An Improved Synthesis of Disubstituted 2H-indazoles using Microwaves

Page: [858 - 863] Pages: 6

  • * (Excluding Mailing and Handling)

Abstract

Microwaves have been used to produce a practical, high-yielding, and scalable synthesis method for producing disubstituted 2H-indazoles. With this technique, a large class of 2H-indazoles can be effectively produced from substituted 2-bromobenzaldehyde, aromatic amine and NaN3 using [Cu(phen)(PPh3)2]NO3 as catalysts. With outstanding purity and yields, the current one-pot synthetic sequence enables the addition of two structural diversity points to broaden the chemical space.

Graphical Abstract

[1]
a) Heravi, M.M.; Zadsirjan, V. RSC Advances, 2020, 10(72), 44247-44311.
[http://dx.doi.org/10.1039/D0RA09198G] [PMID: 35557843];
b) Gao, B.; Yang, B.; Feng, X.; Li, C. Nat. Prod. Rep., 2022, 39(1), 139-162.
[http://dx.doi.org/10.1039/D1NP00017A] [PMID: 34374396]
[2]
Nagarajan, R.; Varadaraju, C.; Lee, K.H. Dyes Pigments, 2021, 191, 109331.
[http://dx.doi.org/10.1016/j.dyepig.2021.109331]
[3]
Blakemore, D.C.; Castro, L.; Churcher, I.; Rees, D.C.; Thomas, A.W.; Wilson, D.M.; Wood, A. Nat. Chem., 2018, 10(4), 383-394.
[http://dx.doi.org/10.1038/s41557-018-0021-z] [PMID: 29568051]
[4]
Das, S.; Chanda, K. ChemNanoMat, 2022, 8(11), e202200375.
[http://dx.doi.org/10.1002/cnma.202200375]
[5]
Ahmad, M.G.; Chanda, K. Coord. Chem. Rev., 2022, 472, 214769.
[http://dx.doi.org/10.1016/j.ccr.2022.214769]
[6]
Jena, S.; Mukherjee, M.; Maiti, B.; Chanda, K. Environ. Chem. Lett., 2021, 19, 3315.
[7]
Dong, J.; Zhang, Q.; Wang, Z.; Huang, G.; Li, S. ChemMedChem, 2018, 13(15), 1490-1507.
[http://dx.doi.org/10.1002/cmdc.201800253] [PMID: 29863292]
[8]
Murugavel, S.; Deepa, S.; Ravikumar, C.; Ranganathan, R.; Alagusundaram, P. J. Mol. Struct., 2020, 1222, 128961.
[http://dx.doi.org/10.1016/j.molstruc.2020.128961]
[9]
Pérez-Villanueva, J.; Yépez-Mulia, L.; González-Sánchez, I.; Palacios-Espinosa, J.F.; Soria-Arteche, O.; Rosario, D.; Sainz-Espuñes, T.; Cerbón, M.A.; Rodríguez-Villar, K.; Rodríguez-Vicente, A.K.; Cortés-Gines, M.; Custodio-Galván, Z.; Estrada-Castro, D.B. Molecules, 2017, 22(11), 1864.
[http://dx.doi.org/10.3390/molecules22111864]
[10]
Kusumoto, Y.; Hayashi, K.; Sato, S.; Yamada, T.; Kozono, I.; Nakata, Z.; Asada, N.; Mitsuki, S.; Watanabe, A.; Wakasa-Morimoto, C.; Uemura, K.; Arita, S.; Miki, S.; Mizutare, T.; Mikamiyama, H. ACS Med. Chem. Lett., 2022, 13(10), 1634-1641.
[11]
Miyamoto, S.; Kakutani, S.; Sato, Y.; Hanashi, A.; Kinoshita, Y.; Ishikawa, A. Jpn. J. Clin. Oncol., 2018, 48(6), 503-513.
[http://dx.doi.org/10.1093/jjco/hyy053] [PMID: 29684209]
[12]
Jones, P.; Wilcoxen, K.; Rowley, M.; Toniatti, C. J. Med. Chem., 2015, 58(8), 3302-3314.
[http://dx.doi.org/10.1021/jm5018237]
