Abstract

Alzheimer's and Parkinson's are neurodegenerative disorders that affect a great number of people around the world, seriously compromising the quality of life of individuals, due to motor and cognitive damage. In these diseases, pharmacological treatment is used only to alleviate symptoms. This emphasizes the need to discover alternative molecules for use in prevention. Using Molecular Docking, this review aimed to evaluate the anti-Alzheimer’s and anti-Parkinson’s activity of linalool and citronellal, as well as their derivatives. Before performing Molecular Docking simulations, the compounds’ pharmacokinetic characteristics were evaluated. For Molecular Docking, 7 chemical compounds derived from citronellal, and 10 compounds derived from linalool, and molecular targets involved in Alzheimer's and Parkinson's pathophysiology were selected. According to the Lipinski rules, the compounds under study presented good oral absorption and bioavailability. For toxicity, some tissue irritability was observed. For Parkinson-related targets, the citronellal and linalool derived compounds revealed excellent energetic affinity for α-Synuclein, Adenosine Receptors, Monoamine Oxidase (MAO), and Dopamine D1 receptor proteins. For Alzheimer disease targets, only linalool and its derivatives presented promise against BACE enzyme activity. The compounds studied presented high probability of modulatory activity against the disease targets under study, and are potential candidates for future drugs.

Graphical Abstract

[1]
Lamptey, R.N.L.; Chaulagain, B.; Trivedi, R.; Gothwal, A.; Layek, B.; Singh, J. A review of the common neurodegenerative disorders: current therapeutic approaches and the potential role of nanotherapeutics. Int. J. Mol. Sci., 2022, 23(3), 1851.
[http://dx.doi.org/10.3390/ijms23031851] [PMID: 35163773]
[2]
Liu, H.; Hu, Y.; Zhang, Y.; Zhang, H.; Gao, S.; Wang, L.; Wang, T.; Han, Z.; Sun, B.; Liu, G. Mendelian randomization highlights significant difference and genetic heterogeneity in clinically diagnosed Alzheimer’s disease GWAS and self-report proxy phenotype GWAX. Alzheimers Res. Ther., 2022, 14(1), 17.
[http://dx.doi.org/10.1186/s13195-022-00963-3] [PMID: 34980257]
[3]
Jain, N.; Chen-Plotkin, A.S. Genetic modifiers in neurodegeneration. Curr. Genet. Med. Rep., 2018, 6(1), 11-19.
[http://dx.doi.org/10.1007/s40142-018-0133-1] [PMID: 29977663]
[4]
Jain, V.; Baitharu, I.; Barhwal, K.; Prasad, D.; Singh, S.B.; Ilavazhagan, G. Enriched environment prevents hypobaric hypoxia induced neurodegeneration and is independent of antioxidant signaling. Cell. Mol. Neurobiol., 2012, 32(4), 599-611.
[http://dx.doi.org/10.1007/s10571-012-9807-5] [PMID: 22331403]
[5]
Jellinger, K.A. Basic mechanisms of neurodegeneration: a critical update. J. Cell. Mol. Med., 2010, 14(3), 457-487.
[http://dx.doi.org/10.1111/j.1582-4934.2010.01010.x] [PMID: 20070435]
[6]
Rajiah, K.; Maharajan, M.K.; Yeen, S.J.; Lew, S. Quality of life and caregivers’ burden of Parkinson’s Disease. Neuroepidemiology, 2017, 48(3-4), 131-137.
[http://dx.doi.org/10.1159/000479031] [PMID: 28728161]
[7]
Henderson, C.; Knapp, M.; Nelis, S.M.; Quinn, C.; Martyr, A.; Wu, Y.T.; Jones, I.R.; Victor, C.R.; Pickett, J.A.; Hindle, J.V.; Jones, R.W.; Kopelman, M.D.; Matthews, F.E.; Morris, R.G.; Rusted, J.M.; Thom, J.M.; Clare, L. Use and costs of services and unpaid care for people with mild‐to‐moderate dementia: Baseline results from the IDEAL cohort study. Alzheimers Dement. (N. Y.), 2019, 5(1), 685-696.
[http://dx.doi.org/10.1016/j.trci.2019.09.012] [PMID: 31720369]
[8]
Cui, L.; Hou, N.N.; Wu, H.M.; Zuo, X.; Lian, Y.Z.; Zhang, C.N.; Wang, Z.F.; Zhang, X.; Zhu, J.H. Prevalence of Alzheimer’s disease and Parkinson’s disease in China: An updated systematical analysis. Front. Aging Neurosci., 2020, 12(December), 603854.
[http://dx.doi.org/10.3389/fnagi.2020.603854] [PMID: 33424580]
[9]
de Lucena, J.D.; Gadelha-Filho, C.V.J.; da Costa, R.O.; de Araújo, D.P.; Lima, F.A.V.; Neves, K.R.T.; de Barros Viana, G.S. L-linalool exerts a neuroprotective action on hemiparkinsonian rats. Naunyn Schmiedebergs Arch. Pharmacol., 2020, 393(6), 1077-1088.
[http://dx.doi.org/10.1007/s00210-019-01793-1] [PMID: 31938809]
[10]
Javed, H.; Azimullah, S.; Meeran, M.F.; Ansari, S.; Ojha, S. Neuroprotective effects of thymol, a dietary monoterpene against dopaminergic neurodegeneration in rotenone-induced rat model of Parkinson’s Disease. Int. J. Mol. Sci., 2019, 20(7), 1538.
[http://dx.doi.org/10.3390/ijms20071538] [PMID: 30934738]
[11]
Rekha, K.R.; Inmozhi, S.R. Geraniol protects against the protein and oxidative stress induced by rotenone in an in vitro model of Parkinson’s Disease. Neurochem. Res., 2018, 43(10), 1947-1962.
[http://dx.doi.org/10.1007/s11064-018-2617-5] [PMID: 30141137]
[12]
Sakkas, H.; Papadopoulou, C. Antimicrobial activity of basil, oregano, and thyme essential oils. J. Microbiol. Biotechnol., 2017, 27(3), 429-438.
[http://dx.doi.org/10.4014/jmb.1608.08024] [PMID: 27994215]
[13]
Pina, L.T.S.; Guimarães, A.G.; Santos, W.B.R.; Oliveira, M.A.; Rabelo, T.K.; Serafini, M.R. Monoterpenes as a perspective for the treatment of seizures: A Systematic Review. Phytomedicine, 2021, 81, 153422.
[http://dx.doi.org/10.1016/j.phymed.2020.153422] [PMID: 33310306]
[14]
Despinasse, Y.; Fiorucci, S.; Antonczak, S.; Moja, S.; Bony, A.; Nicolè, F.; Baudino, S.; Magnard, J.L.; Jullien, F. Bornyl-diphosphate synthase from Lavandula angustifolia: A major monoterpene synthase involved in essential oil quality. Phytochemistry, 2017, 137, 24-33.
[http://dx.doi.org/10.1016/j.phytochem.2017.01.015] [PMID: 28190677]
[15]
Chen, X.; Yauk, Y.K.; Nieuwenhuizen, N.J.; Matich, A.J.; Wang, M.Y.; Perez, R.L.; Atkinson, R.G.; Beuning, L.L. Characterisation of an (S)-linalool synthase from kiwifruit (Actinidia arguta) that catalyses the first committed step in the production of floral lilac compounds. Funct. Plant Biol., 2010, 37(3), 232-243.
