Antibacterial and Antioxidant Superoxide Anion Radical Inhibitors from Myrmecodia pendans: An In silico Study

Article ID: e230223213942 Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Background: Ant-nest (Myrmecodia pendans) is an epiphytic plant that can prevent several diseases, including bacterial infections. Diarrhea is caused by Escherichia coli bacteria, while infections in the oral cavity can be caused by Enterococcus faecalis bacteria. Antibacterial activity is also influenced by conditions of Reactive Oxygen Species (ROS). Antioxidants are needed to inhibit the formation of excess ROS in the body. Superoxide anion radicals are included in the generation of ROS, which is produced by several enzymes, such as nicotinamide-adenine dinucleotide phosphate (NADPH) oxidase or commonly known as Nox and xanthine oxidase (XO).

Objectives: This study aimed to determine the potential of M. pendans as an antibacterial in vitro and in silico correlation in the formation of superoxide anion radicals.

Methods: The compounds were obtained by column chromatography method, followed by a spectroscopic examination. In vitro test using the disc diffusion method and in silico test using AutoDock 4.2 program were conducted with positive control fosfomycin and allopurinol, tethered to MurA, Nox, and XO enzymes, and visualized using the Discovery Studio 2020.

Results: Compound 1 (oleanolic acid) and compound 2 (pomolic acid) demonstrated antibacterial activity against E. coli but no activity against E. faecalis. Compound 3 (3-hydroxy-eupan-20,24-dien-26-oic acid) demonstrated no activity against these two bacteria. Based on the in silico results, compound 3 had the best binding energy affinity for all MurA, Nox, and XO enzymes of -6.89, -9.35, and -9.75 Kcal/mol, respectively. Similarly, compounds 1 and 2 had good binding energies for Nox protein of -9.29 Kcal/mol and -6.54 Kcal/mol and XO of -7.66 and -4.7 Kcal/mol, respectively.

Conclusion: In vitro results against E. coli and E. faecalis bacteria showed inhibition by compounds 1 and 2 but not by compound 3. Meanwhile, in in silico analysis, all the compounds showed potential as an inhibitor of superoxide anion radicals generated by enzymes Nox and XO.

Graphical Abstract

[1]
Sholikhah, E.N. Indonesian medicinal plants as sources of secondary metabolites for pharmaceutical industry. J thee. Med. Sci., 2016, 48(04), 226-239.
[2]
Sofowora, A.; Ogunbodede, E.; Onayade, A. The role and place of medicinal plants in the strategies for disease prevention. Afr. J. Tradit. Complement. Altern. Med., 2013, 10(5), 210-229.
[http://dx.doi.org/10.4314/ajtcam.v10i5.2] [PMID: 24311829]
[3]
Stuart, C.; Schwartz, S.; Beeson, T.; Owatz, C. Enterococcus faecalis: Its role in root canal treatment failure and current concepts in retreatment. J. Endod., 2006, 32(2), 93-98.
[http://dx.doi.org/10.1016/j.joen.2005.10.049] [PMID: 16427453]
[4]
Satari, M.H.; Situmeang, B.; Yudha, I.P.; Kurnia, D. Antibacterial diterpenoid against pathogenic oral bacteria of streptococcus mutans ATCC 25175 isolated from sarang semut (Myrmecodia pendans). Jurnal Kimia Valensi, 2019, 5(2), 218-223.
[http://dx.doi.org/10.15408/jkv.v5i2.8864]
[5]
Sudiono, J.; Oka, C.; Trisfilha, P. The scientific base of Myrmecodia pendans as herbal remedies. Br. J. Med. Med. Res., 2015, 8(3), 230-237.
[http://dx.doi.org/10.9734/BJMMR/2015/17465]
[6]
Agatonovic-Kustrin, S.; Morton, D.W.; Mizaton, H.H.; Zakaria, H. The relationship between major polyphenolic acids and stigmasterol to antioxidant activity in different extracts of Myrmecodia platytyrea. S. Afr. J. Bot., 2018, 115(1), 94-99.
