Current Pharmacogenomics and Personalized Medicine

Author(s): Atiyeh Mohammadi, Seyyed Amir Yasin Ahmadi and Reza Nekouian*

DOI: 10.2174/1875692120666230222110736

Papillary Thyroid Carcinoma: A Narrative Review on the Most Important Genetic and Epigenetic Alterations

Page: [3 - 12] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Papillary Thyroid Carcinoma (PTC) is the most common subtype of thyroid cancer that is the most prevalent one in the endocrine system. According to worldwide reports, its prevalence rate has been increasing in recent decades. The Discovery of DNA sequencing methods and molecular diagnostic techniques provides an insight into the understanding of PTC molecular biology and as well as in thyroidology, which opens a new perspective in finding molecular markers. Aligning cytological diagnostic methods with molecular behavior studies creates promising tools for better decision-making strategies for preoperative conditions to distinguish between benign from malignant thyroid nodules in challenging cases and limit unnecessary surgeries. Extensive studies have been performed on identifying the genes involved in PTC development and their prognosis. Currently, clinical and pathological features of the tumour (such as size, extrathyroid and lymph node invasion, and capsular invasion) are used to predict the prognosis of papillary thyroid cancer. In this review, we tried to summarize fundamental signaling pathways affecting PTC and the most important genetic alterations, including point mutations in proto-oncogenes and chromosomal rearrangements, as well as up/down-regulation of certain micro RNAs (miRNA) as an epigenetic change. Briefly, some of the most commonly altered genes in PTC are BRAF, RAS, RET, PAX8, PPARγ, and miRNAs like mir-146b, mir-221, mir-222, and mir-181b.

Graphical Abstract

[1]
Davies L, Welch HG. Current thyroid cancer trends in the United States. JAMA Otolaryngol Head Neck Surg 2014; 140(4): 317-22.
[http://dx.doi.org/10.1001/jamaoto.2014.1] [PMID: 24557566]
[2]
Ries L, Melbert D, Krapcho M, et al. SEER cancer statistics review, 1975–2005SEER cancer statistics review, 1975–2005. Bethesda, MD: National Cancer Institute 2008; p. 2999.
[3]
Cancer Stat Facts: Thyroid Cancer. Available from: https://seer.cancer.gov/statfacts/html/thyro.html
[4]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209-49.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[5]
Ferlay J, Ervik M, Lam F, Colombet M, Mery L, Piñeros M, et al. Global cancer observatory: Cancer today. Lyon: International Agency for Research on Cancer 2020; pp. 2018.
[6]
Navarro Silvera SA, Miller AB, Rohan TE. Risk factors for thyroid cancer: A prospective cohort study. Int J Cancer 2005; 116(3): 433-8.
[http://dx.doi.org/10.1002/ijc.21079] [PMID: 15818623]
[7]
Caron NR, Tan YY, Ogilvie JB, et al. Selective modified radical neck dissection for papillary thyroid cancer-is level I, II and V dissection always necessary? World J Surg 2006; 30(5): 833-40.
[http://dx.doi.org/10.1007/s00268-005-0358-5] [PMID: 16555024]
[8]
Bal CS, Padhy AK, Kumar A. Clinical features of differentiated thyroid carcinoma in children and adolescents from a sub-Himalayan iodine-deficient endemic zone. Nucl Med Commun 2001; 22(8): 881-7.
[http://dx.doi.org/10.1097/00006231-200108000-00006] [PMID: 11473207]
[9]
Harach HR, Ceballos GA. Thyroid cancer, thyroiditis and dietary iodine: A review based on the Salta, Argentina model. Endocr Pathol 2008; 19(4): 209-20.
[http://dx.doi.org/10.1007/s12022-008-9038-y] [PMID: 18696273]
[10]
Shakhtarin VV, Tsyb AF, Stepanenko VF, Orlov MY, Kopecky KJ, Davis S. Iodine deficiency, radiation dose, and the risk of thyroid cancer among children and adolescents in the Bryansk region of Russia following the Chernobyl power station accident. Int J Epidemiol 2003; 32(4): 584-91.
