LPLSG: Prediction of lncRNA-protein Interaction Based on Local Network Structure

Page: [276 - 284] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Background: The interaction between RNA and protein plays an important role in life activities. Long ncRNAs (lncRNAs) are large non-coding RNAs, and have received extensive attention in recent years. Because the interaction between RNA and protein is tissue-specific and condition-specific, it is time-consuming and expensive to predict the interaction between lncRNA and protein based on biological wet experiments.

Objective: The contribution of this paper is to propose a method for prediction based on the local structural similarity of lncRNA-protein interaction (LPI) network.

Methods: The method computes the local structure similarity of network space, and maps it to LPI space, and uses an innovative algorithm that combined Resource Allocation and improved Collaborative Filtering algorithm to calculate the potential LPI.

Conclusion: AUPR and AUC are significantly better than the five popular baseline methods. In addition, the case study shows that some results of LPLSG prediction on the actual data set have been verified by NPInterV4.0 database and some literatures.

Graphical Abstract

[1]
Ge M, Li A, Wang M. A bipartite network-based method for prediction of long non-coding rna-protein interactions. Genomics Proteomics Bioinformatics 2016; 14(1): 62-71.
[http://dx.doi.org/10.1016/j.gpb.2016.01.004] [PMID: 26917505]
[2]
Zhang H, Ming Z, Fan C, Zhao Q, Liu H. A path-based computational model for long non-coding RNA-protein interaction prediction. Genomics 2020; 112(2): 1754-60.
[http://dx.doi.org/10.1016/j.ygeno.2019.09.018] [PMID: 31639442]
[3]
Griffiths-Jones S. The microRNA registry. Nucleic Acids Res 2004; 32(90001): 109D-1.
[http://dx.doi.org/10.1093/nar/gkh023] [PMID: 14681370]
[4]
Lee JT. Epigenetic regulation by long noncoding RNAs. Science 2012; 338(6113): 1435-9.
[http://dx.doi.org/10.1126/science.1231776] [PMID: 23239728]
[5]
Nishikawa K, Kinjo AR. Essential role of long non-coding RNAs in de novo chromatin modifications: the genomic address code hypothesis. Biophys Rev 2017; 9(2): 73-7.
[http://dx.doi.org/10.1007/s12551-017-0259-5] [PMID: 28424740]
[6]
Hung T, Wang Y, Lin MF, et al. Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nat Genet 2011; 43(7): 621-9.
[http://dx.doi.org/10.1038/ng.848] [PMID: 21642992]
[7]
Tian D, Sun S, Lee JT. The long noncoding RNA, Jpx, is a molecular switch for X chromosome inactivation. Cell 2010; 143(3): 390-403.
[http://dx.doi.org/10.1016/j.cell.2010.09.049] [PMID: 21029862]
[8]
van Dijk M, Thulluru HK, Mulders J, et al. HELLP babies link a novel lincRNA to the trophoblast cell cycle. J Clin Invest 2012; 122(11): 4003-11.
[http://dx.doi.org/10.1172/JCI65171] [PMID: 23093777]
[9]
de Bruin RG, Rabelink TJ, van Zonneveld AJ, van der Veer EP. Emerging roles for RNA-binding proteins as effectors and regulators of cardiovascular disease. Eur Heart J 2017; 38(18): ehw567.
[http://dx.doi.org/10.1093/eurheartj/ehw567] [PMID: 28064149]
[10]
Zhu J, Fu H, Wu Y, Zheng X. Function of lncRNAs and approaches to lncRNA-protein interactions. Sci China Life Sci 2013; 56(10): 876-85.