[http://dx.doi.org/10.1071/FP09179]
[16]
Milanos, S.; Elsharif, S.A.; Janzen, D.; Buettner, A.; Villmann, C. Metabolic products of linalool and modulation of GABAA receptors. Front Chem., 2017, 5, 46.
[http://dx.doi.org/10.3389/fchem.2017.00046] [PMID: 28680877]
[17]
Belsito, D.; Bickers, D.; Bruze, M.; Calow, P.; Greim, H.; Hanifin, J.M.; Rogers, A.E.; Saurat, J.H.; Sipes, I.G.; Tagami, H. A safety assessment of non-cyclic alcohols with unsaturated branched chain when used as fragrance ingredients. Food Chem. Toxicol., 2010, 48(Suppl. 3), S1-S42.
[http://dx.doi.org/10.1016/j.fct.2009.11.007] [PMID: 20141871]
[18]
Rayff da Silva, P. Anxiolytic and antidepressant-like effects of monoterpene tetrahydro-linalool and in silico approach of new potential targets. Curr. Top. Med. Chem., 2022, 22(18), 1515-1537.
[http://dx.doi.org/10.2174/1568026622666220505104726] [PMID: 35473545]
[19]
Maggini, V.; Calvi, L.; Pelagatti, T.; Gallo, E.R.; Civati, C.; Privitera, C.; Squillante, F.; Maniglia, P.; Di Candia, D.; Spampatti, R.; Firenzuoli, F. An optimized terpene profile for a new medical cannabis oil. Pharmaceutics, 2022, 14(2), 298.
[http://dx.doi.org/10.3390/pharmaceutics14020298] [PMID: 35214031]
[20]
Kumar, R. Effects of stereoisomers on drug activity. Am. J. Biomed. Sci. Res., 2021, 13(3), 220-222.
[http://dx.doi.org/10.34297/AJBSR.2021.13.001861]
[21]
Yang, T.; Stoopen, G.; Thoen, M.; Wiegers, G.; Jongsma, M.A. Chrysanthemum expressing a linalool synthase gene ‘smells good’, but ‘tastes bad’ to western flower thrips. Plant Biotechnol. J., 2013, 11(7), 875-882.
[http://dx.doi.org/10.1111/pbi.12080] [PMID: 23745691]
[22]
Sugawara, Y.; Hara, C.; Aoki, T.; Sugimoto, N.; Masujima, T. Odor distinctiveness between enantiomers of linalool: difference in perception and responses elicited by sensory test and forehead surface potential wave measurement. Chem. Senses, 2000, 25(1), 77-84.
[http://dx.doi.org/10.1093/chemse/25.1.77] [PMID: 10667997]
[23]
López, V.; Nielsen, B.; Solas, M.; Ramírez, M.J.; Jäger, A.K. Exploring pharmacological mechanisms of lavender (Lavandula angustifolia) essential oil on central nervous system targets. Front. Pharmacol., 2017, 8(MAY), 280.
[http://dx.doi.org/10.3389/fphar.2017.00280] [PMID: 28579958]
[24]
dos Santos, É.R.Q.; Maia, C.S.F.; Fontes Junior, E.A.; Melo, A.S.; Pinheiro, B.G.; Maia, J.G.S. Linalool-rich essential oils from the Amazon display antidepressant-type effect in rodents. J. Ethnopharmacol., 2018, 212(212), 43-49.
[http://dx.doi.org/10.1016/j.jep.2017.10.013] [PMID: 29037915]
[25]
Harada, H.; Kashiwadani, H.; Kanmura, Y.; Kuwaki, T. Linalool odor-induced anxiolytic effects in mice. Front. Behav. Neurosci., 2018, 12, 241.
[http://dx.doi.org/10.3389/fnbeh.2018.00241] [PMID: 30405369]
[26]
Yuan, C.; Shin, M.; Park, Y.; Choi, B.; Jang, S.; Lim, C.; Yun, H.S.; Lee, I.S.; Won, S.Y.; Cho, K.S. Linalool alleviates Aβ42-induced neurodegeneration via suppressing ros production and inflammation in fly and rat models of Alzheimer’s disease. Oxid. Med. Cell. Longev., 2021, 2021, 1-10.
[http://dx.doi.org/10.1155/2021/8887716] [PMID: 33777322]
[27]
Gunaseelan, S.; Balupillai, A.; Govindasamy, K.; Ramasamy, K.; Muthusamy, G.; Shanmugam, M.; Thangaiyan, R.; Robert, B.M.; Prasad Nagarajan, R.; Ponniresan, V.; Rathinaraj, P. Linalool prevents oxidative stress activated protein kinases in single UVB-exposed human skin cells. PLoS One, 2017, 12(5), e0176699.
[http://dx.doi.org/10.1371/journal.pone.0176699] [PMID: 28467450]
[28]
Sabogal-Guáqueta, A.M.; Hobbie, F.; Keerthi, A.; Oun, A.; Kortholt, A.; Boddeke, E.; Dolga, A. Linalool attenuates oxidative stress and mitochondrial dysfunction mediated by glutamate and NMDA toxicity. Biomed. Pharmacother., 2019, 118(May), 109295.
[http://dx.doi.org/10.1016/j.biopha.2019.109295] [PMID: 31545255]
[29]
Wojtunik-Kulesza, K.; Rudkowska, M.; Kasprzak-Drozd, K.; Oniszczuk, A.; Borowicz-Reutt, K. Activity of selected group of monoterpenes in alzheimer’s disease symptoms in experimental model studies—a non-systematic review. Int. J. Mol. Sci., 2021, 22(14), 7366.
[http://dx.doi.org/10.3390/ijms22147366] [PMID: 34298986]
[30]
Weston-Green, K.; Clunas, H.; Jimenez Naranjo, C. A review of the potential use of pinene and linalool as terpene-based medicines for brain health: discovering novel therapeutics in the flavours and fragrances of cannabis. Front. Psychiatry, 2021, 12(August), 583211.
[http://dx.doi.org/10.3389/fpsyt.2021.583211] [PMID: 34512404]
[31]
Sabogal-Guáqueta, A.M.; Osorio, E.; Cardona-Gómez, G.P. Linalool reverses neuropathological and behavioral impairments in old triple transgenic Alzheimer’s mice. Neuropharmacology, 2016, 102, 111-120.
[http://dx.doi.org/10.1016/j.neuropharm.2015.11.002] [PMID: 26549854]
[32]
Xu, P.; Wang, K.; Lu, C.; Dong, L.; Gao, L.; Yan, M.; Aibai, S.; Yang, Y.; Liu, X. The protective effect of lavender essential oil and its main component linalool against the cognitive deficits induced by d-galactose and aluminum trichloride in mice. Evid. Based Complement. Alternat. Med., 2017, 2017, 1-11.
[http://dx.doi.org/10.1155/2017/7426538] [PMID: 28529531]
[33]
Quintans-Júnior, L.J.; Melo, M.S.; De Sousa, D.P.; Araujo, A.A.S.; Onofre, A.C.S.; Gelain, D.P.; Gonçalves, J.C.R.; Araújo, D.A.M.; Almeida, J.R.G.S.; Bonjardim, L.R. Antinociceptive effects of citronellal in formalin-, capsaicin-, and glutamate-induced orofacial nociception in rodents and its action on nerve excitability. J. Orofac. Pain, 2010, 24(3), 305-312.