[http://dx.doi.org/10.1016/j.sajb.2017.12.011]
[7]
Epsilawati, L.; Satari, M. Azhari. Analysis of Myrmecodia pendens in bone healing process to improve the quality of life: Literature review. IOP Conf. Ser. Earth Environ. Sci., 2019, 248(1), 012052.
[http://dx.doi.org/10.1088/1755-1315/248/1/012052]
[8]
Gartika, M.; Pramesti, H.T.; Kurnia, D.; Satari, M.H. A terpenoid isolated from sarang semut (Myrmecodia pendans) bulb and its potential for the inhibition and eradication of Streptococcus mutans biofilm. BMC Complement. Altern. Med., 2018, 18(1), 151.
[http://dx.doi.org/10.1186/s12906-018-2213-x] [PMID: 29739390]
[9]
Pasaribu, Y.P.; Buyang, Y.; Rettob, A.L.; Latuheru, R.; Marlissa, I. Phytochemical screening of ant plant Myrmecodia rumphii Becc. 2018, 1, 285-288.
[http://dx.doi.org/10.2991/icst-18.2018.60]
[10]
Kurnia, D.; Sumiarsa, D.; Dharsono, H.D.A.; Satari, M.H. Bioactive compounds isolated from Indonesian epiphytic plant of Sarang Semut and their antibacterial activity against pathogenic oral bacteria. Nat. Prod. Commun., 2017, 12(8), 1934578X1701200.
[http://dx.doi.org/10.1177/1934578X1701200814]
[11]
Cunha, W.R.; Martins, C.; da Silva Ferreira, D.; Crotti, A.E.; Lopes, N.P.; Albuquerque, S. In vitro trypanocidal activity of triterpenes from miconia species. Planta Med., 2003, 69(5), 470-472.
[http://dx.doi.org/10.1055/s-2003-39719] [PMID: 12802734]
[12]
Ghante, M.H.; Jamkhande, P.G. Role of pentacyclic triterpenoids in chemoprevention and anticancer treatment: An overview on targets and underling mechanisms. J. Pharmacopuncture, 2019, 22(2), 55-67.
[http://dx.doi.org/10.3831/KPI.201.22.007] [PMID: 31338244]
[13]
Wrońska, N.; Szlaur, M.; Zawadzka, K.; Lisowska, K. The synergistic effect of triterpenoids and flavonoids-New approaches for treating bacterial infections? Molecules, 2022, 27(3), 847.
[http://dx.doi.org/10.3390/molecules27030847] [PMID: 35164112]
[14]
Nzogong, R.T.; Ndjateu, F.S.T.; Ekom, S.E.; Fosso, J.A.M.; Awouafack, M.D.; Tene, M.; Tane, P.; Morita, H.; Choudhary, M.I.; Tamokou, J.D. Antimicrobial and antioxidant activities of triterpenoid and phenolic derivatives from two Cameroonian Melastomataceae plants: Dissotis senegambiensis and Amphiblemma monticola. BMC Complement. Altern. Med., 2018, 18(1), 159.
[http://dx.doi.org/10.1186/s12906-018-2229-2] [PMID: 29769064]
[15]
Lizerbram, E.K.; Hesselink, J.R. Viral infections., 1997.
[16]
Kainz, K.; Bauer, M.A.; Madeo, F.; Carmona-Gutierrez, D. Fungal infections in humans: The silent crisis. Microb. Cell, 2020, 7(6), 143-145.
[http://dx.doi.org/10.15698/mic2020.06.718] [PMID: 32548176]
[17]
DuPont, H.L.; Formal, S.B.; Hornick, R.B.; Snyder, M.J.; Libonati, J.P.; Sheahan, D.G.; LaBrec, E.H.; Kalas, J.P. Pathogenesis of Escherichia coli diarrhea. N. Engl. J. Med., 1971, 285(1), 1-9.
