Pathogenetic and Therapeutic Role of Gut Microbiome in Immunoglobin A Nephropathy

Page: [468 - 473] Pages: 6

  • * (Excluding Mailing and Handling)

Abstract

Immunoglobulin A nephropathy (IgAN) is a common primary glomerulonephritis, which is mainly characterized by excessive IgA deposition in the glomerular mesangial area. Although exploring the pathogenesis of IgAN and improving the treatment strategies continuously, the exact pathogenesis of IgAN remains unclear and the disease still leads to high mortality. Recently, emerging evidence has demonstrated that dysregulated intestinal mucosal immunity and gut microbiome imbalance may play a combined role in the development and progression of IgAN. It has been suggested that reconstructing the intestinal microenvironment and maintaining the stability and metabolic balance of gut microbiome are expected to become new treatment strategies. Meanwhile, inhibiting mucosa-associated lymphoid tissue (MALT) controlled by the gut microbiome may become an alternative treatment, especially used to reduce the excessive production of IgA in IgAN. In this review, we summarized the correlation between gut microbiome and the pathogenesis of IgAN, as well as the therapeutic potential of gut microbiome in this disease.

[1]
Rajasekaran A, Julian BA, Rizk DV. IgA nephropathy: An interesting autoimmune kidney disease. Am J Med Sci 2021; 361(2): 176-94.
[http://dx.doi.org/10.1016/j.amjms.2020.10.003] [PMID: 33309134]
[2]
Wei LY, Liu C, Zhang YL, Li GL. IgA nephropathy with leucocytoclastic vasculitis. J Int Med Res 2018; 46(7): 3009-14.
[http://dx.doi.org/10.1177/0300060518775814] [PMID: 29888629]
[3]
Roberts ISD. Pathology of IgA nephropathy. Nat Rev Nephrol 2014; 10(8): 445-54.
[http://dx.doi.org/10.1038/nrneph.2014.92] [PMID: 24861083]
[4]
Schena FP, Nistor I. Epidemiology of IgA nephropathy: A global perspective. Semin Nephrol 2018; 38(5): 435-42.
[http://dx.doi.org/10.1016/j.semnephrol.2018.05.013] [PMID: 30177015]
[5]
Saha MK, Julian BA, Novak J, Rizk DV. Secondary IgA nephropathy. Kidney Int 2018; 94(4): 674-81.
[http://dx.doi.org/10.1016/j.kint.2018.02.030] [PMID: 29804660]
[6]
Cui Y, Zhai Y, Qi Y, et al. The comprehensive analysis of clinical trials registration for IgA nephropathy therapy on ClinicalTrials.gov. Ren Fail 2022; 44(1): 461-72.
[http://dx.doi.org/10.1080/0886022X.2022.2048017] [PMID: 35272573]
[7]
Hu X, Du J, Xie Y, et al. Fecal microbiota characteristics of Chinese patients with primary IgA nephropathy: A cross-sectional study. BMC Nephrol 2020; 21(1): 97.
[http://dx.doi.org/10.1186/s12882-020-01741-9] [PMID: 32169051]
[8]
De Angelis M, Montemurno E, Piccolo M, et al. Microbiota and metabolome associated with immunoglobulin A nephropathy (IgAN). PLoS One 2014; 9(6): e99006.
[http://dx.doi.org/10.1371/journal.pone.0099006] [PMID: 24922509]
[9]
Monteiro RC, Berthelot L. Role of gut-kidney axis in renal diseases and IgA nephropathy. Curr Opin Gastroenterol 2021; 37(6): 565-71.
[http://dx.doi.org/10.1097/MOG.0000000000000789] [PMID: 34482323]
[10]
Diamond G, Beckloff N, Weinberg A, Kisich K. The roles of antimicrobial peptides in innate host defense. Curr Pharm Des 2009; 15(21): 2377-92.