[13]
Airas, J.; Bayas, C.A.; N’Ait Ousidi, A. AitItto, M.Y.; Auhmani, A.; Loubidi, M.; Esseffar, M.; Pollock, J.A.; Parish, C.A. Eur. J. Med. Chem. Rep, 2022, 4, 100034.
[14]
Halland, N.; Nazaré, M.; R’kyek, O.; Alonso, J.; Urmann, M.; Lindenschmidt, A. Angew. Chem. Int. Ed., 2009, 48(37), 6879-6882.
[http://dx.doi.org/10.1002/anie.200902323]
[15]
Haag, B.; Peng, Z.; Knochel, P. Org. Lett., 2009, 11(19), 4270-4273.
[http://dx.doi.org/10.1021/ol901585k] [PMID: 19775181]
[16]
Stokes, B.J.; Vogel, C.V.; Urnezis, L.K.; Pan, M.; Driver, T.G. Org. Lett., 2010, 12(12), 2884-2887.
[http://dx.doi.org/10.1021/ol101040p] [PMID: 20507088]
[17]
Kumar, M.R.; Park, A.; Park, N.; Lee, S. Org. Lett., 2011, 13(13), 3542-3545.
[http://dx.doi.org/10.1021/ol201409j] [PMID: 21644532]
[18]
Lian, Y.; Bergman, R.G.; Lavis, L.D.; Ellman, J.A. J. Am. Chem. Soc., 2013, 135(19), 7122-7125.
[http://dx.doi.org/10.1021/ja402761p] [PMID: 23642256]
[19]
Long, Z.; Wang, Z.; Zhou, D.; Wan, D. You. J. Org. Lett., 2017, 19(11), 2777-2780.
[http://dx.doi.org/10.1021/acs.orglett.7b00631] [PMID: 28514173]
[20]
Panchangam, R.L.; Manickam, V.; Chanda, K. ChemMedChem, 2019, 14(2), 262-272.
[http://dx.doi.org/10.1002/cmdc.201800707] [PMID: 30422389]
[21]
Alsalim, R.; Lindemann, P.; López-Alberca, M.P.; Miksche, S.; Czechtizky, W.; Halland, N.; Nazaré, M. Org. Lett., 2020, 22(18), 7393-7396.
[http://dx.doi.org/10.1021/acs.orglett.0c02766] [PMID: 32870012]
[22]
a) Aljaar, N.; Al-Noaimi, M.; Conrad, J.; Beifuss, U. J. Org. Chem., 2021, 86(2), 1408-1418.
[http://dx.doi.org/10.1021/acs.joc.0c01923] [PMID: 33306383];
b) Duffy, M.; Di Filippo, M.; Baumann, M. Tetrahedron Lett., 2021, 86, 153522.
[http://dx.doi.org/10.1016/j.tetlet.2021.153522]
[23]
Khalili, D.; Evazi, R.; Neshat, A.; Aboonajmi, J. ChemistrySelect, 2021, 6(4), 746-753.
[http://dx.doi.org/10.1002/slct.202004387]
[24]
a) Panchangam, R.L.; Rao, R.N.; Balamurali, M.M.; Hingamire, T.B.; Shanmugam, D.; Manickam, V.; Chanda, K. Inorg. Chem., 2021, 60, 17593.
[http://dx.doi.org/10.1021/acs.inorgchem.1c02193] [PMID: 34767343];
b) Saikia, A.A.; Nishanth Rao, R.; Das, S.; Jena, S.; Rej, S.; Maiti, B.; Chanda, K. Tetrahedron Lett., 2020, 61(36), 152273.
[http://dx.doi.org/10.1016/j.tetlet.2020.152273]
[25]
Rao, R.N.; Chanda, K. Chem. Commun. (Camb.), 2022, 58(3), 343-382.
[http://dx.doi.org/10.1039/D1CC04602K] [PMID: 34904599]
[26]
Dasmahapatra, U.; Kumar, C.K.; Das, S.; Subramanian, P.T.; Murali, P.; Isaac, A.E.; Ramanathan, K.; Mm, B.; Chanda, K. Front Chem., 2022, 10, 991369.
[http://dx.doi.org/10.3389/fchem.2022.991369] [PMID: 36247684]
[27]
Boelke, A.; Lork, E.; Nachtsheim, B. J. Chem., 2018, 24(70), 18653-18657.
[http://dx.doi.org/10.1002/chem.201804957] [PMID: 30272381]