[http://dx.doi.org/10.1056/NEJM197107012850101] [PMID: 4996788]
[18]
Cantey, J.R.; Blake, R.K. Diarrhea due to Escherichia coli in the rabbit: A novel mechanism. J. Infect. Dis., 1977, 135(3), 454-462.
[http://dx.doi.org/10.1093/infdis/135.3.454] [PMID: 321703]
[19]
Croxen, M.A.; Law, R.J.; Scholz, R.; Keeney, K.M.; Wlodarska, M.; Finlay, B.B. Recent advances in understanding enteric pathogenic Escherichia coli. Clin. Microbiol. Rev., 2013, 26(4), 822-880.
[http://dx.doi.org/10.1128/CMR.00022-13] [PMID: 24092857]
[20]
Gomes, T.A.T.; Elias, W.P.; Scaletsky, I.C.A.; Guth, B.E.C.; Rodrigues, J.F.; Piazza, R.M.F.; Ferreira, L.C.S.; Martinez, M.B. Diarrheagenic Escherichia coli. Braz. J. Microbiol., 2016, 47(Suppl 1)(Suppl. 1), 3-30.
[http://dx.doi.org/10.1016/j.bjm.2016.10.015] [PMID: 27866935]
[21]
Levine, M.M. Escherichia coli that cause diarrhea: enterotoxigenic, enteropathogenic, enteroinvasive, enterohemorrhagic, and enteroadherent. J. Infect. Dis., 1987, 155(3), 377-389.
[http://dx.doi.org/10.1093/infdis/155.3.377] [PMID: 3543152]
[22]
David, O. Association of Enterococcus faecalis with different forms of dental diseases among patients visiting a tertiary Hospital in Ekiti state, Nigeria. Int. J. Trop. Dis. Health, 2014, 4(8), 928-935.
[http://dx.doi.org/10.9734/IJTDH/2014/5024]
[23]
Flanagan, D. Enterococcus faecalis and dental implants 1671 main st no affiliations. J. Oral Implantol., 2016, 1(1), 1-20.
[PMID: 26867092]
[24]
Anderson, A.C.; Jonas, D.; Huber, I.; Karygianni, L.; Wölber, J.; Hellwig, E.; Arweiler, N.; Vach, K.; Wittmer, A.; Al-Ahmad, A. Enterococcus faecalis from food, clinical specimens, and oral sites: Prevalence of virulence factors in association with biofilm formation. Front. Microbiol., 2016, 6(JAN), 1534.
[http://dx.doi.org/10.3389/fmicb.2015.01534] [PMID: 26793174]
[25]
Komiyama, E.Y.; Lepesqueur, L.S.S.; Yassuda, C.G.; Samaranayake, L.P.; Parahitiyawa, N.B.; Balducci, I.; Koga-Ito, C.Y. Enterococcus species in the oral cavity: Prevalence, virulence factors and antimicrobial susceptibility. PLoS One, 2016, 11(9), e0163001.
[http://dx.doi.org/10.1371/journal.pone.0163001] [PMID: 27631785]
[26]
Koch, S.; Hufnagel, M.; Theilacker, C.; Huebner, J. Enterococcal infections: Host response, therapeutic, and prophylactic possibilities. Vaccine, 2004, 22(7), 822-830.
[http://dx.doi.org/10.1016/j.vaccine.2003.11.027] [PMID: 15040934]
[27]
Ricucci, D.; Siqueira, J.F., Jr Biofilms and apical periodontitis: Study of prevalence and association with clinical and histopathologic findings. J. Endod., 2010, 36(8), 1277-1288.
[http://dx.doi.org/10.1016/j.joen.2010.04.007] [PMID: 20647081]
[28]
Ch’ng, J.H.; Chong, K.K.L.; Lam, L.N.; Wong, J.J.; Kline, K.A. Biofilm-associated infection by enterococci. Nat. Rev. Microbiol., 2019, 17(2), 82-94.