[http://dx.doi.org/10.2174/138161209788682325] [PMID: 19601838]
[11]
Duerkop BA, Vaishnava S, Hooper LV. Immune responses to the microbiota at the intestinal mucosal surface. Immunity 2009; 31(3): 368-76.
[http://dx.doi.org/10.1016/j.immuni.2009.08.009] [PMID: 19766080]
[12]
Bunker JJ, Bendelac A. IgA responses to microbiota. Immunity 2018; 49(2): 211-24.
[http://dx.doi.org/10.1016/j.immuni.2018.08.011] [PMID: 30134201]
[13]
Macpherson AJ, Yilmaz B, Limenitakis JP, Ganal-Vonarburg SC. IgA function in relation to the intestinal microbiota. Annu Rev Immunol 2018; 36(1): 359-81.
[http://dx.doi.org/10.1146/annurev-immunol-042617-053238] [PMID: 29400985]
[14]
Hapfelmeier S, Lawson MAE, Slack E, et al. Reversible microbial colonization of germ-free mice reveals the dynamics of IgA immune responses. Science 2010; 328(5986): 1705-9.
[http://dx.doi.org/10.1126/science.1188454] [PMID: 20576892]
[15]
Rollino C, Vischini G, Coppo R. IgA nephropathy and infections. J Nephrol 2016; 29(4): 463-8.
[http://dx.doi.org/10.1007/s40620-016-0265-x] [PMID: 26800970]
[16]
Allen AC, Feehally J. IgA1 glycosylation and the pathogenesis of IgA nephropathy. Am J Kidney Dis 2000; 35(3): 551-4.
[http://dx.doi.org/10.1016/S0272-6386(00)70214-9] [PMID: 10692287]
[17]
Chemouny JM, Gleeson PJ, Abbad L, et al. Modulation of the microbiota by oral antibiotics treats immunoglobulin A nephropathy in humanized mice. Nephrol Dial Transplant 2019; 34(7): 1135-44.
[http://dx.doi.org/10.1093/ndt/gfy323] [PMID: 30462346]
[18]
Dong R, Bai M, Zhao J, Wang D, Ning X, Sun S. A comparative study of the gut microbiota associated with immunoglobulin a nephropathy and membranous nephropathy. Front Cell Infect Microbiol 2020; 10: 557368.
[http://dx.doi.org/10.3389/fcimb.2020.557368] [PMID: 33194798]
[19]
Erkmen O, Bozoglu TF, Eds. In: Food microbiology: Principles into practice, John Wiley & Sons: New Jersey, 2016.
[http://dx.doi.org/10.1002/9781119237860]
[20]
He JW, Zhou XJ, Li YF, et al. Associations of genetic variants contributing to gut microbiota composition in immunoglobin a nephropathy. mSystems 2021; 6(1): e00819-20.
[http://dx.doi.org/10.1128/mSystems.00819-20] [PMID: 33436510]
[21]
Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Nageshwar RD. Role of the normal gut microbiota. World J Gastroenterol 2015; 21(29): 8787-803.
[http://dx.doi.org/10.3748/wjg.v21.i29.8787] [PMID: 26269668]
[22]
Kiryluk K, Li Y, Scolari F, et al. Discovery of new risk loci for IgA nephropathy implicates genes involved in immunity against intestinal pathogens. Nat Genet 2014; 46(11): 1187-96.
[http://dx.doi.org/10.1038/ng.3118] [PMID: 25305756]
[23]
Wu H, Tang D, Zheng F, et al. Identification of a novel interplay between intestinal bacteria and metabolites in Chinese patients with IgA nephropathy via integrated microbiome and metabolome approaches. Ann Transl Med 2021; 9(1): 32.
[http://dx.doi.org/10.21037/atm-20-2506] [PMID: 33553325]
[24]
Hobby GP, Karaduta O, Dusio GF, Singh M, Zybailov BL, Arthur JM. Chronic kidney disease and the gut microbiome. Am J Physiol Renal Physiol 2019; 316(6): F1211-7.