[http://dx.doi.org/10.1093/ije/dyg205] [PMID: 12913034]
[11]
Shahbazi-Gahrouei D. Natural background radiation Dosimetry in the highest altitude region of Iran. J Radiat Res 2003; 44(3): 285-7.
[http://dx.doi.org/10.1269/jrr.44.285] [PMID: 14646234]
[12]
Bonnefond S, Davies TF. Thyroid cancer—risks and causes. J Thyroid Cancer—Risks Causes 2014; 10(2): 144-51.
[http://dx.doi.org/10.17925/OHR.2014.10.2.144]
[13]
Liu J, Singh B, Tallini G, et al. Follicular variant of papillary thyroid carcinoma. Cancer 2006; 107(6): 1255-64.
[http://dx.doi.org/10.1002/cncr.22138] [PMID: 16900519]
[14]
Kopczyńska E, Junik R, Tyrakowski T. [BRAF gene mutation in thyroid cancer]. Pol Merkuriusz Lek 2006; 20(116): 210-3.
[PMID: 16708643]
[15]
Fagin JA, Wells SA Jr. Biologic and clinical perspectives on thyroid cancer. N Engl J Med 2016; 375(11): 1054-67.
[http://dx.doi.org/10.1056/NEJMra1501993] [PMID: 27626519]
[16]
Sipos JA, Mazzaferri EL. Thyroid cancer epidemiology and prognostic variables. Clin Oncol 2010; 22(6): 395-404.
[http://dx.doi.org/10.1016/j.clon.2010.05.004] [PMID: 20627675]
[17]
Sherman SI. Evolution of targeted therapies for thyroid carcinoma. Trans Am Clin Climatol Assoc 2019; 130: 255-65.
[PMID: 31516190]
[18]
Miccoli P, Berti P, Raffaelli M, Materazzi G, Baldacci S, Rossi G. Comparison between minimally invasive video-assisted thyroidectomy and conventional thyroidectomy: A prospective randomized study. Surgery 2001; 130(6): 1039-43.
[http://dx.doi.org/10.1067/msy.2001.118264] [PMID: 11742335]
[19]
Wiltshire JJ, Drake TM, Uttley L, Balasubramanian SP. Systematic review of trends in the incidence rates of thyroid cancer. Thyroid 2016; 26(11): 1541-52.
[http://dx.doi.org/10.1089/thy.2016.0100] [PMID: 27571228]
[20]
Sosa JA, Hanna JW, Robinson KA, Lanman RB. Increases in thyroid nodule fine-needle aspirations, operations, and diagnoses of thyroid cancer in the United States. Surgery 2013; 154(6): 1420-7.
[http://dx.doi.org/10.1016/j.surg.2013.07.006] [PMID: 24094448]
[21]
Pellegriti G, Frasca F, Regalbuto C, Squatrito S, Vigneri R. Worldwide increasing incidence of thyroid cancer: Update on epidemiology and risk factors. J Cancer Epidemiol 2013; 2013: 965212.
[http://dx.doi.org/10.1155/2013/965212]
[22]
Lohia S, Hanson M, Tuttle RM, Morris LGT. Active surveillance for patients with very low-risk thyroid cancer. Laryngoscope Investig Otolaryngol 2020; 5(1): 175-82.
[http://dx.doi.org/10.1002/lio2.356] [PMID: 32128446]
[23]
Lin JD, Huang BY, Weng HF, Jeng LB, Hsueh C. Thyroid ultrasonography with fine-needle aspiration cytology for the diagnosis of thyroid cancer. J Clin Ultrasound 1997; 25(3): 111-8.
[http://dx.doi.org/10.1002/(SICI)1097-0096(199703)25:3<111:AID-JCU3>3.0.CO;2-J] [PMID: 9058259]
[24]
Shin JH. Ultrasonographic imaging of papillary thyroid carcinoma variants. Ultrasonography 2017; 36(2): 103-10.
[http://dx.doi.org/10.14366/usg.16048] [PMID: 28222584]
[25]
Hawkins F, Bellido D, Bernal C, et al. Fine needle aspiration biopsy in the diagnosis of thyroid cancer and thyroid disease. Cancer 1987; 59(6): 1206-9.