[http://dx.doi.org/10.1038/s41579-018-0107-z] [PMID: 30337708]
[29]
Zheng, J.; Bai, B.; Lin, Z.; Pu, Z.; Yao, W.; Chen, Z.; Li, D.; Deng, X.; Deng, Q.; Yu, Z. Characterization of biofilm formation by Enterococcus faecalis isolates derived from urinary tract infections in China. J. Med. Microbiol., 2018, 67(1), 60-67.
[http://dx.doi.org/10.1099/jmm.0.000647] [PMID: 29148361]
[30]
Kurnia, D.; Ramadhanty, Z.F.; Ardani, A.M.; Zainuddin, A.; Dharsono, H.D.A.; Satari, M.H. Bio-mechanism of catechin as pheromone signal inhibitor: Prediction of antibacterial agent action mode by in vitro and in silico study. Molecules, 2021, 26(21), 6381.
[http://dx.doi.org/10.3390/molecules26216381] [PMID: 34770790]
[31]
Li, H.; Zhou, Y.; Wang, N.; Xin, Y.; Tang, L.; Ma, Y. Identification and characterization of a MurA, UDP-N-acetylglucosamine enolpyruvyl transferase from cariogenic Streptococcus mutans. J. Hard Tissue Biol., 2012, 21(1), 17-24.
[http://dx.doi.org/10.2485/jhtb.21.17]
[32]
Mihalovits, L.M.; Ferenczy, G.G.; Keserű, G.M. Catalytic mechanism and covalent inhibition of UDP-n-acetylglucosamine enolpyruvyl transferase (MurA): Implications to the design of novel antibacterials. J. Chem. Inf. Model., 2019, 59(12), 5161-5173.
[http://dx.doi.org/10.1021/acs.jcim.9b00691] [PMID: 31715096]
[33]
Sonkar, A.; Shukla, H.; Shukla, R.; Kalita, J.; Pandey, T.; Tripathi, T. UDP-N-Acetylglucosamine enolpyruvyl transferase (MurA) of Acinetobacter baumannii (AbMurA): Structural and functional properties. Int. J. Biol. Macromol., 2017, 97(1), 106-114.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.12.082] [PMID: 28064057]
[34]
Jin, B.S.; Han, S.G.; Lee, W.K.; Ryoo, S.W.; Lee, S.J.; Suh, S.W.; Yu, Y.G. Inhibitory mechanism of novel inhibitors of UDP-N-acetylglucosamine enolpyruvyl transferase from Haemophilus influenzae. J. Microbiol. Biotechnol., 2009, 19(12), 1582-1589.
[http://dx.doi.org/10.4014/jmb.0905.05036] [PMID: 20075623]
[35]
Xia, T.; Kovochich, M.; Brant, J.; Hotze, M.; Sempf, J.; Oberley, T.; Sioutas, C.; Yeh, J.I.; Wiesner, M.R.; Nel, A.E. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett., 2006, 6(8), 1794-1807.
[http://dx.doi.org/10.1021/nl061025k] [PMID: 16895376]
[36]
Vatansever, F.; de Melo, W.C.M.A.; Avci, P.; Vecchio, D.; Sadasivam, M.; Gupta, A.; Chandran, R.; Karimi, M.; Parizotto, N.A.; Yin, R.; Tegos, G.P.; Hamblin, M.R. Antimicrobial strategies centered around reactive oxygen species - bactericidal antibiotics, photodynamic therapy, and beyond. FEMS Microbiol. Rev., 2013, 37(6), 955-989.
[http://dx.doi.org/10.1111/1574-6976.12026] [PMID: 23802986]
[37]
Zhao, X.; Drlica, K. Reactive oxygen species and the bacterial response to lethal stress. Curr. Opin. Microbiol., 2014, 21(1), 1-6.
[http://dx.doi.org/10.1016/j.mib.2014.06.008] [PMID: 25078317]
[38]
Braca, A.; Sortino, C.; Politi, M.; Morelli, I.; Mendez, J. Antioxidant activity of flavonoids from Licania licaniaeflora. J. Ethnopharmacol., 2002, 79(3), 379-381.
