efficient and general trans addition. J. Am. Chem. Soc., 2005, 127(50), 17644-17655.
[http://dx.doi.org/10.1021/ja0528580] [PMID: 16351094]
[61]
Milczek, E.; Boudet, N.; Blakey, S.; Enantioselective, C. Enantioselective C-H amination using cationic ruthenium(II)-pybox catalysts. Angew. Chem. Int. Ed., 2008, 47(36), 6825-6828.
[http://dx.doi.org/10.1002/anie.200801445] [PMID: 18642266]
[62]
Fürstner, A.; Liebl, M.; Lehmann, C.W.; Picquet, M.; Kunz, R.; Bruneau, C.; Touchard, D.; Dixneuf, P.H. Cationic ruthenium allenylidene complexes as catalysts for ring closing olefin metathesis. Chemistry, 2000, 6(10), 1847-1857.
[http://dx.doi.org/10.1002/(SICI)1521-3765(20000515)6:10<1847::AIDCHEM1847>3.0.CO;2-1] [PMID: 10845645]
[63]
Manzini, S.; Nelson, D.J.; Nolan, S.P. A Highly active cationic ruthenium complex for alkene isomerisation: A catalyst for the synthesis of high value molecules. ChemCatChem, 2013, 5(10), 2848-2851.
[http://dx.doi.org/10.1002/cctc.201300396]
[64]
Trost, B.M.; Zhang, G. Ruthenium-catalyzed intermolecular coupling of vinylic 1,2-bisboronates with alkynes: stereoselective access to boryl-substituted homoallylic alcohols. J. Am. Chem. Soc., 2020, 142(16), 7312-7316.
[http://dx.doi.org/10.1021/jacs.0c01755] [PMID: 32264672]
[65]
Kumagai, N.; Matsunaga, S.; Shibasaki, M. Catalytic chemoselective addition of acetonitrile to enolizable aldehydes with cationic Ru complex/DBU combination. Chem. Commun. (Camb.), 2005, (28), 3600-3602.
[http://dx.doi.org/10.1039/b504519c] [PMID: 16010337]
[66]
De Sarkar, S.; Ackermann, L. Ruthenium(II)-catalyzed C-H activation with isocyanates: A versatile route to phthalimides. Chemistry, 2014, 20(43), 13932-13936.
[http://dx.doi.org/10.1002/chem.201404261] [PMID: 25201510]
[67]
Xu, X.; Luo, J. Transition metal‐catalyzed directing‐group‐assisted C−H activation of phenols. ChemSusChem, 2019, 12(20), 4601-4616.
[http://dx.doi.org/10.1002/cssc.201901951] [PMID: 31418536]
[68]
Ferrer Flegeau, E.; Bruneau, C.; Dixneuf, P.H.; Jutand, A. Autocatalysis for C-H bond activation by ruthenium(II) complexes in catalytic arylation of functional arenes. J. Am. Chem. Soc., 2011, 133(26), 10161-10170.
[http://dx.doi.org/10.1021/ja201462n] [PMID: 21604765]
[69]
Yi, C.S.; Yun, S.Y. Scope and mechanistic study of the ruthenium-catalyzed ortho-C-H bond activation and cyclization reactions of arylamines with terminal alkynes. J. Am. Chem. Soc., 2005, 127(48), 17000-17006.
[http://dx.doi.org/10.1021/ja055608s] [PMID: 16316246]
[70]
Raghuvanshi, K.; Rauch, K.; Ackermann, L. Ruthenium(II)-catalyzed C-H acyloxylation of phenols with removable auxiliary. Chemistry, 2015, 21(4), 1790-1794.
[http://dx.doi.org/10.1002/chem.201405071] [PMID: 25431040]
[71]
Yi, C.S.; Lee, D.W. Regioselective intermolecular coupling reaction of arylketones and alkenes involving C−H bond activation catalyzed by an in situ formed cationic ruthenium hydride complex. Organometallics, 2009, 28(15), 4266-4268.
[http://dx.doi.org/10.1021/om900416k] [PMID: 20161548]
[72]
Gao, R.; Yi, C.S. Regioselective formation of α-vinylpyrroles from the ruthenium-catalyzed coupling reaction of pyrroles and terminal alkynes involving C-H bond activation. J. Org. Chem., 2010, 75(9), 3144-3146.
[http://dx.doi.org/10.1021/jo100269y] [PMID: 20384382]
[73]
Yi, C.S.; Lee, D.W. Intermolecular dehydrative coupling reaction of aryl ketones with cyclic alkenes catalyzed by a well-defined cationic ruthenium−hydride complex: A novel ketone olefination method via vinyl C−H bond activation. Organometallics, 2010, 29(8), 1883-1885.