[PMID: 20664833]
[34]
de Santana, M.T.; de Oliveira, M.G.B.; Santana, M.F.; De Sousa, D.P.; Santana, D.G.; Camargo, E.A.; de Oliveira, A.P.; Almeida, J.R.G.S.; Quintans-Júnior, L.J. Jr Citronellal, a monoterpene present in Java citronella oil, attenuates mechanical nociception response in mice. Pharm. Biol., 2013, 51(9), 1144-1149.
[http://dx.doi.org/10.3109/13880209.2013.781656] [PMID: 23795810]
[35]
Quintans-Júnior, L.; Rocha, R.F.; Caregnato, F.F.; Moreira, J.C.F.; Silva, F.A.; Araújo, A.A.S.; Santos, J.P.A.; Melo, M.S.; de Sousa, D.P.; Bonjardim, L.R.; Gelain, D.P. Antinociceptive action and redox properties of citronellal, an essential oil present in lemongrass. J. Med. Food, 2011, 14(6), 630-639.
[http://dx.doi.org/10.1089/jmf.2010.0125] [PMID: 21480794]
[36]
Melo, M.S.; Sena, L.C.S.; Barreto, F.J.N.; Bonjardim, L.R.; Almeida, J.R.G.S.; Lima, J.T.; De Sousa, D.P.; Quintans-Júnior, L.J. Antinociceptive effect of citronellal in mice. Pharm. Biol., 2010, 48(4), 411-416.
[http://dx.doi.org/10.3109/13880200903150419] [PMID: 20645719]
[37]
Silva, M.I.G.; Silva, M.A.G.; de Aquino Neto, M.R.; Moura, B.A.; de Sousa, H.L.; de Lavor, E.P.H.; de Vasconcelos, P.F.; Macêdo, D.S.; de Sousa, D.P.; Vasconcelos, S.M.M.; de Sousa, F.C.F. Effects of isopulegol on pentylenetetrazol-induced convulsions in mice: Possible involvement of GABAergic system and antioxidant activity. Fitoterapia, 2009, 80(8), 506-513.
[http://dx.doi.org/10.1016/j.fitote.2009.06.011] [PMID: 19559770]
[38]
Du, J.; Liu, D.; Zhang, X.; Zhou, A.; Su, Y.; He, D.; Fu, S.; Gao, F. Menthol protects dopaminergic neurons against inflammation-mediated damage in lipopolysaccharide (LPS)-Evoked model of Parkinson’s disease. Int. Immunopharmacol., 2020, 85, 106679.
[http://dx.doi.org/10.1016/j.intimp.2020.106679] [PMID: 32559722]
[39]
Aarsland, D.; Batzu, L.; Halliday, G.M.; Geurtsen, G.J.; Ballard, C.; Ray Chaudhuri, K.; Weintraub, D. Parkinson disease-associated cognitive impairment. Nat. Rev. Dis. Primers, 2021, 7(1), 47.
[http://dx.doi.org/10.1038/s41572-021-00280-3] [PMID: 33414454]
[40]
Noyce, A.J.; Lees, A.J.; Schrag, A.E. The prediagnostic phase of Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry, 2016, 87(8), 871-878.
[http://dx.doi.org/10.1136/jnnp-2015-311890] [PMID: 26848171]
[41]
Naghavi, M.; Wang, H.; Lozano, R.; Davis, A.; Liang, X.; Zhou, M.; Vollset, S.E.; Abbasoglu Ozgoren, A.; Abdalla, S.; Abd-Allah, F. Global, regional, and national age–sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet, 2015, 385(9963), 117-171.
[http://dx.doi.org/10.1016/S0140-6736(14)61682-2] [PMID: 25530442]
[42]
Rodriguez-Oroz, M.C.; Jahanshahi, M.; Krack, P.; Litvan, I.; Macias, R.; Bezard, E.; Obeso, J.A. Initial clinical manifestations of Parkinson’s disease: features and pathophysiological mechanisms. Lancet Neurol., 2009, 8(12), 1128-1139.
[http://dx.doi.org/10.1016/S1474-4422(09)70293-5] [PMID: 19909911]
[43]
Dias, V.; Junn, E.; Mouradian, M.M. The role of oxidative stress in Parkinson’s disease. J. Parkinsons Dis., 2013, 3(4), 461-491.
[http://dx.doi.org/10.3233/JPD-130230] [PMID: 24252804]
[44]
Rodriguez, M.; Morales, I.; Rodriguez-Sabate, C.; Sanchez, A.; Castro, R.; Brito, J.M.; Sabate, M. The degeneration and replacement of dopamine cells in Parkinson’s disease: the role of aging. Front. Neuroanat., 2014, 8, 80.
[http://dx.doi.org/10.3389/fnana.2014.00080] [PMID: 25147507]
[45]
Schapira, A.H.V.; Olanow, C.W.; Greenamyre, J.T.; Bezard, E. Slowing of neurodegeneration in Parkinson’s disease and Huntington’s disease: future therapeutic perspectives. Lancet, 2014, 384(9942), 545-555.
[http://dx.doi.org/10.1016/S0140-6736(14)61010-2] [PMID: 24954676]
[46]
Gao, H-M.; Tu, D.; Gao, Y.; Liu, Q.; Yang, R.; Liu, Y.; Guan, T.; Hong, J-S. Roles of Microglia in Inflammation-Mediated Neurodegeneration: Models, Mechanisms, and Therapeutic Interventions for Parkinson’s Disease, 1st ed; Elsevier Inc., 2017, p. 1.
[http://dx.doi.org/10.1016/bs.ant.2017.07.005]
[47]
Raza, C.; Anjum, R.; Shakeel, N.A. Parkinson’s disease: Mechanisms, translational models and management strategies. Life Sci., 2019, 226, 77-90.
[http://dx.doi.org/10.1016/j.lfs.2019.03.057] [PMID: 30980848]
[48]
Liu, Z.; Cheung, H. Stem cell-based therapies for Parkinson Disease. Int. J. Mol. Sci., 2020, 21(21), 8060.
[http://dx.doi.org/10.3390/ijms21218060]
[49]
Zang, X.; Cheng, Z.Y.; Sun, Y.; Hua, N.; Zhu, L.H.; He, L. The ameliorative effects and underlying mechanisms of dopamine D1-like receptor agonist SKF38393 on Aβ1–42-induced cognitive impairment. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2018, 81(September), 250-261.
[http://dx.doi.org/10.1016/j.pnpbp.2017.09.017] [PMID: 28939187]
[50]
Perreault, M.L.; Hasbi, A.; O’Dowd, B.F.; George, S.R. Heteromeric dopamine receptor signaling complexes: emerging neurobiology and disease relevance. Neuropsychopharmacology, 2014, 39(1), 156-168.
[http://dx.doi.org/10.1038/npp.2013.148] [PMID: 23774533]
[51]
Bamford, N.S.; Robinson, S.; Palmiter, R.D.; Joyce, J.A.; Moore, C.; Meshul, C.K. Dopamine modulates release from corticostriatal terminals. J. Neurosci., 2004, 24(43), 9541-9552.