[http://dx.doi.org/10.1016/S0378-8741(01)00413-5] [PMID: 11849846]
[39]
Lam, P.L.; Wong, R.S.M.; Lam, K.H.; Hung, L.K.; Wong, M.M.; Yung, L.H.; Ho, Y.W.; Wong, W.Y.; Hau, D.K.P.; Gambari, R.; Chui, C.H. The role of reactive oxygen species in the biological activity of antimicrobial agents: An updated mini review. Chem. Biol. Interact., 2020, 320, 109023.
[http://dx.doi.org/10.1016/j.cbi.2020.109023] [PMID: 32097615]
[40]
Izzo, C.; Vitillo, P.; Di Pietro, P.; Visco, V.; Strianese, A.; Virtuoso, N.; Ciccarelli, M.; Galasso, G.; Carrizzo, A.; Vecchione, C. The role of oxidative stress in cardiovascular aging and cardiovascular diseases. Life, 2021, 11(1), 60.
[http://dx.doi.org/10.3390/life11010060] [PMID: 33467601]
[41]
Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; Abete, P. Oxidative stress, aging, and diseases. Clin. Interv. Aging, 2018, 13(1), 757-772.
[http://dx.doi.org/10.2147/CIA.S158513] [PMID: 29731617]
[42]
Papuc, C.; Goran, G.V.; Predescu, C.N.; Nicorescu, V. Mechanisms of oxidative processes in meat and toxicity induced by postprandial degradation products: A review. Compr. Rev. Food Sci. Food Saf., 2017, 16(1), 96-123.
[http://dx.doi.org/10.1111/1541-4337.12241] [PMID: 33371549]
[43]
Winterbourn, C.C. Biological chemistry of superoxide radicals. ChemTexts., 2020, 6(1), 7.
[http://dx.doi.org/10.1007/s40828-019-0101-8]
[44]
Higashi, Y.; Jitsuiki, D.; Chayama, K.; Yoshizumi, M. Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one), a novel free radical scavenger, for treatment of cardiovascular diseases. Recent Adv. Cardiovasc. Drug Discov., 2006, 1(1), 85-93.
[http://dx.doi.org/10.2174/157489006775244191] [PMID: 18221078]
[45]
Fujii, J.; Homma, T.; Osaki, T. Superoxide radicals in the execution of cell death. Antioxidants, 2022, 11(3), 501.
[http://dx.doi.org/10.3390/antiox11030501] [PMID: 35326151]
[46]
Bhattacharyya, A.; Chattopadhyay, R.; Mitra, S.; Crowe, S.E. Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol. Rev., 2014, 94(2), 329-354.
[http://dx.doi.org/10.1152/physrev.00040.2012] [PMID: 24692350]
[47]
Baron, C.P.; Andersen, H.J. Myoglobin-induced lipid oxidation. A review. J. Agric. Food Chem., 2002, 50(14), 3887-3897.
[http://dx.doi.org/10.1021/jf011394w] [PMID: 12083855]
[48]
Graßmann, J. Terpenoids as plant antioxidants. Vitam. Horm., 2005, 72(05), 505-535.
[http://dx.doi.org/10.1016/S0083-6729(05)72015-X] [PMID: 16492481]
[49]
Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci., 2016, 5(1), e47.
[http://dx.doi.org/10.1017/jns.2016.41] [PMID: 28620474]
[50]
Santiago, L.A.; Mayor, A.B. Journal of natural products research paper triterpenes α-amyrin, oleanolic acid and ursolic acid. J. Asian Nat. Prod., 2017, 2014(7), 29-36.
[51]
Papuc, C.; Goran, G.V.; Predescu, C.N.; Nicorescu, V.; Stefan, G. Plant polyphenols as antioxidant and antibacterial agents for shelf-life extension of meat and meat products: classification, structures, sources, and action mechanisms. Compr. Rev. Food Sci. Food Saf., 2017, 16(6), 1243-1268.