[http://dx.doi.org/10.1021/om100051h] [PMID: 20567607]
[74]
Kwon, K.H.; Lee, D.W.; Yi, C.S. Chelate-assisted oxidative coupling reaction of arylamides and unactivated alkenes: Mechanistic evidence for vinyl C− H bond activa-tion promoted by an electrophilic ruthenium hydride catalyst. Organometallics, 2010, 29(22), 5748-5750.
[http://dx.doi.org/10.1021/om100764c] [PMID: 21344062]
[75]
Pipaliya, B.V.; Seth, K.; Chakraborti, A.K. Ruthenium (II) Catalyzed C(sp2)−H Bond Alkenylation of 2‐Arylbenzo[ d]oxazole and 2‐Arylbenzo[ d]thiazole with Unactivated Olefins. Chem. Asian J., 2021, 16(1), 87-96.
[http://dx.doi.org/10.1002/asia.202001304] [PMID: 33230945]
[76]
Pipaliya, B.V.; Chakraborti, A.K. Ligand-Assisted Heteroaryl C(sp2)−H Bond Activation by a Cationic Ruthenium(II) Complex for Alkenylation of Heteroarenes with Alkynes Directed by Biorelevant Heterocycles. ChemCatChem, 2017, 9(22), 4191-4198.
[http://dx.doi.org/10.1002/cctc.201701016]
[77]
Choi, I.; Messinis, A.M.; Ackermann, L. C7‐Indole amidations and alkenylations by Ruthenium(II) catalysis. Angew. Chem. Int. Ed., 2020, 59(30), 12534-12540.
[http://dx.doi.org/10.1002/anie.202006164] [PMID: 32485007]
[78]
Zhu, H.; Zhao, S.; Zhou, Y.; Li, C.; Liu, H. Ruthenium-Catalyzed C–H activations for the synthesis of indole derivatives. Catalysts, 2020, 10(11), 1253.
[http://dx.doi.org/10.3390/catal10111253]
[79]
Kianmehr, E.; Nasab, S.B. Ruthenium-catalyzed regioselective direct Ortho -acyloxylation of azoarenes with carboxylic acids via C-H bond activation. Eur. J. Org. Chem., 2019, 2019(5), 1038-1044.
[http://dx.doi.org/10.1002/ejoc.201801545]
[80]
Sun, Y.; Zhao, Y.; Jia, J.; Zhou, Y. A ruthenium-based aggregation-induced enhanced emission luminophore as efficient protein staining agent. J. Organomet. Chem., 2023, 983, 122540.
[http://dx.doi.org/10.1016/j.jorganchem.2022.122540]
[81]
Iwamoto, T.; Saito, K.; Mitsubo, T.; Kuwabara, T.; Ishii, Y. Retro-Vinylidene rearrangements of P- and S-substituted ruthenium vinylidene complexes. Organometallics, 2023, 42(2), 167-173.
[http://dx.doi.org/10.1021/acs.organomet.2c00552]
[82]
Mikhailov, A.; Korobeynikov, N.; Usoltsev, A.; Adonin, S.A.; Kostin, G.A.; Schaniel, D. Bismuth and antimony halometalates containing photoswitchable ruthenium nitrosyl complexes. Dalton Trans., 2023, 52(4), 919-927.
[http://dx.doi.org/10.1039/D2DT03497B] [PMID: 36594625]
[83]
Joseph, M.C.; Swarts, A.J.; Mapolie, S.F. Cationic half-sandwich ruthenium (II) complexes ligated by pyridyl-triazole ligands: Transfer hydrogenation and mechanistic studies. Polyhedron, 2022, 212, 115579.
[http://dx.doi.org/10.1016/j.poly.2021.115579]
[84]
Meyer, C.C.; Krische, M.J. Iridium-, ruthenium-, and nickel-catalyzed C–C couplings of methanol, formaldehyde, and ethanol with π-unsaturated pronucleophiles via hydrogen transfer. J. Org. Chem., 2022, acs.joc.2c02356.
[http://dx.doi.org/10.1021/acs.joc.2c02356] [PMID: 36449710]
[85]
An, H.; Luo, H.; Xu, T.; Chang, S.; Chen, Y.; Zhu, Q.; Huang, Y.; Tan, H.; Li, Y.G. Visible-light-driven oxidation of amines to imines in air catalyzed by Polyoxomet-alate–Tris(bipyridine)ruthenium hybrid compounds. Inorg. Chem., 2022, 61(27), 10442-10453.
