Does Quinoa (Chenopodium quinoa) Consumption Improve Blood Glucose, Body Weight and Body Mass Index? A Systematic Review and Dose-Response Meta-Analysis of Clinical Trials

Page: [502 - 513] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Background: Quinoa (Chenopodium quinoa) has a structure similar to whole grains and contains phytochemicals and dietary fiber. Hence, it is considered a food substance with a high nutritional value.

Objective: The purpose of the present study was to assess the efficacy of quinoa in reducing fasting blood glucose (FBG), body weight (BW), and body mass index (BMI) in a meta-analysis of randomized clinical trials.

Methods: A comprehensive search in ISI Web of Science, Scopus, and PubMed databases as well as Google Scholar, was conducted up to November 2022 to identify reports of randomized clinical trials that investigated the effect of quinoa on FBG, BW, and BMI.

Results: Seven trials comprising 258 adults with mean ages of 31 to 64 years were included in this review. Studies used 15 to 50 grams of quinoa/per day as an intervention, and the intervention was between 28 to 180 days. In a dose-response analysis of FBG, there was significant evidence of a nonlinear association between intervention and FBG based on the quadratic model (P-value for nonlinearity = 0.027); hence, the slope of the curve increased when quinoa intake was nearly 25 g/- day. In comparison between quinoa seed supplementation and placebo, our findings showed that quinoa seed supplementation did not have a significant effect on BMI (MD: -0.25; 95% CI: -0.98, 0.47; I2=0%, P = 0.998) and BW (MD: -0.54; 95% CI: -3.05, 1.97; I2=0%, P = 0.99), when compared with placebo. Evidence of publication bias was not found among the included studies.

Conclusion: The present analysis revealed the beneficial effects of quinoa on the blood glucose level. Further studies on quinoa are needed to confirm these results.

