Percutaneous Coronary Intervention Associated with a Higher Risk of Hypoxemia and COVID-19 Severity

Page: [1265 - 1277] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Objective: The primary goal of the present study was to measure the implications of hypoxemia in COVID-19 patients with a history of coronary artery disease (CAD).

Methods: A systematic search of the literature published from November 1, 2019 to May 1, 2021, was conducted on PubMed/MEDLINE, Embase, and Web of Science databases. Afterwards, an observational study was designed based on the electronic health records of COVID-19 patients hospitalized in a tertiary referral hospital during the same period. A total of 179 COVID-19 cases were divided into two groups: cases with a history of CAD and percutaneous coronary intervention (CAD/PCI+, n = 89) and controls (n = 90). Clinical data were extracted from the electronic database of the hospital and statistically analyzed.

Results: After the application of inclusion/exclusion criteria, only three studies were deemed eligible, one of which was concerned with the impact of CAD on the all-cause mortality of COVID-19. Results from our observational study indicated that the cases were older (median age: 74 vs. 45) and more likely to develop hypoxemia (25.8% vs. 8.8%) than the controls. CAD/PCI+ was correlated with a more severe COVID-19 (11% vs. 1%). Age was a moderately significant independent predictor of increased COVID-19 severity, while hypoxemia was not.

Conclusion: Considering the negative impact of hypoxemia on the prognosis of COVID-19 and its higher prevalence among COVID-19 patients with underlying CAD, further research is warranted to unravel the negative effects of COVID-19 on the mechanisms of gas exchange and delivery in patients with pre-existing CAD.