[http://dx.doi.org/10.1021/acs.inorgchem.2c01243] [PMID: 35758283]
[86]
Egly, J.; Chen, W.; Maisse‐François, A.; Bellemin‐Laponnaz, S.; Achard, T. Half‐sandwich ruthenium complexes bearing hemilabile κ2‐(C, S)− thioether‐functionalized NHC Ligands: Application to amide synthesis from alcohol and amine. Eur. J. Inorg. Chem., 2022, 2022(8), e202101033.
[87]
Tan, Y.X.; Li, S.; Song, L.; Zhang, X.; Wu, Y.D.; Sun, J. Ruthenium‐catalyzed geminal hydroborative cyclization of enynes. Angew. Chem. Int. Ed., 2022, 61(31), e202204319.
[http://dx.doi.org/10.1002/anie.202204319] [PMID: 35596681]
[88]
Peng, Q.; Zhao, X.; Chen, M.; Wang, J.; Cui, K.; Wei, X.; Hou, Z. Cationic Ru complexes anchored on POM via non-covalent interaction towards efficient transfer hydro-genation catalysis. Mol. Catal., 2022, 517, 112049.
[http://dx.doi.org/10.1016/j.mcat.2021.112049]
[89]
Chołuj, A.; Krzesiński, P.; Ruszczyńska, A.; Bulska, E.; Kajetanowicz, A.; Grela, K. Noncovalent immobilization of cationic ruthenium complex in a metal–Organic framework by ion exchange leading to a heterogeneous olefin metathesis catalyst for use in green solvents. Organometallics, 2019, 38(18), 3397-3405.
[http://dx.doi.org/10.1021/acs.organomet.9b00287]
[90]
Piccolo, M.; Misso, G.; Ferraro, M.G.; Riccardi, C.; Capuozzo, A.; Zarone, M.R.; Maione, F.; Trifuoggi, M.; Stiuso, P.; D’Errico, G.; Caraglia, M.; Paduano, L.; Montes-archio, D.; Irace, C.; Santamaria, R. Exploring cellular uptake, accumulation and mechanism of action of a cationic Ru-based nanosystem in human preclinical models of breast cancer. Sci. Rep., 2019, 9(1), 7006.
[http://dx.doi.org/10.1038/s41598-019-43411-3] [PMID: 31065032]
[91]
Fang, Y.; Xiao, Z.; Kirchon, A.; Li, J.; Jin, F.; Togo, T.; Zhang, L.; Zhu, C.; Zhou, H.C. Bimolecular proximity of a ruthenium complex and methylene blue within an ani-onic porous coordination cage for enhancing photocatalytic activity. Chem. Sci. (Camb.), 2019, 10(12), 3529-3534.
[http://dx.doi.org/10.1039/C8SC05315D] [PMID: 30996944]
[92]
Villemin, E.; Ong, Y.C.; Thomas, C.M.; Gasser, G. Polymer encapsulation of ruthenium complexes for biological and medicinal applications. Nat. Rev. Chem., 2019, 3(4), 261-282.
[http://dx.doi.org/10.1038/s41570-019-0088-0]
[93]
Yadav, D.; Misra, S.; Kumar, D.; Singh, S.; Singh, A.K. Cationic ruthenium(II)–NHC pincer complexes: Synthesis, characterisation and catalytic activity for transfer hydrogenation of ketones. Appl. Organomet. Chem., 2021, 35(8), e6287.
[http://dx.doi.org/10.1002/aoc.6287]
[94]
Li, Y.; Zhou, M.; Park, S.; Dang, L. Comparative DFT Study on Dehydrogenative C(sp)–H Elementation (E = Si, Ge, and Sn) of terminal alkynes catalyzed by a cationic Ruthenium(II) Thiolate complex. Inorg. Chem., 2021, 60(9), 6228-6238.
[http://dx.doi.org/10.1021/acs.inorgchem.0c03695] [PMID: 33852282]
[95]
Yadav, D.; Singh, R.K.; Singh, S.; Shirage, P.M.; Singh, A.K. Cationic ruthenium(II)-NHC pincer complexes with hemilabile COD: Solid-state structural characterization and theoretical study of an η2-(E,Z)-COD ligand. J. Organomet. Chem., 2021, 953, 122061.
[http://dx.doi.org/10.1016/j.jorganchem.2021.122061]
[96]
Oberling, M.; Irran, E.; Ohki, Y.; Klare, H.F.T.; Oestreich, M. Cationic Ru–Se complexes for cooperative Si–H bond activation. Organometallics, 2020, 39(24), 4747-4753.
[http://dx.doi.org/10.1021/acs.organomet.0c00719]