[http://dx.doi.org/10.1002/1097-0142(19870315)59:6<1206:AID-CNCR2820590629>3.0.CO;2-7] [PMID: 3815295]
[26]
Nguyen QT, Lee EJ, Huang MG, Park YI, Khullar A, Plodkowski RA. Diagnosis and treatment of patients with thyroid cancer. Am Health Drug Benefits 2015; 8(1): 30-40.
[PMID: 25964831]
[27]
Baloch ZW. Diagnostic terminology and morphologic criteria for cytologic diagnosis of thyroid lesions: A synopsis of the national cancer institute thyroid fine-needle aspiration state of the science conference. Diagn Cytopathol 2008; 36(6): 425-37.
[http://dx.doi.org/10.1002/dc.20830] [PMID: 18478609]
[28]
Cibas ES, Ali SZ. The bethesda system for reporting thyroid cytopathology. Thyroid 2009; 19(11): 1159-65.
[http://dx.doi.org/10.1089/thy.2009.0274] [PMID: 19888858]
[29]
D’Cruz AK, Vaish R, Vaidya A, et al. Molecular markers in well-differentiated thyroid cancer. Eur Arch Otorhinolaryngol 2018; 275(6): 1375-84.
[http://dx.doi.org/10.1007/s00405-018-4944-1] [PMID: 29626249]
[30]
Yassa L, Cibas ES, Benson CB, et al. Long-term assessment of a multidisciplinary approach to thyroid nodule diagnostic evaluation. Cancer 2007; 111(6): 508-16.
[http://dx.doi.org/10.1002/cncr.23116] [PMID: 17999413]
[31]
Nikiforov YE, Yip L, Nikiforova MN. New strategies in diagnosing cancer in thyroid nodules: Impact of molecular markers. Clin Cancer Res 2013; 19(9): 2283-8.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-1253] [PMID: 23422095]
[32]
Mehta V, Nikiforov YE, Ferris RL. Use of molecular biomarkers in FNA specimens to personalize treatment for thyroid surgery. Head Neck 2013; 35(10): 1499-506.
[PMID: 22972563]
[33]
Mazzaferri EL. An overview of the management of papillary and follicular thyroid carcinoma. Thyroid 1999; 9(5): 421-7.
[http://dx.doi.org/10.1089/thy.1999.9.421] [PMID: 10365671]
[34]
Marotta V, Guerra A, Sapio MR, Vitale M. RET/PTC rearrangement in benign and malignant thyroid diseases: A clinical standpoint. Eur J Endocrinol 2011; 165(4): 499-507.
[http://dx.doi.org/10.1530/EJE-11-0499] [PMID: 21750045]
[35]
Kondo T, Ezzat S, Asa SL. Pathogenetic mechanisms in thyroid follicular-cell neoplasia. Nat Rev Cancer 2006; 6(4): 292-306.
[http://dx.doi.org/10.1038/nrc1836] [PMID: 16557281]
[36]
Romei C, Elisei R. A narrative review of genetic alterations in primary thyroid epithelial cancer. Int J Mol Sci 2021; 22(4): 1726.
[http://dx.doi.org/10.3390/ijms22041726] [PMID: 33572167]
[37]
Nikiforov YE, Nikiforova MN. Molecular genetics and diagnosis of thyroid cancer. Nat Rev Endocrinol 2011; 7(10): 569-80.
[http://dx.doi.org/10.1038/nrendo.2011.142] [PMID: 21878896]
[38]
Huang Y, Liao D, Pan L, et al. Expressions of miRNAs in papillary thyroid carcinoma and their associations with the BRAFV600E mutation. Eur J Endocrinol 2013; 168(5): 675-81.
[http://dx.doi.org/10.1530/EJE-12-1029] [PMID: 23416953]
[39]
Cohen Y, Xing M, Mambo E, et al. BRAF mutation in papillary thyroid carcinoma. J Natl Cancer Inst 2003; 95(8): 625-7.
[http://dx.doi.org/10.1093/jnci/95.8.625] [PMID: 12697856]
[40]
Peyssonnaux C, Eychène A. The Raf/MEK/ERK pathway: New concepts of activation. Biol Cell 2001; 93(1-2): 53-62.