[http://dx.doi.org/10.1523/JNEUROSCI.2891-04.2004] [PMID: 15509741]
[52]
Pan, X.; Kaminga, A.C.; Wen, S.W.; Wu, X.; Acheampong, K.; Liu, A. Dopamine and dopamine receptors in alzheimer’s disease: a systematic review and network meta-analysis. Front. Aging Neurosci., 2019, 11, 175.
[http://dx.doi.org/10.3389/fnagi.2019.00175] [PMID: 31354471]
[53]
Donthamsetti, P.; Gallo, E.F.; Buck, D.C.; Stahl, E.L.; Zhu, Y.; Lane, J.R.; Bohn, L.M.; Neve, K.A.; Kellendonk, C.; Javitch, J.A. Arrestin recruitment to dopamine D2 receptor mediates locomotion but not incentive motivation. Mol. Psychiatry, 2020, 25(9), 2086-2100.
[http://dx.doi.org/10.1038/s41380-018-0212-4] [PMID: 30120413]
[54]
Caro Aponte, P.A.; Otálora, C.A.; Guzmán, J.C.; Turner, L.F.; Alcázar, J.P.; Mayorga, E.L. Correlation between dopamine receptor D2 expression and presence of abnormal involuntary movements in Wistar rats with hemiparkinsonism and dyskinesia. Neurologia (English Edition), 2021, 36(3), 191-200.
[http://dx.doi.org/10.1016/j.nrleng.2017.12.006] [PMID: 29525397]
[55]
Brito, G.M.R.; Souza, S.R.G. Distúrbios motores relacionados ao mal de parkinson e a dopamina. Revista Uningá, 2019, 56(3), 95-105.
[http://dx.doi.org/10.46311/2318-0579.56.eUJ2866]
[56]
Connolly, B.S.; Lang, A.E. Pharmacological treatment of Parkinson disease: a review. JAMA, 2014, 311(16), 1670-1683.
[http://dx.doi.org/10.1001/jama.2014.3654] [PMID: 24756517]
[57]
Armstrong, M.J.; Okun, M.S. Diagnosis and treatment of Parkinson disease. JAMA, 2020, 323(6), 548-560.
[http://dx.doi.org/10.1001/jama.2019.22360] [PMID: 32044947]
[58]
Al-Attraqchi, O.H.A.; Attimarad, M.; Venugopala, K.N.; Nair, A.; Al-Attraqchi, N.H.A. Adenosine A2A Receptor as a potential drug target - current status and future perspectives. Curr. Pharm. Des., 2019, 25(25), 2716-2740.
[http://dx.doi.org/10.2174/1381612825666190716113444] [PMID: 31333093]
[59]
Zheng, J.; Zhang, X.; Zhen, X. Development of adenosine A2A receptor antagonists for the treatment of parkinson’s disease: a recent update and challenge. ACS Chem. Neurosci., 2019, 10(2), 783-791.
[http://dx.doi.org/10.1021/acschemneuro.8b00313] [PMID: 30199223]
[60]
Kulisevsky, J.; Poyurovsky, M. Adenosine A2A-receptor antagonism and pathophysiology of Parkinson’s disease and drug-induced movement disorders. Eur. Neurol., 2012, 67(1), 4-11.
[http://dx.doi.org/10.1159/000331768] [PMID: 22134373]
[61]
Borroto-Escuela, D.O.; Fuxe, K. Adenosine heteroreceptor complexes in the basal ganglia are implicated in Parkinson’s disease and its treatment. J. Neural Transm. (Vienna), 2019, 126(4), 455-471.
[http://dx.doi.org/10.1007/s00702-019-01969-2] [PMID: 30637481]
[62]
Borroto-Escuela, D.O. Perez De La Mora, M.; Manger, P.; Narváez, M.; Beggiato, S.; Crespo-Ramírez, M.; Navarro, G.; Wydra, K.; Díaz-Cabiale, Z.; Rivera, A.; Ferraro, L.; Tanganelli, S.; Filip, M.; Franco, R.; Fuxe, K. Brain dopamine transmission in health and parkinson’s disease: modulation of synaptic transmission and plasticity through volume transmission and dopamine heteroreceptors. Front. Synaptic Neurosci., 2018, 10, 20.
[http://dx.doi.org/10.3389/fnsyn.2018.00020] [PMID: 30042672]
[63]
Wichmann, T. Changing views of the pathophysiology of Parkinsonism. Mov. Disord., 2019, 34(8), 1130-1143.
[http://dx.doi.org/10.1002/mds.27741] [PMID: 31216379]
[64]
Waggan, I.; Rissanen, E.; Tuisku, J.; Matilainen, M.; Helin, S.; Parkkola, R.; Rinne, J.O.; Airas, L. Effect of dopaminergic medication on adenosine 2A receptor availability in patients with Parkinson’s disease. Parkinsonism Relat. Disord., 2021, 86, 40-44.
[http://dx.doi.org/10.1016/j.parkreldis.2021.03.030] [PMID: 33831661]
[65]
Fredholm, B.B.; Svenningsson, P. Why target brain adenosine receptors? A historical perspective. Parkinsonism Relat. Disord., 2020, 80(Suppl. 1), S3-S6.
[http://dx.doi.org/10.1016/j.parkreldis.2020.09.027] [PMID: 33349578]
[66]
Garcez, M.L.; Damiani, A.P.; Pacheco, R.; Rodrigues, L.; de Abreu, L.L.; Alves, M.C.; de Andrade, V.M.; Boeck, C.R. Caffeine neuroprotection decreases A2A adenosine receptor content in aged mice. Neurochem. Res., 2019, 44(4), 787-795.
[http://dx.doi.org/10.1007/s11064-018-02710-3] [PMID: 30610653]
[67]
Ikram, M.; Park, T.J.; Ali, T.; Kim, M.O. Antioxidant and neuroprotective effects of caffeine against alzheimer’s and parkinson’s disease: insight into the role of Nrf-2 and A2AR signaling. Antioxidants, 2020, 9(9), 902.
[http://dx.doi.org/10.3390/antiox9090902] [PMID: 32971922]
[68]
Peana, A.T.; Rubattu, P.; Piga, G.G.; Fumagalli, S.; Boatto, G.; Pippia, P.; De Montis, M.G. Involvement of adenosine A1 and A2A receptors in (−)-linalool-induced antinociception. Life Sci., 2006, 78(21), 2471-2474.
[http://dx.doi.org/10.1016/j.lfs.2005.10.025] [PMID: 16343551]
[69]
Pourtaqi, N.; Imenshahidi, M.; Razavi, B.M.; Hosseinzadeh, H. Effect of linalool on the acquisition and reinstatement of morphine-induced conditioned place preference in mice. Avicenna J. Phytomed., 2017, 7(3), 242-249.
[http://dx.doi.org/10.22038/ajp.2016.15567.1615] [PMID: 28748171]
[70]
Drake, J.; Kanski, J.; Varadarajan, S.; Tsoras, M.; Butterfield, D.A. Elevation of brain glutathione by? -glutamylcysteine ethyl ester protects against peroxynitrite-induced oxidative stress. J. Neurosci. Res., 2002, 68(6), 776-784.