[http://dx.doi.org/10.1007/s11427-013-4553-6] [PMID: 24091684]
[11]
Noh JH, Kim KM, McClusky WG, Abdelmohsen K, Gorospe M. Cytoplasmic functions of long noncoding RNAs. Wiley Interdiscip Rev RNA 2018; 9(3): e1471.
[http://dx.doi.org/10.1002/wrna.1471] [PMID: 29516680]
[12]
Xie C, Yuan J, Li H, et al. NONCODEv4: exploring the world of long non-coding RNA genes. Nucleic Acids Res 2014; 42(D1): D98-D103.
[http://dx.doi.org/10.1093/nar/gkt1222] [PMID: 24285305]
[13]
Li JH, Liu S, Zhou H, Qu LH, Yang JH. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res 2014; 42(D1): D92-7.
[http://dx.doi.org/10.1093/nar/gkt1248] [PMID: 24297251]
[14]
Das T, Deb A, Parida S, Mondal S, Ghosh Z. Lncrbase v.2: an updated resource for multispecies lncrnas and cliniclsnp hosting genetic variants in lncrnas for cancer patients. RNA Biol 2020; 12(2): 1-16.
[PMID: 33112702]
[15]
Li A, Zang Q, Sun D, Wang M. A text feature-based approach for literature mining of lncRNA–protein interactions. Neurocomputing 2016; 206(6): 73-80.
[http://dx.doi.org/10.1016/j.neucom.2015.11.110]
[16]
Zang Q, Sun D, Feng H, Li A. Extracting lncrna-protein interactions from literature using a text feature-based Approach. IFAC-PapersOnLine 2015; 48(28): 22-6.
[http://dx.doi.org/10.1016/j.ifacol.2015.12.094]
[17]
Zhang W, Yue X, Tang G, et al. SFPEL-LPI: Sequence-based feature projection ensemble learning for predicting LncRNA-protein interactions. PLOS Comput Biol 2018; 14(12): e1006616.
[http://dx.doi.org/10.1371/journal.pcbi.1006616] [PMID: 30533006]
[18]
Lu Q, Ren S, Lu M, et al. Computational prediction of associations between long non-coding RNAs and proteins. BMC Genomics 2013; 14(1): 651-1.
[http://dx.doi.org/10.1186/1471-2164-14-651] [PMID: 24063787]
[19]
Liu ZP. Predicting lncrna-protein interactions by machine learning methods: A review. Curr Bioinform 2021; 15(8): 831-40.
[http://dx.doi.org/10.2174/1574893615666200224095925]
[20]
Suresh V, Liu L, Adjeroh D, Zhou X. RPI-Pred: predicting ncRNA-protein interaction using sequence and structural information. Nucleic Acids Res 2015; 43(3): 1370-9.
[http://dx.doi.org/10.1093/nar/gkv020] [PMID: 25609700]
[21]
Yi HC, You ZH, Huang DS, Li X, Jiang TH, Li LP. A deep learning framework for robust and accurate prediction of ncrna-protein interactions using evolutionary information. Mol Ther Nucleic Acids 2018; 11(6): 337-44.
[http://dx.doi.org/10.1016/j.omtn.2018.03.001] [PMID: 29858068]
[22]
Zheng X, Wang Y, Tian K, et al. Fusing multiple protein-protein similarity networks to effectively predict lncRNA-protein interactions. BMC Bioinformatics 2017; 18(S12) (Suppl. 12): 420.
[http://dx.doi.org/10.1186/s12859-017-1819-1] [PMID: 29072138]
[23]
Hu H, Zhu C, Ai H, et al. LPI-ETSLP: lncRNA–protein interaction prediction using eigenvalue transformation-based semi-supervised link prediction. Mol Biosyst 2017; 13(9): 1781-7.
[http://dx.doi.org/10.1039/C7MB00290D] [PMID: 28702594]
[24]
Zheng J, Hong X, Xie J, Tong X, Liu S. P3DOCK: a protein–RNA docking webserver based on template-based and template-free docking. Bioinformatics 2020; 36(1): 96-103.
[http://dx.doi.org/10.1093/bioinformatics/btz478] [PMID: 31173056]
[25]