[1]
Amini, M.; Zayeri, F.; Salehi, M. Trend analysis of cardiovascular disease mortality, incidence, and mortality-to-incidence ratio: Results from global burden of disease study 2017. BMC Public Health, 2021, 21(1), 401.
[http://dx.doi.org/10.1186/s12889-021-10429-0] [PMID: 33632204]
[2]
Olvera Lopez, E; Ballard, BD; Jan, A Cardiovascular Disease; StatPearls Publishing: Treasure Island, 2021.
[3]
Bae, S.; Kim, S.R.; Kim, M.N.; Shim, W.J.; Park, S.M. Impact of cardiovascular disease and risk factors on fatal outcomes in patients with COVID-19 according to age: a systematic review and meta-analysis. Heart, 2021, 107(5), 373-380.
[http://dx.doi.org/10.1136/heartjnl-2020-317901] [PMID: 33334865]
[4]
Zibaeenezhad, M.J.; Sayadi, M.; Bazrafshan, H. The prevalence of cardiovascular risk factors in fatal cases of COVID-19 in Fars province, Iran. Int. Cardiovasc. Res. J., 2021, 15, 35-39.
[5]
Brouqui, P.; Amrane, S.; Million, M.; Cortaredona, S.; Parola, P.; Lagier, J.C.; Raoult, D. Asymptomatic hypoxia in COVID-19 is associated with poor outcome. Int. J. Infect. Dis., 2021, 102, 233-238.
[http://dx.doi.org/10.1016/j.ijid.2020.10.067] [PMID: 33130200]
[6]
Okuhama, A.; Ishikane, M.; Hotta, M.; Sato, L.; Akiyama, Y.; Morioka, S.; Suzuki, S.; Tajima, T.; Yamamoto, M.; Teruya, K.; Izumi, S.; Ohmagari, N. Clinical and radiological findings of silent hypoxia among COVID-19 patients. J. Infect. Chemother., 2021, 27(10), 1536-1538.
[http://dx.doi.org/10.1016/j.jiac.2021.07.002] [PMID: 34294527]
[7]
García-Grimshaw, M.; Flores-Silva, F.D.; Chiquete, E.; Cantú-Brito, C.; Michel-Chávez, A.; Vigueras-Hernández, A.P.; Domínguez-Moreno, R.; Chávez-Martínez, O.A.; Sánchez-Torres, S.; Marché-Fernández, O.A.; González-Duarte, A. Characteristics and predictors for silent hypoxemia in a cohort of hospitalized COVID-19 patients. Auton. Neurosci., 2021, 235, 102855.
[http://dx.doi.org/10.1016/j.autneu.2021.102855] [PMID: 34293703]
[8]
Wang, J.G.; Liu, B.; Percha, B.; Pan, S.; Goel, N.; Mathews, K.S.; Gao, C.; Tandon, P.; Tomlinson, M.; Yoo, E.; Howell, D.; Eisenberg, E.; Naymagon, L.; Tremblay, D.; Chokshi, K.; Dua, S.; Dunn, A.S.; Powell, C.A.; Bose, S. Cardiovascular disease and severe hypoxemia are associated with higher rates of noninvasive respiratory support failure in Coronavirus Disease 2019 Pneumonia. Crit. Care Explor., 2021, 3(3), e0355.
[http://dx.doi.org/10.1097/CCE.0000000000000355] [PMID: 33655216]
[9]
Wang, R.S.; Oldham, W.M.; Loscalzo, J. Network-based association of hypoxia-responsive genes with cardiovascular diseases. New J. Phys., 2014, 16(10), 105014.
[http://dx.doi.org/10.1088/1367-2630/16/10/105014] [PMID: 25530704]
[10]
Nikoo, M.H.; Mozaffari, R.; Hatamnejad, M.R.; Bazrafshan, M.; Kasaei, M.; Bazrafshan, H. Systolic dysfunction and complete heart block as complications of fulminant myocarditis in a recovered COVID-19 patient. J. Cardiol. Cases, 2021, 24(4), 177-181.
[http://dx.doi.org/10.1016/j.jccase.2021.03.009] [PMID: 33897917]
[11]
Fokkema, M.L.; James, S.K.; Albertsson, P.; Aasa, M.; Åkerblom, A.; Calais, F.; Eriksson, P.; Jensen, J.; Schersten, F.; de Smet, B.J.; Sjögren, I.; Tornvall, P.; Lagerqvist, B. Outcome after percutaneous coronary intervention for different indications: long-term results from the Swedish Coronary Angiography and Angioplasty Registry (SCAAR). EuroIntervention, 2016, 12(3), 303-311.
[http://dx.doi.org/10.4244/EIJY15M10_07] [PMID: 26485732]
[12]
Xu, J.; Teng, Y.; Shang, L.; Gu, X.; Fan, G.; Chen, Y.; Tian, R.; Zhang, S.; Cao, B. The effect of prior angiotensin-converting enzyme inhibitor and angiotensin receptor blocker treatment on coronavirus disease 2019 (COVID-19) susceptibility and outcome: A systematic review and meta-analysis. Clin. Infect. Dis., 2021, 72(11), e901-e913.
[http://dx.doi.org/10.1093/cid/ciaa1592] [PMID: 33079200]
[13]
Ghaferi, A.A.; Schwartz, T.A.; Pawlik, T.M. STROBE reporting guidelines for observational studies. JAMA Surg., 2021, 156(6), 577-578.
[http://dx.doi.org/10.1001/jamasurg.2021.0528] [PMID: 33825815]
[14]
Love, J.; Selker, R.; Marsman, M.; Jamil, T.; Dropmann, D.; Verhagen, J.; Ly, A.; Gronau, Q.F.; Smíra, M.; Epskamp, S.; Matzke, D.; Wild, A.; Knight, P.; Rouder, J.N.; Morey, R.D.; Wagenmakers, E-J. JASP: Graphical statistical software for common statistical designs. J. Stat. Softw., 2019, 88(2), 1-17.
[http://dx.doi.org/10.18637/jss.v088.i02]
[15]
Lew, M.J. A reckless guide to p-values. Handb. Exp. Pharmacol., 2019, 257, 223-256.
[http://dx.doi.org/10.1007/164_2019_286] [PMID: 31897610]
[16]
Thiese, M.S.; Ronna, B.; Ott, U. P value interpretations and considerations. J. Thorac. Dis., 2016, 8(9), E928-E931.
[http://dx.doi.org/10.21037/jtd.2016.08.16] [PMID: 27747028]
[17]
Haunschild, R. Mendeley. In: Handbook Bibliometrics; De Gruyter, 2020; pp. 281-287.
[http://dx.doi.org/10.1515/9783110646610-028]
[18]
Qin, C.; Zhou, L.; Hu, Z.; Yang, S.; Zhang, S.; Chen, M.; Yu, H.; Tian, D.S.; Wang, W. Clinical characteristics and outcomes of COVID-19 patients with a history of stroke in wuhan, China. Stroke, 2020, 51(7), 2219-2223.
[http://dx.doi.org/10.1161/STROKEAHA.120.030365] [PMID: 32466735]
[19]
Kummer, B.R.; Klang, E.; Stein, L.K.; Dhamoon, M.S.; Jetté, N. History of stroke is independently associated with in-hospital death in patients with COVID-19. Stroke, 2020, 51(10), 3112-3114.
[http://dx.doi.org/10.1161/STROKEAHA.120.030685] [PMID: 32772679]
[20]
Loffi, M.; Piccolo, R.; Regazzoni, V.; Di Tano, G.; Moschini, L.; Robba, D.; Quinzani, F.; Esposito, G.; Franzone, A.; Danzi, G.B. Coronary artery disease in patients hospitalised with coronavirus disease 2019 (COVID-19) infection. Open Heart, 2020, 7(2), e001428.
[http://dx.doi.org/10.1136/openhrt-2020-001428] [PMID: 33229434]
[21]
Antza, C.; Doundoulakis, I.; Stabouli, S.; Kotsis, V. American, European and international hypertension guidelines: Time to shake hands? Int. Cardiol. Hypertens., 2021, 8, 100075.
[http://dx.doi.org/10.1016/j.ijchy.2020.100075] [PMID: 33884368]
[22]
Silverio, A.; Di Maio, M.; Citro, R.; Esposito, L.; Iuliano, G.; Bellino, M.; Baldi, C.; De Luca, G.; Ciccarelli, M.; Vecchione, C.; Galasso, G. Cardiovascular risk factors and mortality in hospitalized patients with COVID-19: systematic review and meta-analysis of 45 studies and 18,300 patients. BMC Cardiovasc. Disord., 2021, 21(1), 23.
[http://dx.doi.org/10.1186/s12872-020-01816-3] [PMID: 33413093]
[23]
Shoar, S.; Hosseini, F.; Naderan, M.; Mehta, J.L. Meta- analysis of cardiovascular events and related biomarkers comparing survivors versus non-survivors in patients with COVID-19. Am. J. Cardiol., 2020, 135, 50-61.
[http://dx.doi.org/10.1016/j.amjcard.2020.08.044] [PMID: 32916148]
[24]
Kollias, A.; Kyriakoulis, K.G.; Kyriakoulis, I.G.; Nitsotolis, T.; Poulakou, G.; Stergiou, G.S.; Syrigos, K. Statin use and mortality in COVID-19 patients: Updated systematic review and meta-analysis. Atherosclerosis, 2021, 330, 114-121.
[http://dx.doi.org/10.1016/j.atherosclerosis.2021.06.911] [PMID: 34243953]
[25]
Ricci, M.A.; De Vuono, S.; Scavizzi, M.; Gentili, A.; Lupattelli, G. Facing morbid obesity: How to approach it. Angiology, 2016, 67(4), 391-397.
[http://dx.doi.org/10.1177/0003319715595735] [PMID: 26187640]