[http://dx.doi.org/10.1002/jnr.10266] [PMID: 12111838]
[71]
Jankovic, J.; Goodman, I.; Safirstein, B.; Marmon, T.K.; Schenk, D.B.; Koller, M.; Zago, W.; Ness, D.K.; Griffith, S.G.; Grundman, M.; Soto, J.; Ostrowitzki, S.; Boess, F.G.; Martin-Facklam, M.; Quinn, J.F.; Isaacson, S.H.; Omidvar, O.; Ellenbogen, A.; Kinney, G.G. Safety and tolerability of multiple ascending doses of prx002/rg7935, an anti–α-synuclein monoclonal antibody, in patients With Parkinson disease. JAMA Neurol., 2018, 75(10), 1206-1214.
[http://dx.doi.org/10.1001/jamaneurol.2018.1487] [PMID: 29913017]
[72]
Jankovic, J.; Tan, E.K. Parkinson’s disease: etiopathogenesis and treatment. J. Neurol. Neurosurg. Psychiatry, 2020, 91(8), 795-808.
[http://dx.doi.org/10.1136/jnnp-2019-322338] [PMID: 32576618]
[73]
Mancuso, C.; Pani, G.; Calabrese, V. Bilirubin: an endogenous scavenger of nitric oxide and reactive nitrogen species. Redox Rep., 2006, 11(5), 207-213.
[http://dx.doi.org/10.1179/135100006X154978] [PMID: 17132269]
[74]
Calabrese, V.; Cornelius, C.; Dinkova-Kostova, A.T.; Calabrese, E.J.; Mattson, M.P. Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid. Redox Signal., 2010, 13(11), 1763-1811.
[http://dx.doi.org/10.1089/ars.2009.3074] [PMID: 20446769]
[75]
Wakabayashi, K. Where and how alpha‐synuclein pathology spreads in Parkinson’s disease. Neuropathology, 2020, 40(5), 415-425.
[http://dx.doi.org/10.1111/neup.12691] [PMID: 32750743]
[76]
Kalia, L.V.; Lang, A.E. Parkinson’s disease. Lancet, 2015, 386(9996), 896-912.
[http://dx.doi.org/10.1016/S0140-6736(14)61393-3] [PMID: 25904081]
[77]
Rekha, K.R.; Selvakumar, G.P.; Santha, K.; Inmozhi Sivakamasundari, R. Geraniol attenuates α-synuclein expression and neuromuscular impairment through increase dopamine content in MPTP intoxicated mice by dose dependent manner. Biochem. Biophys. Res. Commun., 2013, 440(4), 664-670.
[http://dx.doi.org/10.1016/j.bbrc.2013.09.122] [PMID: 24103762]
[78]
Dehay, B.; Bourdenx, M.; Gorry, P.; Przedborski, S.; Vila, M.; Hunot, S.; Singleton, A.; Olanow, C.W.; Merchant, K.M.; Bezard, E.; Petsko, G.A.; Meissner, W.G. Targeting α-synuclein for treatment of Parkinson’s disease: mechanistic and therapeutic considerations. Lancet Neurol., 2015, 14(8), 855-866.
[http://dx.doi.org/10.1016/S1474-4422(15)00006-X] [PMID: 26050140]
[79]
Rocha, E.M.; De Miranda, B.; Sanders, L.H. Alpha-synuclein: Pathology, mitochondrial dysfunction and neuroinflammation in Parkinson’s disease. Neurobiol. Dis., 2018, 109(Pt B), 249-257.
[http://dx.doi.org/10.1016/j.nbd.2017.04.004] [PMID: 28400134]
[80]
Mehra, S. Sahay, S.; Maji, S.K. α-Synuclein misfolding and aggregation: Implications in Parkinson’s disease pathogenesis. Biochim. Biophys. Acta. Proteins Proteomics, 2019, 1867(10), 890-908.
[http://dx.doi.org/10.1016/j.bbapap.2019.03.001] [PMID: 30853581]
[81]
Brundin, P.; Dave, K.D.; Kordower, J.H. Therapeutic approaches to target alpha-synuclein pathology. Exp. Neurol., 2017, 298(Pt B), 225-235.
[http://dx.doi.org/10.1016/j.expneurol.2017.10.003] [PMID: 28987463]
[82]
Calabrese, E.J.; Iavicoli, I.; Calabrese, V. Hormesis: why it is important to biogerontologists. Biogerontology, 2012, 13(3), 215-235.
[http://dx.doi.org/10.1007/s10522-012-9374-7] [PMID: 22270337]
[83]
Katsaiti, I.; Nixon, J. Are there benefits in adding catechol-o methyltransferase inhibitors in the pharmacotherapy of Parkinson’s disease patients? A systematic review. J. Parkinsons Dis., 2018, 8(2), 217-231.
[http://dx.doi.org/10.3233/JPD-171225] [PMID: 29614697]
[84]
Cacabelos, R. Parkinson’s disease: From pathogenesis to pharmacogenomics. Int. J. Mol. Sci., 2017, 18(3), 551.
[http://dx.doi.org/10.3390/ijms18030551] [PMID: 28273839]
[85]
de Beer, J.; Petzer, J.P.; Lourens, A.C.U.; Petzer, A. Design, synthesis and evaluation of 3-hydroxypyridin-4-ones as inhibitors of catechol-O-methyltransferase. Mol. Divers., 2021, 25(2), 753-762.
[http://dx.doi.org/10.1007/s11030-020-10053-x] [PMID: 32108308]
[86]
Müller, T. Catechol-O-methyltransferase inhibitors in Parkinson’s disease. Drugs, 2015, 75(2), 157-174.
[http://dx.doi.org/10.1007/s40265-014-0343-0] [PMID: 25559423]
[87]
dos Santos Passos, C.; Klein-Júnior, L.C.; de Mello Andrade, J.M.; Matté, C.; Henriques, A.T. The catechol-O-methyltransferase inhibitory potential of Z-vallesiachotamine by in silico and in vitro approaches. Rev. Bras. Farmacogn., 2015, 25(4), 382-386.
[http://dx.doi.org/10.1016/j.bjp.2015.07.002]
[88]
dos Santos Passos, C.; Soldi, T.C.; Torres Abib, R.; Anders Apel, M.; Simões-Pires, C.; Marcourt, L.; Gottfried, C.; Henriques, A.T. Monoamine oxidase inhibition by monoterpene indole alkaloids and fractions obtained from Psychotria suterella and Psychotria laciniata. J. Enzyme Inhib. Med. Chem., 2013, 28(3), 611-618.
[http://dx.doi.org/10.3109/14756366.2012.666536] [PMID: 22424181]
[89]
Carradori, S.; D’Ascenzio, M.; Chimenti, P.; Secci, D.; Bolasco, A. Selective MAO-B inhibitors: a lesson from natural products. Mol. Divers., 2014, 18(1), 219-243.
[http://dx.doi.org/10.1007/s11030-013-9490-6] [PMID: 24218136]
[90]
Dezsi, L.; Vecsei, L. Monoamine Oxidase B Inhibitors in Parkinson’s Disease. CNS Neurol. Disord. Drug Targets, 2017, 16(4), 425-439.