[http://dx.doi.org/10.1152/ajprenal.00298.2018] [PMID: 30864840]
[25]
Vaziri ND. CKD impairs barrier function and alters microbial flora of the intestine. Curr Opin Nephrol Hypertens 2012; 21(6): 587-92.
[http://dx.doi.org/10.1097/MNH.0b013e328358c8d5] [PMID: 23010760]
[26]
Tang WHW, Wang Z, Kennedy DJ, et al. Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circ Res 2015; 116(3): 448-55.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.305360] [PMID: 25599331]
[27]
Yacoub R, Wyatt CM. Manipulating the gut microbiome to decrease uremic toxins. Kidney Int 2017; 91(3): 521-3.
[http://dx.doi.org/10.1016/j.kint.2017.01.003] [PMID: 28202164]
[28]
Mariño E. The gut microbiota and immune-regulation: The fate of health and disease. Clin Transl Immunology 2016; 5(11): e107.
[http://dx.doi.org/10.1038/cti.2016.61] [PMID: 27990283]
[29]
Kiryluk K, Novak J. The genetics and immunobiology of IgA nephropathy. J Clin Invest 2014; 124(6): 2325-32.
[http://dx.doi.org/10.1172/JCI74475] [PMID: 24892706]
[30]
Nakawesi J, This S, Hütter J, et al. αvβ8 integrin-expression by BATF3-dependent dendritic cells facilitates early IgA responses to Rotavirus. Mucosal Immunol 2021; 14(1): 53-67.
[http://dx.doi.org/10.1038/s41385-020-0276-8] [PMID: 32161355]
[31]
Zhai YL, Zhu L, Shi SF, Liu LJ, Lv JC, Zhang H. Increased APRIL expression induces IgA1 aberrant glycosylation in IgA nephropathy. Medicine 2016; 95(11): e3099.
[http://dx.doi.org/10.1097/MD.0000000000003099] [PMID: 26986150]
[32]
McCarthy DD, Kujawa J, Wilson C, et al. Mice overexpressing BAFF develop a commensal flora-dependent, IgA-associated nephropathy. J Clin Invest 2011; 121(10): 3991-4002.
[http://dx.doi.org/10.1172/JCI45563] [PMID: 21881212]
[33]
Mahmoodpoor F, Rahbar Saadat Y, Barzegari A, Ardalan M, Zununi Vahed S. The impact of gut microbiota on kidney function and pathogenesis. Biomed Pharmacother 2017; 93: 412-9.
[http://dx.doi.org/10.1016/j.biopha.2017.06.066] [PMID: 28654798]
[34]
Zhong Z, Tan J, Tan L, Tang Y, Qiu Z, Pei G, et al. Modifications of gut microbiota are associated with the severity of IgA nephropathy in the Chinese population. Int Immunopharmacol 2020; 89(Pt B): 107085.
[http://dx.doi.org/10.1016/j.intimp.2020.107085]
[35]
Sallustio F, Curci C, Chaoul N, et al. High levels of gut-homing immunoglobulin A + B lymphocytes support the pathogenic role of intestinal mucosal hyperresponsiveness in immunoglobulin A nephropathy patients. Nephrol Dial Transplant 2021; 36(3): 452-64.
[http://dx.doi.org/10.1093/ndt/gfaa264] [PMID: 33200215]
[36]
Zheng N, Xie K, Ye H, et al. TLR7 in B cells promotes renal inflammation and Gd-IgA1 synthesis in IgA nephropathy. JCI Insight 2020; 5(14): e136965.
[http://dx.doi.org/10.1172/jci.insight.136965] [PMID: 32699192]
[37]
Coppo R. The gut-renal connection in IgA nephropathy. Semin Nephrol 2018; 38(5): 504-12.