[http://dx.doi.org/10.1016/S0248-4900(01)01125-X] [PMID: 11730323]
[41]
Puxeddu E, Moretti S. Clinical prognosis in BRAF-mutated PTC. Arq Bras Endocrinol Metabol 2007; 51(5): 736-47.
[http://dx.doi.org/10.1590/S0004-27302007000500011] [PMID: 17891237]
[42]
Khan MS, Pandith AA, Azad N, et al. Impact of molecular alterations of BRAF in the pathogenesis of thyroid cancer. Mutagenesis 2014; 29(2): 131-7.
[http://dx.doi.org/10.1093/mutage/get066] [PMID: 24442520]
[43]
Zhang Q, Liu BJ, Ren WW, et al. Association between BRAF V600E mutation and ultrasound features in papillary thyroid carcinoma patients with and without hashimoto’s thyroiditis. Sci Rep 2017; 7(1): 4899.
[http://dx.doi.org/10.1038/s41598-017-05153-y] [PMID: 28687736]
[44]
Kim SK, Song KH, Lim SD, et al. Clinical and pathological features and the BRAF(V600E) mutation in patients with papillary thyroid carcinoma with and without concurrent Hashimoto thyroiditis. Thyroid 2009; 19(2): 137-41.
[http://dx.doi.org/10.1089/thy.2008.0144] [PMID: 19014278]
[45]
DeLuca AM, Srinivas A, Alani RM. BRAF kinase in melanoma development and progression. Expert Rev Mol Med 2008; 10: e6.
[http://dx.doi.org/10.1017/S1462399408000604] [PMID: 18279546]
[46]
Knauf JA, Fagin JA. Role of MAPK pathway oncoproteins in thyroid cancer pathogenesis and as drug targets. Curr Opin Cell Biol 2009; 21(2): 296-303.
[http://dx.doi.org/10.1016/j.ceb.2009.01.013] [PMID: 19231149]
[47]
Xing M. Molecular pathogenesis and mechanisms of thyroid cancer. Nat Rev Cancer 2013; 13(3): 184-99.
[http://dx.doi.org/10.1038/nrc3431] [PMID: 23429735]
[48]
Rusinek D, Swierniak M, Chmielik E, et al. BRAFV600E-associated gene expression profile: Early changes in the transcriptome, based on a transgenic mouse model of papillary thyroid carcinoma. PLoS One 2015; 10(12): e0143688.
[http://dx.doi.org/10.1371/journal.pone.0143688] [PMID: 26625260]
[49]
Wan PTC, Garnett MJ, Roe SM, et al. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 2004; 116(6): 855-67.
[http://dx.doi.org/10.1016/S0092-8674(04)00215-6] [PMID: 15035987]
[50]
Nikiforova MN, Kimura ET, Gandhi M, et al. BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J Clin Endocrinol Metab 2003; 88(11): 5399-404.
[http://dx.doi.org/10.1210/jc.2003-030838] [PMID: 14602780]
[51]
Namba H, Nakashima M, Hayashi T, et al. Clinical implication of hot spot BRAF mutation, V599E, in papillary thyroid cancers. J Clin Endocrinol Metab 2003; 88(9): 4393-7.
[http://dx.doi.org/10.1210/jc.2003-030305] [PMID: 12970315]
[52]
Xing M, Westra WH, Tufano RP, et al. BRAF mutation predicts a poorer clinical prognosis for papillary thyroid cancer. J Clin Endocrinol Metab 2005; 90(12): 6373-9.
[http://dx.doi.org/10.1210/jc.2005-0987] [PMID: 16174717]
[53]
Chou CK, Liu RT, Kang HY. MicroRNA-146b: A novel biomarker and therapeutic target for human papillary thyroid cancer. Int J Mol Sci 2017; 18(3): 636.
[http://dx.doi.org/10.3390/ijms18030636] [PMID: 28294980]
[54]
Nikiforov YE. Thyroid carcinoma: Molecular pathways and therapeutic targets. Mod Pathol 2008; 21(S2): S37-43.
[http://dx.doi.org/10.1038/modpathol.2008.10] [PMID: 18437172]
[55]
Handkiewicz-Junak D, Czarniecka A. Jarzą b B. Molecular prognostic markers in papillary and follicular thyroid cancer: Current status and future directions. Mol Cell Endocrinol 2010; 322(1-2): 8-28.