[http://dx.doi.org/10.2174/1871527316666170124165222] [PMID: 28124620]
[91]
Sampaio, T.F.; dos Santos, E.U.D.; de Lima, G.D.C.; dos Anjos, R.S.G.; da Silva, R.C.; Asano, A.G.C.; Asano, N.M.J.; Crovella, S.; de Souza, P.R.E. MAO-B and COMT Genetic Variations Associated With Levodopa Treatment Response in Patients With Parkinson’s Disease. J. Clin. Pharmacol., 2018, 58(7), 920-926.
[http://dx.doi.org/10.1002/jcph.1096] [PMID: 29578580]
[92]
Chamoli, M.; Chinta, S.J.; Andersen, J.K. An inducible MAO-B mouse model of Parkinson’s disease: a tool towards better understanding basic disease mechanisms and developing novel therapeutics. J. Neural Transm. (Vienna), 2018, 125(11), 1651-1658.
[http://dx.doi.org/10.1007/s00702-018-1887-z] [PMID: 29713806]
[93]
Binda, C.; Hubálek, F.; Li, M.; Herzig, Y.; Sterling, J.; Edmondson, D.E.; Mattevi, A. Crystal structures of monoamine oxidase B in complex with four inhibitors of the N-propargylaminoindan class. J. Med. Chem., 2004, 47(7), 1767-1774.
[http://dx.doi.org/10.1021/jm031087c] [PMID: 15027868]
[94]
Unzeta, M.; Sanz, E. Novel MAO-B Inhibitors. Potential Therapeutic Use of the Selective MAO-B Inhibitor PF9601N in Parkinson’s Disease, 1st ed; Elsevier Inc., 2011, p. 100.
[http://dx.doi.org/10.1016/B978-0-12-386467-3.00011-X]
[95]
Szökő É.; Tábi, T.; Riederer, P.; Vécsei, L.; Magyar, K. Pharmacological aspects of the neuroprotective effects of irreversible MAO-B inhibitors, selegiline and rasagiline, in Parkinson’s disease. J. Neural Transm. (Vienna), 2018, 125(11), 1735-1749.
[http://dx.doi.org/10.1007/s00702-018-1853-9] [PMID: 29417334]
[96]
Finberg, J.P.M. Inhibitors of MAO-B and COMT: their effects on brain dopamine levels and uses in Parkinson’s disease. J. Neural Transm. (Vienna), 2019, 126(4), 433-448.
[http://dx.doi.org/10.1007/s00702-018-1952-7] [PMID: 30386930]
[97]
Tellechea, P.; Pujol, N.; Esteve-Belloch, P.; Echeveste, B.; García-Eulate, M.R.; Arbizu, J.; Riverol, M. Early- and late-onset Alzheimer disease: Are they the same entity? Neurologia (English Edition), 2018, 33(4), 244-253.
[http://dx.doi.org/10.1016/j.nrleng.2015.08.009] [PMID: 26546285]
[98]
Fulgêncio, J. F. A. da S. Evolution of diagnostic methods in Alzheimer's Disease. 2017, 1-114.
[99]
Selkoe, D. J. Alzheimer’s Disease. Genes, Proteins, and Therapy., 2001, 2018(81), 4110.
[100]
Sereniki, A.; Vital, M.A.B.F. A doença de Alzheimer: aspectos fisiopatológicos e farmacológicos. Rev. Psiquiatr. Rio Gd. Sul, 2008, 30(1 suppl)(Suppl.)
[http://dx.doi.org/10.1590/S0101-81082008000200002]
[101]
Fonseca, B.S.; Araujo, J.K.; Borges, J.P.M.; Mota, L.D.J.; Miranda, L.V.E.; Fernandes, T.B.; Santos, T.P.P.; Barbosa, S.S.S.; Santos, M.C.; Souza, C.L.S. Análise da influência dos hormônios sexuais na Doença de Alzheimer: revisão integrativa de literatura. Revista Eletrônica Acervo Saúde, 2021, 13(9), e8815.
[http://dx.doi.org/10.25248/reas.e8815.2021]
[102]
Briggs, R.; Kennelly, S. P.; O’neill, D. CMJv16n3-Briggs.Indd. Clin. Med. (Northfield. Il)., 2016, 16(3), 247-253.
[103]
Mendez, M.F. Early-onset Alzheimer’s disease: nonamnestic subtypes and type 2 AD. Arch. Med. Res., 2012, 43(8), 677-685.
[http://dx.doi.org/10.1016/j.arcmed.2012.11.009] [PMID: 23178565]
[104]
Raupp, I.M.; Sereniki, A.; Virtuoso, S.; Ghislandi, C.; Cavalcanti e Silva, E.L.; Trebien, H.A.; Miguel, O.G.; Andreatini, R. Anxiolytic-like effect of chronic treatment with Erythrina velutina extract in the elevated plus-maze test. J. Ethnopharmacol., 2008, 118(2), 295-299.
[http://dx.doi.org/10.1016/j.jep.2008.04.016] [PMID: 18550307]
[105]
Lindeboom, J.; Weinstein, H. Neuropsychology of cognitive ageing, minimal cognitive impairment, Alzheimer’s disease, and vascular cognitive impairment. Eur. J. Pharmacol., 2004, 490(1-3), 83-86.
[http://dx.doi.org/10.1016/j.ejphar.2004.02.046] [PMID: 15094075]
[106]
Lane, C.A.; Hardy, J.; Schott, J.M. Alzheimer’s disease. Eur. J. Neurol., 2018, 25(1), 59-70.
[http://dx.doi.org/10.1111/ene.13439] [PMID: 28872215]
[107]
Caramelli, P.; Teixeira, A.L.; Buchpiguel, C.A.; Lee, H.W.; Livramento, J.A.; Fernandez, L.L.; Anghinah, R. Diagnosis of Alzheimer’s disease in Brazil: Supplementary exams. Dement. Neuropsychol., 2011, 5(3), 167-177.
[http://dx.doi.org/10.1590/S1980-57642011DN05030004] [PMID: 29213741]
[108]
Saraswati, A.P.; Ali Hussaini, S.M.; Krishna, N.H.; Babu, B.N.; Kamal, A. Glycogen synthase kinase-3 and its inhibitors: Potential target for various therapeutic conditions. Eur. J. Med. Chem., 2018, 144, 843-858.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.103] [PMID: 29306837]
[109]
Balaraman, Y.; Limaye, A.R.; Levey, A.I.; Srinivasan, S. Glycogen synthase kinase 3β and Alzheimer’s disease: pathophysiological and therapeutic significance. Cell. Mol. Life Sci., 2006, 63(11), 1226-1235.
[http://dx.doi.org/10.1007/s00018-005-5597-y] [PMID: 16568235]
[110]
Phukan, S.; Babu, V.S.; Kannoji, A.; Hariharan, R.; Balaji, V.N. GSK3β role in therapeutic landscape and development of modulators. Br. J. Pharmacol., 2010, 160(1), 1-19.
[http://dx.doi.org/10.1111/j.1476-5381.2010.00661.x] [PMID: 20331603]
[111]
Lauretti, E.; Dincer, O.; Praticò, D. Glycogen synthase kinase-3 signaling in Alzheimer’s disease. Biochim. Biophys. Acta Mol. Cell Res., 2020, 1867(5), 118664.
[http://dx.doi.org/10.1016/j.bbamcr.2020.118664] [PMID: 32006534]
[112]
Lee, S.J.; Chung, Y.H.; Joo, K.M.; Lim, H.C.; Jeon, G.S.; Kim, D.; Lee, W.B.; Kim, Y.S.; Cha, C.I. Age-related changes in glycogen synthase kinase 3β (GSK3β) immunoreactivity in the central nervous system of rats. Neurosci. Lett., 2006, 409(2), 134-139.