[http://dx.doi.org/10.1016/j.semnephrol.2018.05.020] [PMID: 30177022]
[38]
Watanabe H, Goto S, Mori H, et al. Comprehensive microbiome analysis of tonsillar crypts in IgA nephropathy. Nephrol Dial Transplant 2017; 32(12): 2072-9.
[PMID: 27683270]
[39]
Li J, Cao Y, Lu R, et al. Integrated fecal microbiome and serum metabolomics analysis reveals abnormal changes in rats with immunoglobulin a nephropathy and the intervention effect of Zhen Wu Tang. Front Pharmacol 2021; 11: 606689.
[http://dx.doi.org/10.3389/fphar.2020.606689] [PMID: 33584283]
[40]
Lau WL, Chang Y, Vaziri ND. The consequences of altered microbiota in immune-related chronic kidney disease. Nephrol Dial Transplant 2021; 36(10): 1791-8.
[http://dx.doi.org/10.1093/ndt/gfaa087] [PMID: 32437554]
[41]
Chen YY, Chen DQ, Chen L, et al. Microbiome-metabolome reveals the contribution of gut-kidney axis on kidney disease. J Transl Med 2019; 17(1): 5.
[http://dx.doi.org/10.1186/s12967-018-1756-4] [PMID: 30602367]
[42]
Xie A, Sheng J, Zheng F. Intestinal microbiota and kidney diseases. Chin J Integr Med 2018; 24(6): 406-8.
[http://dx.doi.org/10.1007/s11655-017-2927-5] [PMID: 29651674]
[43]
Zhang P, Fang J, Li G, et al. Sex differences in fecal microbiota correlation with physiological and biochemical indices associated with end-stage renal disease caused by immunoglobulin a nephropathy or diabetes. Front Microbiol 2021; 12: 752393.
[http://dx.doi.org/10.3389/fmicb.2021.752393] [PMID: 34899638]
[44]
Papista C, Lechner S, Ben Mkaddem S, et al. Gluten exacerbates IgA nephropathy in humanized mice through gliadin-CD89 interaction. Kidney Int 2015; 88(2): 276-85.
[http://dx.doi.org/10.1038/ki.2015.94] [PMID: 25807036]
[45]
Peng J, Tang Y, Huang Y. Gut health: The results of microbial and mucosal immune interactions in pigs. Anim Nutr 2021; 7(2): 282-94.
[http://dx.doi.org/10.1016/j.aninu.2021.01.001] [PMID: 34258416]
[46]
Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell 2014; 157(1): 121-41.
[http://dx.doi.org/10.1016/j.cell.2014.03.011] [PMID: 24679531]
[47]
Zhang T, Ye L, Han L, He Q, Zhu J. Knockdown of HVEM, a lymphocyte regulator gene, in ovarian cancer cells increases sensitivity to activated T cells. Oncol Res 2016; 24(3): 189-96.
[http://dx.doi.org/10.3727/096504016X14641336229602] [PMID: 27458100]
[48]
Lauriero G, Abbad L, Vacca M, et al. Fecal microbiota transplantation modulates renal phenotype in the humanized mouse model of iga nephropathy. Front Immunol 2021; 12: 694787.
[http://dx.doi.org/10.3389/fimmu.2021.694787] [PMID: 34712223]
[49]
Hernández MAG, Canfora EE, Jocken JWE, Blaak EE. The short-chain fatty acid acetate in body weight control and insulin sensitivity. Nutrients 2019; 11(8): 1943.
[http://dx.doi.org/10.3390/nu11081943] [PMID: 31426593]
[50]
Chai L, Luo Q, Cai K, Wang K, Xu B. Reduced fecal short-chain fatty acids levels and the relationship with gut microbiota in IgA nephropathy. BMC Nephrol 2021; 22(1): 209.
[http://dx.doi.org/10.1186/s12882-021-02414-x] [PMID: 34082732]