[http://dx.doi.org/10.1016/j.mce.2010.01.007] [PMID: 20138116]
[56]
Pylayeva-Gupta Y, Grabocka E, Bar-Sagi D. RAS oncogenes: Weaving a tumorigenic web. Nat Rev Cancer 2011; 11(11): 761-74.
[http://dx.doi.org/10.1038/nrc3106] [PMID: 21993244]
[57]
Balmanno K, Cook SJ. Tumour cell survival signalling by the ERK1/2 pathway. Cell Death Differ 2009; 16(3): 368-77.
[http://dx.doi.org/10.1038/cdd.2008.148] [PMID: 18846109]
[58]
Abrosimov A, Saenko V, Meirmanov S, et al. The cytoplasmic expression of MUC1 in papillary thyroid carcinoma of different histological variants and its correlation with cyclin D1 overexpression. Endocr Pathol 2007; 18(2): 68-75.
[http://dx.doi.org/10.1007/s12022-007-0012-x] [PMID: 17916995]
[59]
Adeniran AJ, Zhu Z, Gandhi M, et al. Correlation between genetic alterations and microscopic features, clinical manifestations, and prognostic characteristics of thyroid papillary carcinomas. Am J Surg Pathol 2006; 30(2): 216-22.
[http://dx.doi.org/10.1097/01.pas.0000176432.73455.1b] [PMID: 16434896]
[60]
Hou P, Liu D, Shan Y, et al. Genetic alterations and their relationship in the phosphatidylinositol 3-kinase/Akt pathway in thyroid cancer. Clin Cancer Res 2007; 13(4): 1161-70.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-1125] [PMID: 17317825]
[61]
Karga H, Lee JK, Vickery AL Jr, Thor A, Gaz RD, Jameson JL. Ras oncogene mutations in benign and malignant thyroid neoplasms. J Clin Endocrinol Metab 1991; 73(4): 832-6.
[http://dx.doi.org/10.1210/jcem-73-4-832] [PMID: 1890154]
[62]
Takayama T, Miyanishi K, Hayashi T, Sato Y, Niitsu Y. Colorectal cancer: Genetics of development and metastasis. J Gastroenterol 2006; 41(3): 185-92.
[http://dx.doi.org/10.1007/s00535-006-1801-6] [PMID: 16699851]
[63]
Hara H, Fulton N, Yashiro T, Ito K, DeGroot LJ, Kaplan EL. N-ras mutation: An independent prognostic factor for aggressiveness of papillary thyroid carcinoma. Surgery 1994; 116(6): 1010-6.
[PMID: 7985080]
[64]
BRAF B-Raf proto-oncogene, serine/threonine kinase [Homo sapiens (human)]. Available from: https://www. ncbi.nlm.nih.gov/gene/673 US: NCBI; [July 20, 2022]
[65]
KRAS KRAS proto-oncogene, GTPase [ Homo sapiens (human) ].. Available from: https://www.ncbi.nlm.nih.gov/gene/3845 US: NCBI; [July 20, 2022]
[66]
NRAS NRAS proto-oncogene, GTPase [ Homo sapiens (human) ]. Available from: https://www.ncbi.nlm.nih.gov/gene/4893US: NCBI; [July 20, 2022]
[67]
HRAS HRas proto-oncogene, GTPase [ Homo sapiens (human) ]. Available from: https://www.ncbi.nlm.nih.gov/gene/3265 US: NCBI; [July 20, 2022]
[68]
Santoro M, Carlomagno F. Central role of RET in thyroid cancer. Cold Spring Harb Perspect Biol 2013; 5(12): a009233.
[http://dx.doi.org/10.1101/cshperspect.a009233] [PMID: 24296167]
[69]
Fusco A, Grieco M, Santoro M, et al. A new oncogene in human thyroid papillary carcinomas and their lymph-nodal metastases. Nature 1987; 328(6126): 170-2.
[http://dx.doi.org/10.1038/328170a0] [PMID: 3600795]
[70]
Grieco M, Santoro M, Berlingieri MT, et al. PTC is a novel rearranged form of the ret proto-oncogene and is frequently detected in vivo in human thyroid papillary carcinomas. Cell 1990; 60(4): 557-63.