Agostini F, Zanzoni A, Klus P, Marchese D, Cirillo D, Tartaglia GG. catRAPID omics: a web server for large-scale prediction of protein-RNA interactions. Bioinformatics 2013; 29(22): 2928-30.
[http://dx.doi.org/10.1093/bioinformatics/btt495] [PMID: 23975767]
[26]
Haas J, Mester S, Lai A, et al. Genomic structural variations lead to dysregulation of important coding and non-coding RNA species in dilated cardiomyopathy. EMBO Mol Med 2018; 10(1): 107-20.
[http://dx.doi.org/10.15252/emmm.201707838] [PMID: 29138229]
[27]
Zhang W, Yue X, Huang F, Liu R, Chen Y, Ruan C. Predicting drug-disease associations and their therapeutic function based on the drug-disease association bipartite network. Methods 2018; 145(5): 51-9.
[http://dx.doi.org/10.1016/j.ymeth.2018.06.001] [PMID: 29879508]
[28]
Identification of drug-target interaction from interactome network with ‘guilt-by-association’ principle and topology features. Bioinformatics 2016; 32(7): 57-64.
[29]
Zhou T, Lü L, Zhang Y-C. Predicting missing links via local information. Eur Phys J B 2009; 71(4): 623-30.
[http://dx.doi.org/10.1140/epjb/e2009-00335-8]
[30]
Teng X, Chen X, Xue H, et al. NPInter v4.0: an integrated database of ncRNA interactions. Nucleic Acids Res 2020; 48(D1): D160-5.
[PMID: 31670377]
[31]
Yuan J, Wu W, Xie C, Zhao G, Zhao Y, Chen R. NPInter v2.0: an updated database of ncRNA interactions. Nucleic Acids Res 2014; 42(D1): D104-8.
[http://dx.doi.org/10.1093/nar/gkt1057] [PMID: 24217916]
[32]
Consortium TU. UniProt: A worldwide hub of protein knowledge. Nucleic Acids Res 2019; 47(D1): D506-15.
[http://dx.doi.org/10.1093/nar/gky1049] [PMID: 30395287]
[33]
Rpicool: A tool for in silico rna-protein interaction detection using random forest. J Theor Biol 2016; 40(2): 1-8.
[34]
Zhu M, Gao L, Li X, et al. The analysis of the drug–targets based on the topological properties in the human protein–protein interaction network. J Drug Target 2009; 17(7): 524-32.
[http://dx.doi.org/10.1080/10611860903046610] [PMID: 19530902]
[35]
Herlocker JL, Konstan JA, Terveen LG, Riedl JT. Evaluating collaborative filtering recommender systems. ACM Trans Inf Syst 2004; 22(1): 5-53.
[http://dx.doi.org/10.1145/963770.963772]
[36]
Saadati M, Shihab S, Rahman MS. Movie recommender systems: Implementation and performance evaluation. Clin Orthop Relat Res 2019; 19(09): 49-64.
[37]
Tong H, Faloutsos C. Fast random walk with restart and its applications. ICDM 2006; 18(22): 613-22.
[38]
Gan M, Hussei S. Walking on a user similarity network towards personalized recommendations. PLoS One 2014; 9(12): e114662.
[http://dx.doi.org/10.1371/journal.pone.0114662] [PMID: 25489942]
[39]
Li G, Luo J, Xiao Q, Liang C, Ding P. Predicting microRNA-disease associations using label propagation based on linear neighborhood similarity. J Biomed Inform 2018; 82(2): 169-77.
[http://dx.doi.org/10.1016/j.jbi.2018.05.005] [PMID: 29763707]
[40]
Zhang W, Qu Q, Zhang Y, Wang W. The linear neighborhood propagation method for predicting long non-coding rna–protein interactions. Neurocomputing 2017; 273(17): 526-34.
[41]
Wang W, Lv H, Zhao Y, Liu D, Wang Y, Zhang Y. Dls: A link prediction method based on network local structure for predicting drug-protein interactions. Front Bioeng Biotechnol 2020; 8(1): 330-8.
[http://dx.doi.org/10.3389/fbioe.2020.00330] [PMID: 32391341]