[http://dx.doi.org/10.1016/j.neulet.2006.09.026] [PMID: 17046157]
[113]
Lin, R.; Jones, N.C.; Kwan, P. Unravelling the role of glycogen synthase kinase-3 in alzheimer’s disease-related epileptic seizures. Int. J. Mol. Sci., 2020, 21(10), 3676.
[http://dx.doi.org/10.3390/ijms21103676] [PMID: 32456185]
[114]
Dunning, C.J.; McGauran, G.; Willén, K.; Gouras, G.K.; O’Connell, D.J.; Linse, S. Direct high affinity interaction between Aβ42 and GSK3α stimulates hyperphosphorylation of tau. A new molecular link in Alzheimer’s disease? ACS Chem. Neurosci., 2016, 7(2), 161-170.
[http://dx.doi.org/10.1021/acschemneuro.5b00262] [PMID: 26618561]
[115]
Leroy, K.; Yilmaz, Z.; Brion, J.P. Increased level of active GSK-3? in Alzheimer’s disease and accumulation in argyrophilic grains and in neurones at different stages of neurofibrillary degeneration. Neuropathol. Appl. Neurobiol., 2007, 33(1), 43-55.
[http://dx.doi.org/10.1111/j.1365-2990.2006.00795.x] [PMID: 17239007]
[116]
Matsunaga, S.; Fujishiro, H.; Takechi, H. Efficacy and safety of glycogen synthase kinase 3 inhibitors for Alzheimer’s disease: A systematic review and meta-analysis. J. Alzheimers Dis., 2019, 69(4), 1031-1039.
[http://dx.doi.org/10.3233/JAD-190256] [PMID: 31156177]
[117]
Sotolongo, K.; Ghiso, J.; Rostagno, A. Nrf2 activation through the PI3K/GSK-3 axis protects neuronal cells from Aβ-mediated oxidative and metabolic damage. Alzheimers Res. Ther., 2020, 12(1), 13.
[http://dx.doi.org/10.1186/s13195-019-0578-9] [PMID: 31931869]
[118]
Varfolomeev, E.; Vucic, D. Intracellular regulation of TNF activity in health and disease. Cytokine, 2018, 101, 26-32.
[http://dx.doi.org/10.1016/j.cyto.2016.08.035] [PMID: 27623350]
[119]
Ortí-Casañ, N.; Wu, Y.; Naudé, P.J.W.; De Deyn, P.P.; Zuhorn, I.S.; Eisel, U.L.M. Targeting TNFR2 as a novel therapeutic strategy for Alzheimer’s disease. Front. Neurosci., 2019, 13, 49.
[http://dx.doi.org/10.3389/fnins.2019.00049] [PMID: 30778285]
[120]
Cheng, X.; Yang, L.; He, P.; Li, R.; Shen, Y. Differential activation of tumor necrosis factor receptors distinguishes between brains from Alzheimer’s disease and non-demented patients. J. Alzheimers Dis., 2010, 19(2), 621-630.
[http://dx.doi.org/10.3233/JAD-2010-1253] [PMID: 20110607]
[121]
Jiang, H.; He, P.; Xie, J.; Staufenbiel, M.; Li, R.; Shen, Y. Genetic deletion of TNFRII gene enhances the Alzheimer-like pathology in an APP transgenic mouse model via reduction of phosphorylated I B. Hum. Mol. Genet., 2014, 23(18), 4906-4918.
[http://dx.doi.org/10.1093/hmg/ddu206] [PMID: 24824215]
[122]
Steeland, S.; Gorlé, N.; Vandendriessche, C.; Balusu, S.; Brkic, M.; Van Cauwenberghe, C.; Van Imschoot, G.; Van Wonterghem, E.; De Rycke, R.; Kremer, A.; Lippens, S.; Stopa, E.; Johanson, C.E.; Libert, C.; Vandenbroucke, R.E. Counteracting the effects of TNF receptor‐1 has therapeutic potential in Alzheimer’s disease. EMBO Mol. Med., 2018, 10(4), e8300.
[http://dx.doi.org/10.15252/emmm.201708300] [PMID: 29472246]
[123]
Mohamed, M.E.; Abduldaium, M.S.; Younis, N.S. Cardioprotective effect of linalool against isoproterenol-induced myocardial infarction. Life (Basel), 2021, 11(2), 120.
[http://dx.doi.org/10.3390/life11020120] [PMID: 33562483]
[124]
Riordan, J.F. Angiotensin-I-converting enzyme and its relatives. Genome Biol., 2003, 4(8), 225.
[http://dx.doi.org/10.1186/gb-2003-4-8-225] [PMID: 12914653]
[125]
Khurana, V.; Goswami, B. Angiotensin converting enzyme (ACE). Clin. Chim. Acta, 2022, 524, 113-122.
[http://dx.doi.org/10.1016/j.cca.2021.10.029] [PMID: 34728179]
[126]
Koronyo-Hamaoui, M.; Sheyn, J.; Hayden, E.Y.; Li, S.; Fuchs, D.T.; Regis, G.C.; Lopes, D.H.J.; Black, K.L.; Bernstein, K.E.; Teplow, D.B.; Fuchs, S.; Koronyo, Y.; Rentsendorj, A. Peripherally derived angiotensin converting enzyme-enhanced macrophages alleviate Alzheimer-related disease. Brain, 2020, 143(1), 336-358.
[http://dx.doi.org/10.1093/brain/awz364] [PMID: 31794021]
[127]
Uddin, M.S.; Kabir, M.T.; Rahman, M.S.; Behl, T.; Jeandet, P.; Ashraf, G.M.; Najda, A.; Bin-Jumah, M.N.; El-Seedi, H.R.; Abdel-Daim, M.M. Revisiting the amyloid cascade hypothesis: from anti-aβ therapeutics to auspicious new ways for Alzheimer’s disease. Int. J. Mol. Sci., 2020, 21(16), 5858.
[http://dx.doi.org/10.3390/ijms21165858] [PMID: 32824102]
[128]
Mouchlis, V.D.; Melagraki, G.; Zacharia, L.C.; Afantitis, A. Computer-aided drug design of β-secretase, γ-secretase and anti-tau inhibitors for the discovery of novel alzheimer’s therapeutics. Int. J. Mol. Sci., 2020, 21(3), 703.
[http://dx.doi.org/10.3390/ijms21030703] [PMID: 31973122]
[129]
Ahmad, S.S.; Khan, S.; Kamal, M.A.; Wasi, U. The structure and function of α β and γ-secretase as therapeutic target enzymes in the development of alzheimer’s disease: A review. CNS Neurol. Disord. Drug Targets, 2020, 18(9), 657-667.
[http://dx.doi.org/10.2174/1871527318666191011145941] [PMID: 31608840]
[130]
Ohno, M. Alzheimer’s therapy targeting the β-secretase enzyme BACE1: Benefits and potential limitations from the perspective of animal model studies. Brain Res. Bull., 2016, 126(Pt 2), 183-198.