[http://dx.doi.org/10.1016/0092-8674(90)90659-3] [PMID: 2406025]
[71]
Zhu Z, Ciampi R, Nikiforova MN, Gandhi M, Nikiforov YE. Prevalence of RET/PTC rearrangements in thyroid papillary carcinomas: Effects of the detection methods and genetic heterogeneity. J Clin Endocrinol Metab 2006; 91(9): 3603-10.
[http://dx.doi.org/10.1210/jc.2006-1006] [PMID: 16772343]
[72]
Unger K, Zitzelsberger H, Salvatore G, et al. Heterogeneity in the distribution of RET/PTC rearrangements within individual post-Chernobyl papillary thyroid carcinomas. J Clin Endocrinol Metab 2004; 89(9): 4272-9.
[http://dx.doi.org/10.1210/jc.2003-031870] [PMID: 15356021]
[73]
Kurokawa K, Kawai K, Hashimoto M, Ito Y, Takahashi M. Cell signalling and gene expression mediated by RET tyrosine kinase. J Intern Med 2003; 253(6): 627-33.
[http://dx.doi.org/10.1046/j.1365-2796.2003.01167.x] [PMID: 12755958]
[74]
Fagin JA, Mitsiades N. Molecular pathology of thyroid cancer: Diagnostic and clinical implications. Best Pract Res Clin Endocrinol Metab 2008; 22(6): 955-69.
[http://dx.doi.org/10.1016/j.beem.2008.09.017] [PMID: 19041825]
[75]
Nikiforov YE. RET/PTC rearrangement in thyroid tumors. Endocr Pathol 2002; 13(1): 03-16.
[http://dx.doi.org/10.1385/EP:13:1:03] [PMID: 12114746]
[76]
Abdullah MI, Junit SM, Ng KL, Jayapalan JJ, Karikalan B, Hashim OH. Papillary thyroid cancer: Genetic alterations and molecular biomarker investigations. Int J Med Sci 2019; 16(3): 450-60.
[http://dx.doi.org/10.7150/ijms.29935] [PMID: 30911279]
[77]
Khan MS, Qadri Q, Makhdoomi MJ, et al. RET/PTC gene rearrangements in thyroid carcinogenesis: Assessment and clinico-pathological correlations. Pathol Oncol Res 2020; 26(1): 507-13.
[http://dx.doi.org/10.1007/s12253-018-0540-3] [PMID: 30467698]
[78]
Zou M, Shi Y, Farid NR. Low rate of ret proto-oncogene activation (PTC/retTPC) in papillary thyroid carcinomas from saudi arabia. Cancer 1994; 73(1): 176-80.
[http://dx.doi.org/10.1002/1097-0142(19940101)73:1<176:AID-CNCR2820730130>3.0.CO;2-T] [PMID: 8275421]
[79]
Chua EL, Wu WM, Tran KT, et al. Prevalence and distribution of ret/ptc 1, 2, and 3 in papillary thyroid carcinoma in New Caledonia and Australia. J Clin Endocrinol Metab 2000; 85(8): 2733-9.
[http://dx.doi.org/10.1210/jc.85.8.2733] [PMID: 10946873]
[80]
Kroll TG, Sarraf P, Pecciarini L, et al. PAX8-PPARgamma1 fusion oncogene in human thyroid carcinoma. Science 2000; 289(5483): 1357-60.
[http://dx.doi.org/10.1126/science.289.5483.1357] [PMID: 10958784]
[81]
Raman P, Koenig RJ. Pax-8–PPAR-γ fusion protein in thyroid carcinoma. Nat Rev Endocrinol 2014; 10(10): 616-23.
[http://dx.doi.org/10.1038/nrendo.2014.115] [PMID: 25069464]
[82]
Gregory Powell J, Wang X, Allard BL, et al. The PAX8/PPARγ fusion oncoprotein transforms immortalized human thyrocytes through a mechanism probably involving wild-type PPARγ inhibition. Oncogene 2004; 23(20): 3634-41.