[http://dx.doi.org/10.1111/1541-4337.12298] [PMID: 33371586]
[52]
Stanzione, F.; Giangreco, I.; Cole, J.C. Use of molecular docking computational tools in drug discovery. Prog. Med. Chem., 2021, 60, 273-343.
[http://dx.doi.org/10.1016/bs.pmch.2021.01.004]
[53]
Kapitan, O.B.; Ambarsari, L.; Falah, S. Inhibition docking simulation of zerumbone, gingerglycolipid b, and curzerenone compound of zingiber zerumbet from timor island against Mur A enzyme. J. Appl. Chem. Sci., 2018, 2016, 279-288.
[54]
Meng, X.Y.; Zhang, H.X.; Mezei, M.; Cui, M. Molecular docking: A powerful approach for structure-based drug discovery. Curr. Comput. Aided Drug Des., 2011, 7(2), 146-157.
[http://dx.doi.org/10.2174/157340911795677602] [PMID: 21534921]
[55]
Manohar, P. Antibacterial and antioxidant activity of plant latex. J. Pharm. Res., 2011, 4(2), 406-407.
[56]
C Reygaert, W. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol., 2018, 4(3), 482-501.
[http://dx.doi.org/10.3934/microbiol.2018.3.482] [PMID: 31294229]
[57]
Herrera, D.R.; Tay, L.Y.; Rezende, E.C.; Kozlowski, V.A., Jr; Santos, E.B. In vitro antimicrobial activity of phytotherapic Uncaria tomentosa against endodontic pathogens. J. Oral Sci., 2010, 52(3), 473-476.
[http://dx.doi.org/10.2334/josnusd.52.473] [PMID: 20881342]
[58]
Magnani, F.; Nenci, S.; Millana Fananas, E.; Ceccon, M.; Romero, E.; Fraaije, M.W.; Mattevi, A. Crystal structures and atomic model of NADPH oxidase. Proc. Natl. Acad. Sci. USA, 2017, 114(26), 6764-6769.
[http://dx.doi.org/10.1073/pnas.1702293114] [PMID: 28607049]
[59]
Yamaguchi, Y.; Matsumura, T.; Ichida, K.; Okamoto, K.; Nishino, T. Human xanthine oxidase changes its substrate specificity to aldehyde oxidase type upon mutation of amino acid residues in the active site: Roles of active site residues in binding and activation of purine substrate. J. Biochem., 2007, 141(4), 513-524.
[http://dx.doi.org/10.1093/jb/mvm053] [PMID: 17301077]
[60]
O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An open chemical toolbox. J. Cheminform., 2011, 3(1), 33.
[http://dx.doi.org/10.1186/1758-2946-3-33] [PMID: 21982300]
[61]
Putra, P.P. Docking tutorial using autodock vina version 2010 tutorial docking autodock vina. Universitas Andalas, 2021, 1-10.
[62]
Allouche, A.R. Gabedit-A graphical user interface for computational chemistry softwares. J. Comput. Chem., 2011, 32(1), 174-182.
[http://dx.doi.org/10.1002/jcc.21600] [PMID: 20607691]
[63]
Fekete, T.; Tumah, H.; Woodwell, J.; Truant, A.; Satischandran, V.; Axelrod, P.; Kreter, B. A comparison of serial plate agar dilution, bauer-kirby disk diffusion, and the vitek automicrobic system for the determination of susceptibilities of Klebsiella spp., Enterobacter spp., and Pseudomonas aeruginosa to ten antimicrobial agents. Diagn. Microbiol. Infect. Dis., 1994, 18(4), 251-258.
[http://dx.doi.org/10.1016/0732-8893(94)90028-0] [PMID: 7924222]
[64]
Nishimura, K.; Miyase, T.; Noguchi, H. Triterpenoid saponins from Ilex kudincha. J. Nat. Prod., 1999, 62(8), 1128-1133.
[http://dx.doi.org/10.1021/np990128y] [PMID: 10479318]
[65]
Fields, M.; Lewis, C.G.; Lure, M.D. Allopurinol an inhibitor of xanthine oxidase reduces uric acid levels and modifies the signs associated with copper deficiency in rats fed fructose. Free Radic. Biol. Med., 1996, 20(4), 595-600.
