[1]
Kateryna Kon, M.D.; Rai, M. Antibiotic Resistance Mechanisms and New Antimicrobial Approaches; Academic Press is an imprint (Eds); Elsevier: London EC2Y 5AS, UK, 2016.
[3]
Gordon, D.; Brown David, W.; Denning Neil, AR.; Gow Stuart, M.; Levitz Mihai, G.; Theodore, N.; White, C. Hidden killers: Human fungal infections. Sci. Transi. Med., 2012, 2012, 165rv13.
[4]
Manivasagan, P.; Kang, KH.; Sivakumar, K.; Li-Chan, EC.; Oh, HM.; Kim, SK. Marine actinobacteria: An important source of bioactive natural products. Environ. Toxicol. Pharmacol., 2014, 38, 172-188.
[10]
Malekjani, N.; Jafari, S.M. Food process modeling and optimization by Response Surface Methodology (RSM); Sevda, S.; Singh, A., Eds.; CRC Press: Boca Raton, 2020.
[12]
Azzouz, Z.; Bettache, A. Biotechnological production and statistical optimization of fungal xylanase by bioconversion of the lignocellulosic biomass residues in solid-state fermentation. In: Biomass Conversion and Biorefinery; , 2020; 12, pp. 5923-5935.
[13]
Manohari, R.; Yogalakshmi, KN. Optimization of copper (II) removal by response surface methodology using root nodule endophytic bacteria isolated from Vigna unguiculata. Water. Air. Soil Pollut., 2016, 227, 1-13.
[14]
Cai, Y.; Wang, R.; Rao, P.; Wu, B.; Yan, L.; Hu, L.; Park, S.; Ryu, M.; Zhou, X. Bioremediation of petroleum hydrocarbons using Acinetobacter sp. SCYY-5 isolated from contaminated oil sludge: Strategy and effectiveness study. Int. J. Environ. Res. Public. Health., 2021, 18(2), 819.
[16]
Zhang, L.J.; Zheng, X.; Jin, Z.H.; Hu, S.; He, M.R. Optimization of fermentation conditions for pristinamycin production by immobilized Streptomyces pristinaespiralis using response surface methodology. Process Biotechnol. Electr. J. Biotechnol., 2012, 15(4)
[21]
Shirling, E.B.; Göttlieb, D. Methods for Characterization of Streptomyces Species. Int. J. Syst. Bacteriol., 1966, 16(3), 313-340.
[22]
Locci, R. Streptomyces and related genera. In: Bergey’s Manual of Systematic Bacteriology; Williams, S.T.; Sharpe, M.E.; Holt, J.G., Eds.; Williams & Wilkins: Baltimore, 1989; 4, pp. 8-2451.
[23]
Williams, S.T.; Goodfellow, M.; Alderson, G. Genus Streptomyces Waksman and Henrici 1943, 339AL. In: Bergey’s Manual of systematic bacteriology, 1st ed; Williams & Wilkins: Baltimore, MD., 1989; 4, pp. 2452-2492.
[27]
Gourdon, R.E.; Barnett, D.A.; Handerhan, J.E.; Pang, C.H. Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int. J. Syst. Bacteriol., 1974, 24, 54-63.
[28]
Williams, S.T.; Cross, T. Actinomycetes. In: Methods in microbiology; Academic Press:: London, 1971; pp. 295-334.
[29]
Prasad, P.; Singh, T.; Bedi, S. Characterization of the cellulolytic enzyme produced by Streptomyces griseorubens (Accession No. AB184139) isolated from Indian soil. J. King Saud Univ. Sci., 2013, 25, 245-250.
[32]
Ningthoujam, D.S.; Kshetri, P.; Sanasam, S.; Nimaichand, S. Screening, identification of best producers and optimization of extracellular proteases from moderately halophilic alkalithermotolerant indigenous actinomycetes. World. Appl. Sci. J., 2009, 7, 907-916.
[33]
De Vos, P.; Garrit, G.M.; Jones, D.; Krieg, N.R.; Ludwig, W.; Raine, A.K.H. The Firmicutes. In: Bergey’s Manual of Systematic Bacteriology; Springer: New York, 2009; p. 3.
[34]
Marchal, N.; Bourdon, J.L. Culture medium and biochemical identification of bacteria; Paris (France), 1973, p. 179.
[36]
Lugauskas, A.; Pečiulytė, D.; Ramanauskas, R.; Bučinskienė, D.; Narkevičius, A.; Ulevičius, V. Micromycetes in metal corrosion processes under atmospheric conditions. Ecol. Lithuanian, 2005, 1, 11-26.
[41]
Mechlinski, W. The polyene antifungal antibiotics. In: Handbook of microbiology; Laskin, A.I.; Lechevalier, H.A., Eds.; CRC Press, 1978; Vol. III, pp. 93-107.
[43]
Dean, A.; Voss, D.; Graguljic, D. Design and Analysis of Experiments, 2nd ed; Springer, 2017.
[44]
Box, G.E.P.; Hunter, W.G.; Hunter, J.S. Statistics for Experimenters; Wiley Interscience: New York, 1978.
[45]
Goupy, J. Design of experiments for response surfaces; Dunod: Paris, 1999.
[46]
Hatano, K.; Frederick, D.; Moore, J. Microbial ecology of constructed wetlands used for treating pulp-mill wastewater. Water Sci. Technol., 1999, 29, 233-239.
[52]
Bensultana, A.; Ouhdouch, Y.; Hassani, L.; Mezrioui, NE.; Rafouk, L. Isolation and characterization of wastewater sand filter actinomycetes. World J. Microbiol. Biotechnol., 2010, 26, 481-487.
[53]
Hozzein, W.N.; Ahmed, M.B.; Abdel Tawab, M.S. Efficiency of some actinomycete isolates in biological treatment and removal of heavy metals from wastewater. Afr. J. Biotechnol., 2012, 11(5), 1163-1168.
[54]
Elżbieta, B.M.; Renata, S.; Jolanta, R.; Beata, Ł. Effect of the presence of Actinomycetes in the activated sludge on the quality of the treated wastewater. In E3S Web of Conferences, 2017, 17, 00007.
[65]
Chakraborty, S.; Jana, S.; Gandhi, A.; Sen, KK.; Zhiang, W.; Kokare, C. 2014 Gellan gum microspheres containing a novel alpha-amylase from marine Nocardiopsis sp. strain B2 for immobilization. Int. J Biol. Macromol., 2014, 70, 292-299.
[69]
Polti, M.A.; Aparicio, J.D.; Benimeli, C.S.; Amoroso, M.J. Role of Actinobacteria in Bioremediation. In: Microbial Biodegradation and Bioremediation; Das, S., Ed.; Elsevier Inc: London, 2014; pp. 269-286.
[78]
Oskay, M. Effects of some environmental conditions on biomass and antimicrobial metabolite production by Streptomyces sp., KGG32. Int. J. Agric. Biol., 2011, 13(3), 317-324.
[79]
Mangamuri, U.; Poda, S.; Naragani, K.; Muvva, V. Influence of cultural conditions for improved production of bioactive metabolites by streptomyces cheonanensis VUK-A isolated from coringa mangrove ecosystem. Curr. Trends. Biotechnol. Pharm., 2012, 6(1), 99-111.