[http://dx.doi.org/10.1038/sj.onc.1207399] [PMID: 15077183]
[83]
Rosen ED, Sarraf P, Troy AE, et al. PPAR γ is required for the differentiation of adipose tissue in vivo and in vitro. Mol Cell 1999; 4(4): 611-7.
[http://dx.doi.org/10.1016/S1097-2765(00)80211-7] [PMID: 10549292]
[84]
Yamauchi T, Kamon J, Waki H, et al. The mechanisms by which both heterozygous peroxisome proliferator-activated receptor γ (PPARgamma) deficiency and PPARgamma agonist improve insulin resistance. J Biol Chem 2001; 276(44): 41245-54.
[http://dx.doi.org/10.1074/jbc.M103241200] [PMID: 11533050]
[85]
Pasca di Magliano M, Di Lauro R, Zannini M. Pax8 has a key role in thyroid cell differentiation. Proc Natl Acad Sci 2000; 97(24): 13144-9.
[http://dx.doi.org/10.1073/pnas.240336397] [PMID: 11069301]
[86]
Nilsson M, Fagman H. Development of the thyroid gland. Development 2017; 144(12): 2123-40.
[http://dx.doi.org/10.1242/dev.145615] [PMID: 28634271]
[87]
RET ret proto-oncogene [Homo sapiens (human)]. Available from: https://www.ncbi.nlm.nih.gov/gene/5979US NCBI; [July 20, 2022]
[88]
PPARG peroxisome proliferator activated receptor gamma[Homo sapiens (human)]. Available from: https://www.ncbi.nlm.nih.gov/gene/5468 US: NCBI; [July 20, 2022]
[89]
PAX8 paired box 8 [ Homo sapiens (human) ].. Available from: https://www.ncbi.nlm.nih.gov/gene/7849US: NCBI;[July 20, 2022]
[90]
Celakovsky P, Kovarikova H, Chrobok V, Mejzlik J, Laco J, Vosmikova H, et al. MicroRNA deregulation in papillary thyroid cancer and its relationship with braf v600e mutation. in vivo 2021; 35(1): 319-23.
[http://dx.doi.org/10.21873/invivo.12262]
[91]
Makarova JA, Shkurnikov MU, Wicklein D, et al. Intracellular and extracellular microRNA: An update on localization and biological role. Prog Histochem Cytochem 2016; 51(3-4): 33-49.
[http://dx.doi.org/10.1016/j.proghi.2016.06.001] [PMID: 27396686]
[92]
Bartel DP. MicroRNAs: Genomics, biogenesis, mechanism, and function. cell 2004; 116(2): 281-97.
[http://dx.doi.org/10.1016/s0092-8674(04)00045-5] [PMID: 14744438]
[93]
Croce CM, Calin GA. miRNAs, cancer, and stem cell division. Cell 2005; 122(1): 6-7.
[http://dx.doi.org/10.1016/j.cell.2005.06.036] [PMID: 16009126]
[94]
Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer 2006; 6(11): 857-66.
[http://dx.doi.org/10.1038/nrc1997] [PMID: 17060945]
[95]
He H, Jazdzewski K, Li W, et al. The role of microRNA genes in papillary thyroid carcinoma. Proc Natl Acad Sci 2005; 102(52): 19075-80.
[http://dx.doi.org/10.1073/pnas.0509603102] [PMID: 16365291]
[96]
Kovarikova H, Bubancova I, Laco J, et al. Deregulation of selected microRNAs in sinonasal carcinoma: Value of miR-21 as prognostic biomarker in sinonasal squamous cell carcinoma. Head Neck 2017; 39(12): 2528-36.
[http://dx.doi.org/10.1002/hed.24930] [PMID: 28960576]
[97]
Laco J, Kovarikova H, Chmelarova M, et al. Analysis of DNA methylation and microRNA expression in NUT (nuclear protein in testis) midline carcinoma of the sinonasal tract: A clinicopathological, immunohistochemical and molecular genetic study. Neoplasma 2018; 65(1): 113-23.
[http://dx.doi.org/10.4149/neo_2018_161122N581] [PMID: 29322795]
[98]
Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, et al. MicroRNA expression profiles classify human cancers. Nature 2005; 435(7043): 834-8.