[1]
Behloul, N.; Wu, G. Genistein: A promising therapeutic agent for obesity and diabetes treatment. Eur. J. Pharmacol., 2013, 698(1-3), 31-38.
[http://dx.doi.org/10.1016/j.ejphar.2012.11.013] [PMID: 23178528]
[2]
Astrup, A; Finer, N. Redefining type 2 diabetes:‘Diabesity’or ‘obesity dependent diabetes mellitus’? Obes Rev, 2000, 1(2), 57-59.
[http://dx.doi.org/10.1046/j.1467-789x.2000.00013.x] [PMID: 12119987]
[3]
Noratto, G.D.; Murphy, K.; Chew, B.P. Quinoa intake reduces plasma and liver cholesterol, lessens obesity-associated inflammation, and helps to prevent hepatic steatosis in obese db/db mouse. Food Chem., 2019, 287, 107-114.
[http://dx.doi.org/10.1016/j.foodchem.2019.02.061] [PMID: 30857678]
[4]
Franks, PW; McCarthy, MI Exposing the exposures responsible for type 2 diabetes and obesity. Science, 2016, 354(6308), 69-73.
[http://dx.doi.org/10.1126/science.aaf5094]
[5]
Riccardi, G.; Capaldo, B.; Vaccaro, O. Functional foods in the management of obesity and type 2 diabetes. Curr. Opin. Clin. Nutr. Metab. Care, 2005, 8(6), 630-635.
[http://dx.doi.org/10.1097/01.mco.0000171126.98783.0c] [PMID: 16205464]
[6]
Navarro-Perez, D.; Radcliffe, J.; Tierney, A.; Jois, M. Quinoa seed lowers serum triglycerides in overweight and obese subjects: A dose- response randomized controlled clinical trial. Curr. Dev. Nutr., 2017, 1(9), e001321.
[http://dx.doi.org/10.3945/cdn.117.001321] [PMID: 29955719]
[7]
Ando, H.; Chen, Y.C.; Tang, H.; Shimizu, M.; Watanabe, K.; Mitsunaga, T. Food components in fractions of quinoa seed. Food Sci. Technol. Res., 2002, 8(1), 80-84.
[http://dx.doi.org/10.3136/fstr.8.80]
[8]
Konishi, Y.; Hirano, S.; Tsuboi, H.; Wada, M. Distribution of minerals in quinoa (Chenopodium quinoa Willd.) seeds. Biosci. Biotechnol. Biochem., 2004, 68(1), 231-234.
[http://dx.doi.org/10.1271/bbb.68.231] [PMID: 14745190]
[9]
Bhargava, A.; Shukla, S.; Ohri, D. Chenopodium quinoa—An Indian perspective. Ind. Crops Prod., 2006, 23(1), 73-87.
[http://dx.doi.org/10.1016/j.indcrop.2005.04.002]
[10]
Alvarez-Jubete, L; Arendt, EK; Gallagher, E Nutritive value and chemical composition of pseudocereals as gluten-free ingredients. Int. J. Food Sci. Nutr., 2009, 60(S4), 240-257.
[http://dx.doi.org/10.1080/09637480902950597]
[11]
Tang, Y.; Li, X.; Zhang, B.; Chen, P.X.; Liu, R.; Tsao, R. Characterisation of phenolics, betanins and antioxidant activities in seeds of three Chenopodium quinoa willd. genotypes. Food Chem., 2015, 166, 380-388.
[http://dx.doi.org/10.1016/j.foodchem.2014.06.018] [PMID: 25053071]
[12]
Abugoch, J.L.E. Quinoa (Chenopodium quinoa Willd.): Composition, chemistry, nutritional, and functional properties. Adv. Food Nutr. Res., 2009, 58, 1-31.
[http://dx.doi.org/10.1016/S1043-4526(09)58001-1] [PMID: 19878856]
[13]
Navruz-Varli, S.; Sanlier, N. Nutritional and health benefits of quinoa (Chenopodium quinoa Willd.). J. Cereal Sci., 2016, 69, 371-376.
[http://dx.doi.org/10.1016/j.jcs.2016.05.004]
[14]
Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Group, P. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med., 2009, 6(7), e1000097.
[http://dx.doi.org/10.1371/journal.pmed.1000097] [PMID: 19621072]
[15]
Higgins, J.P.T. Cochrane handbook for systematic reviews of interventions version 5.0. 1. The Cochrane Collaboration. 2008. Available from:http://www cochrane-handbook
[16]
Crippa, A.; Discacciati, A.; Bottai, M.; Spiegelman, D.; Orsini, N. One-stage dose–response meta-analysis for aggregated data. Stat. Methods Med. Res., 2019, 28(5), 1579-1596.
[http://dx.doi.org/10.1177/0962280218773122] [PMID: 29742975]
[17]
Orsini, N.; Li, R.; Wolk, A.; Khudyakov, P.; Spiegelman, D. Meta-analysis for linear and nonlinear dose-response relations: examples, an evaluation of approximations, and software. Am. J. Epidemiol., 2012, 175(1), 66-73.
[http://dx.doi.org/10.1093/aje/kwr265] [PMID: 22135359]
[18]