[http://dx.doi.org/10.1016/0891-5849(95)02056-X] [PMID: 8904301]
[66]
Bredemeier, M.; Lopes, L.M.; Eisenreich, M.A.; Hickmann, S.; Bongiorno, G.K.; d’Avila, R.; Morsch, A.L.B.; da Silva Stein, F.; Campos, G.G.D. Xanthine oxidase inhibitors for prevention of cardiovascular events: A systematic review and meta-analysis of randomized controlled trials. BMC Cardiovasc. Disord., 2018, 18(1), 24.
[http://dx.doi.org/10.1186/s12872-018-0757-9] [PMID: 29415653]
[67]
Manar, P.A.; Utama, S.E.P.; Hasan, G.M.; Hidayat, M.S. Review: The potential of sarang semut (Myrmecodia spp) as medicinal plants. IOP Conf. Ser. Earth Environ. Sci., 2019, 394(1), 012032.
[http://dx.doi.org/10.1088/1755-1315/394/1/012032]
[68]
Sultana, N. Clinically useful anticancer, antitumor, and antiwrinkle agent, ursolic acid and related derivatives as medicinally important natural product. J. Enzyme Inhib. Med. Chem., 2011, 26(5), 616-642.
[http://dx.doi.org/10.3109/14756366.2010.546793] [PMID: 21417964]
[69]
Jéssica, J.; João Henrique, L.; Márcia, D.L.; Eduardo, Y.Y.; Luiz Felipe, D.P. Antimicrobial activity of oleanolic and ursolic acids: An update. Evidence-based Complement Altern Med., 2015, 2015(1), 1-14.
[70]
Castellano, J.M.; Ramos-Romero, S.; Perona, J.S. Oleanolic acid: Extraction, characterization and biological activity. Nutrients, 2022, 14(3), 623.
[http://dx.doi.org/10.3390/nu14030623] [PMID: 35276982]
[71]
Chen, L.; Hu, J.Y.; Wang, S.Q. The role of antioxidants in photoprotection: A critical review. J. Am. Acad. Dermatol., 2012, 67(5), 1013-1024.
[http://dx.doi.org/10.1016/j.jaad.2012.02.009] [PMID: 22406231]
[72]
Seukep, J.A.; Sandjo, L.P.; Ngadjui, B.T.; Kuete, V. Antibacterial activities of the methanol extracts and compounds from Uapaca togoensis against Gram-negative multi-drug resistant phenotypes. S. Afr. J. Bot., 2016, 103(1), 1-5.
[http://dx.doi.org/10.1016/j.sajb.2015.08.014]
[73]
Dijkmans, A.C.; Zacarías, N.V.O.; Burggraaf, J.; Mouton, J.W.; Wilms, E.; van Nieuwkoop, C.; Touw, D.J.; Stevens, J.; Kamerling, I.M.C. Fosfomycin: Pharmacological, clinical and future perspectives. Antibiotics, 2017, 6(4), 24.
[http://dx.doi.org/10.3390/antibiotics6040024] [PMID: 29088073]
[74]
Thirumal Kumar, D.; Lavanya, P.; George Priya Doss, C.; Tayubi, I.A.; Naveen Kumar, D.R.; Francis Yesurajan, I.; Siva, R.; Balaji, V. A molecular docking and dynamics approach to screen potent inhibitors against fosfomycin resistant enzyme in clinical Klebsiella pneumoniae. J. Cell. Biochem., 2017, 118(11), 4088-4094.
[http://dx.doi.org/10.1002/jcb.26064] [PMID: 28409871]
[75]
Chen, D.; Oezguen, N.; Urvil, P.; Ferguson, C.; Dann, S.M.; Savidge, T.C. Regulation of protein-ligand binding affinity by hydrogen bon pairing. Computational Chemistry, 2016, 2(e1501240), 1-16.
[http://dx.doi.org/10.1126/sciadv.1501240]