[http://dx.doi.org/10.1038/nature03702] [PMID: 15944708]
[99]
Calin GA, Dumitru CD, Shimizu M, et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci 2002; 99(24): 15524-9.
[http://dx.doi.org/10.1073/pnas.242606799] [PMID: 12434020]
[100]
Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 2014; 42(D1): D68-73.
[http://dx.doi.org/10.1093/nar/gkt1181] [PMID: 24275495]
[101]
Yip L, Kelly L, Shuai Y, et al. MicroRNA signature distinguishes the degree of aggressiveness of papillary thyroid carcinoma. Ann Surg Oncol 2011; 18(7): 2035-41.
[http://dx.doi.org/10.1245/s10434-011-1733-0] [PMID: 21537871]
[102]
Ludvíková M. Kalfeř t D, Kholová I. Pathobiology of microRNAs and their emerging role in thyroid fine-needle aspiration. Acta Cytol 2015; 59(6): 435-44.
[http://dx.doi.org/10.1159/000442145] [PMID: 26745212]
[103]
Ludvikova M, Kholova I. Kalfeř t D. Molecular aspects of thyroid tumors with emphasis on MicroRNA and their clinical implications. Klin Onkol 2017; 30(3): 167-74.
[http://dx.doi.org/10.14735/amko2017167]
[104]
Wang Z, Zhang H, He L, et al. Association between the expression of four upregulated miRNAs and extrathyroidal invasion in papillary thyroid carcinoma. OncoTargets Ther 2013; 6: 281-7.
[http://dx.doi.org/10.2147/OTT.S43014] [PMID: 23569392]
[105]
Sun Y, Yu S, Liu Y, Wang F, Liu Y, Xiao H. Expression of miRNAs in papillary thyroid carcinomas is associated with BRAF mutation and clinicopathological features in Chinese patients. Int J Endocrinol 2013; 2013: 128735.
[http://dx.doi.org/10.1155/2013/128735] [PMID: 23690767]
[106]
Acibucu F. Dökmeta ş H, Tutar Y, Elagoz Ş, Kilicli F. Correlations between the expression levels of micro-RNA146b, 221, 222 and p27Kip1 protein mRNA and the clinicopathologic parameters in papillary thyroid cancers. Exp Clin Endocrinol Diabetes 2014; 122(3): 137-43.
[http://dx.doi.org/10.1055/s-0034-1367025] [PMID: 24643689]
[107]
Sun M, Fang S, Li W, et al. Associations of miR-146a and miR-146b expression and clinical characteristics in papillary thyroid carcinoma. Cancer Biomark 2015; 15(1): 33-40.
[http://dx.doi.org/10.3233/CBM-140431] [PMID: 25524940]
[108]
Rezaei M, Khamaneh AM, Zarghami N, Vosoughi A, Hashemzadeh S. Evaluating pre- and post-operation plasma miRNAs of papillary thyroid carcinoma (PTC) patients in comparison to benign nodules. BMC Cancer 2019; 19(1): 690.
[http://dx.doi.org/10.1186/s12885-019-5849-0] [PMID: 31307429]
[109]
Wang P, Jin WMM, Xu L, Li E, Chen G. Increased expression of miR-221 and miR-222 in patients with thyroid carcinoma. Afr J Biotechnol 2012; 11(11): 2774-81.
[110]
Peng Y, Li C, Luo DC, Ding JW, Zhang W, Pan G. Expression profile and clinical significance of microRNAs in papillary thyroid carcinoma. Molecules 2014; 19(8): 11586-99.
[http://dx.doi.org/10.3390/molecules190811586] [PMID: 25100252]
[111]
Yuhao Chen and Xiaowei Wang miRDB: an online database for prediction of functional microRNA targets. Nucleic Acids Research 2020; 48(D1): D127-31. Available from: :https://mirdb.org/
[112]
Chou CK, Chen RF, Chou FF, et al. miR-146b is highly expressed in adult papillary thyroid carcinomas with high risk features including extrathyroidal invasion and the BRAF(V600E) mutation. Thyroid 2010; 20(5): 489-94.
[http://dx.doi.org/10.1089/thy.2009.0027] [PMID: 20406109]