Abellán, R.M.S.; Barnuevo, E.M.D.; García, S.C.; Contreras, F.C.J.; Aldeguer, G.M.; Soto, M.F.; Guillén, G.I.; Luque, R.A.J.; Quinde, R.F.J.; Martínez, G.A.; López, R.F.J. [Effect of quinua (Chenopodium quinoa)consumption as a coadjuvant in nutritional intervention in prediabetic subjects]. Nutr. Hosp., 2017, 34(5), 1163-1169.
[PMID: 29130716]
[19]
De Carvalho, F.G.; Ovídio, P.P.; Padovan, G.J.; Jordão Junior, A.A.; Marchini, J.S.; Navarro, A.M. Metabolic parameters of postmenopausal women after quinoa or corn flakes intake – a prospective and double-blind study. Int. J. Food Sci. Nutr., 2014, 65(3), 380-385.
[http://dx.doi.org/10.3109/09637486.2013.866637] [PMID: 24344670]
[20]
Farinazzi-Machado, F.M.V.; Barbalho, S.M.; Oshiiwa, M.; Goulart, R.; Pessan, J.O. Use of cereal bars with quinoa (Chenopodium quinoa W.) to reduce risk factors related to cardiovascular diseases. Food Sci. Technol., 2012, 32(2), 239-244.
[http://dx.doi.org/10.1590/S0101-20612012005000040]
[21]
Li, L.; Lietz, G.; Bal, W.; Watson, A.; Morfey, B.; Seal, C. Effects of quinoa (Chenopodium quinoa Willd.) consumption on markers of CVD risk. Nutrients, 2018, 10(6), 777.
[http://dx.doi.org/10.3390/nu10060777] [PMID: 29914146]
[22]
Pourshahidi, L.K.; Caballero, E.; Osses, A.; Hyland, B.W.; Ternan, N.G.; Gill, C.I.R. Modest improvement in CVD risk markers in older adults following quinoa (Chenopodium quinoa Willd.) consumption: A randomized-controlled crossover study with a novel food product. Eur. J. Nutr., 2020, 59(7), 3313-3323.
[http://dx.doi.org/10.1007/s00394-019-02169-0] [PMID: 31919583]
[23]
Oliveira, S.V.; Lima, G.M.; Fernando, V.D.; Fernandes de, G.M. Effects of intake of processed quinoa seeds on lipid profile in patients with coronary heart disease. Int. J. Sci., 2018, 4(3), 8-14.
[http://dx.doi.org/10.18483/ijSci.1572]
[24]
Karimian, J.; Abedi, S.; Shirinbakhshmasoleh, M.; Moodi, F.; Moodi, V.; Ghavami, A. The effects of quinoa seed supplementation on cardiovascular risk factors: A systematic review and meta-analysis of controlled clinical trials. Phytother. Res., 2020, 35(4), 1688-1696.
[http://dx.doi.org/10.1002/ptr.6901] [PMID: 33037704]
[25]
Vilcacundo, R.; Hernández-Ledesma, B. Nutritional and biological value of quinoa (Chenopodium quinoa Willd.). Curr. Opin. Food Sci., 2017, 14, 1-6.
[http://dx.doi.org/10.1016/j.cofs.2016.11.007]
[26]
Alvarez-Jubete, L.; Arendt, E.K.; Gallagher, E. Nutritive value of pseudocereals and their increasing use as functional gluten-free ingredients. Trends Food Sci. Technol., 2010, 21(2), 106-113.
[http://dx.doi.org/10.1016/j.tifs.2009.10.014]
[27]
Hernández, R.J. Quinoa, an option for feeding of the diabetes mellitus patient. Rev. Cuba. Endocrinol., 2015, 26(3), 304-312.
[28]
Lamothe, L.M.; Srichuwong, S.; Reuhs, B.L.; Hamaker, B.R. Quinoa (Chenopodium quinoa W.) and amaranth (Amaranthus caudatus L.) provide dietary fibres high in pectic substances and xyloglucans. Food Chem., 2015, 167, 490-496.
[http://dx.doi.org/10.1016/j.foodchem.2014.07.022] [PMID: 25149016]
[29]
Tang, Y.; Tsao, R. Phytochemicals in quinoa and amaranth grains and their antioxidant, anti-inflammatory, and potential health beneficial effects: a review. Mol. Nutr. Food Res., 2017, 61(7), 1600767.
[http://dx.doi.org/10.1002/mnfr.201600767] [PMID: 28239982]
[30]
Foucault, A.S.; Mathé, V.; Lafont, R.; Even, P.; Dioh, W.; Veillet, S.; Tomé, D.; Huneau, J.F.; Hermier, D.; Quignard-Boulangé, A. Quinoa extract enriched in 20-hydroxyecdysone protects mice from diet-induced obesity and modulates adipokines expression. Obesity, 2012, 20(2), 270-277.
[http://dx.doi.org/10.1038/oby.2011.257] [PMID: 21869758]
[31]
Mithila, M.V.; Khanum, F. Effectual comparison of quinoa and amaranth supplemented diets in controlling appetite; a biochemical study in rats. J. Food Sci. Technol., 2015, 52(10), 6735-6741.
[http://dx.doi.org/10.1007/s13197-014-1691-1] [PMID: 26396423]