[http://dx.doi.org/10.1016/j.brainresbull.2016.04.007] [PMID: 27093940]
[131]
Moussa, C.E.H. Beta-secretase inhibitors in phase I and phase II clinical trials for Alzheimer’s disease. Expert Opin. Investig. Drugs, 2017, 26(10), 1131-1136.
[http://dx.doi.org/10.1080/13543784.2017.1369527] [PMID: 28817311]
[132]
Citron, M. β-Secretase inhibition for the treatment of Alzheimer’s disease – promise and challenge. Trends Pharmacol. Sci., 2004, 25(2), 92-97.
[http://dx.doi.org/10.1016/j.tips.2003.12.004] [PMID: 15102495]
[133]
Stockley, J.H.; O’Neill, C. The proteins BACE1 and BACE2 and β-secretase activity in normal and Alzheimer’s disease brain. Biochem. Soc. Trans., 2007, 35(3), 574-576.
[http://dx.doi.org/10.1042/BST0350574] [PMID: 17511655]
[134]
Marumoto, S.; Okuno, Y.; Miyazawa, M. Inhibition of β-secretase activity by monoterpenes, sesquiterpenes, and C13 norisoprenoids. J. Oleo Sci., 2017, 66(8), 851-855.
[http://dx.doi.org/10.5650/jos.ess16188] [PMID: 28381772]
[135]
Mota, W.M.; Barros, M.L.; Cunha, P.E.L.; Santana, M.V.A.; Stevam, C.S.; Leopoldo, P.T.G.; Fernandes, R.P.M. Avaliação da inibição da acetilcolinesterase por extratos de plantas medicinais. Rev. Bras. Plantas Med., 2012, 14(4), 624-628.
[http://dx.doi.org/10.1590/S1516-05722012000400008]
[136]
Rotundo, R.L. Biogenesis, assembly and trafficking of acetylcholinesterase. J. Neurochem., 2017, 142(Suppl. 2), 52-58.
[http://dx.doi.org/10.1111/jnc.13982] [PMID: 28326552]
[137]
Thapa, S.; Lv, M.; Xu, H. Acetylcholinesterase: A primary target for drugs and insecticides. Mini Rev. Med. Chem., 2017, 17(17), 1665-1676.
[PMID: 28117022]
[138]
Cheraif, K.; Bakchiche, B.; Gherib, A.; Bardaweel, S.K.; Çol Ayvaz, M.; Flamini, G.; Ascrizzi, R.; Ghareeb, M.A. Chemical composition, antioxidant, anti-tyrosinase, anti-cholinesterase and cytotoxic activities of essential oils of six algerian plants. Molecules, 2020, 25(7), 1710.
[http://dx.doi.org/10.3390/molecules25071710] [PMID: 32276465]
[139]
Wang, X.; Bey, A.L.; Katz, B.M.; Badea, A.; Kim, N.; David, L.K.; Duffney, L.J.; Kumar, S.; Mague, S.D.; Hulbert, S.W.; Dutta, N.; Hayrapetyan, V.; Yu, C.; Gaidis, E.; Zhao, S.; Ding, J.D.; Xu, Q.; Chung, L.; Rodriguiz, R.M.; Wang, F.; Weinberg, R.J.; Wetsel, W.C.; Dzirasa, K.; Yin, H.; Jiang, Y. Altered mGluR5-Homer scaffolds and corticostriatal connectivity in a Shank3 complete knockout model of autism. Nat. Commun., 2016, 7(1), 11459.
[http://dx.doi.org/10.1038/ncomms11459] [PMID: 27161151]
[140]
Hajlaoui, H.; Arraouadi, S.; Noumi, E.; Aouadi, K.; Adnan, M.; Khan, M.A.; Kadri, A.; Snoussi, M. Antimicrobial, Antioxidant, Anti-Acetylcholinesterase, Antidiabetic, and Pharmacokinetic Properties of Carum carvi L. and Coriandrum sativum L. Essential Oils Alone and in Combination. Molecules, 2021, 26(12), 3625.
[http://dx.doi.org/10.3390/molecules26123625] [PMID: 34199316]
[141]
Tundis, R.; Bonesi, M.; Pugliese, A.; Nadjafi, F.; Menichini, F.; Loizzo, M.R. Tyrosinase, acetyl-and butyryl-cholinesterase inhibitory activity of stachys lavandulifolia vahl (lamiaceae) and its major constituents. Rec. Nat. Prod., 2015, 9(1), 81.
[142]
Javidnia, K.; Mojab, F.; Mojahedi, S.A. Chemical constituents of the essential oil of Stachys lavandulifolia Vahl from Iran. J. Essent. Oil-Bear. Plants, 2003, 6(3), 174-178.
[http://dx.doi.org/10.1080/0972-060X.2003.10643347]
[143]
Available from: ChemAxon. Marvin Sketch.
[144]
Available from: Hypercube Int. HyperChem. MakoLab, 1.,
[145]
OSIRIS 5.0 DATA WARRIOR Program.
[146]
Rorije, E.; Aldenberg, T.; Buist, H.; Kroese, D.; Schüürmann, G. The OSIRIS weight of evidence approach: ITS for skin sensitisation. Regul. Toxicol. Pharmacol., 2013, 67(2), 146-156.
[http://dx.doi.org/10.1016/j.yrtph.2013.06.003] [PMID: 23792263]
[147]
de Sousa Luis, J.A.; da Silva Souza, H.D.; Lira, B.F.; da Silva Alves, F.; de Athayde-Filho, P.F.; de Souza Lima, T.K.; Rocha, J.C.; Mendonça Junior, F.J.B.; Scotti, L.; Scotti, M.T. Combined structure- and ligand-based virtual screening aiding discovery of selenoglycolicamides as potential multitarget agents against Leishmania species. J. Mol. Struct., 2019, 1198, 126872.
[http://dx.doi.org/10.1016/j.molstruc.2019.126872]
[148]
Lipinski, C.F.; Maltarollo, V.G.; Oliveira, P.R.; da Silva, A.B.F.; Honorio, K.M. Advances and perspectives in applying deep learning for drug design and discovery. Front. Robot. AI, 2019, 6(November), 108.
[http://dx.doi.org/10.3389/frobt.2019.00108] [PMID: 33501123]
[149]
Congreve, M.; Andrews, S.P.; Doré, A.S.; Hollenstein, K.; Hurrell, E.; Langmead, C.J.; Mason, J.S.; Ng, I.W.; Tehan, B.; Zhukov, A.; Weir, M.; Marshall, F.H. Discovery of 1,2,4-triazine derivatives as adenosine A(2A) antagonists using structure based drug design. J. Med. Chem., 2012, 55(5), 1898-1903.
[http://dx.doi.org/10.1021/jm201376w] [PMID: 22220592]
[150]
Ulmer, T.S.; Bax, A.; Cole, N.B.; Nussbaum, R.L. Structure and dynamics of micelle-bound human α-synuclein. J. Biol. Chem., 2005, 280(10), 9595-9603.
[http://dx.doi.org/10.1074/jbc.M411805200] [PMID: 15615727]
[151]
Bonifácio, M.J.; Archer, M.; Rodrigues, M.L.; Matias, P.M.; Learmonth, D.A.; Carrondo, M.A.; Soares-da-Silva, P. Kinetics and crystal structure of catechol-o-methyltransferase complex with co-substrate and a novel inhibitor with potential therapeutic application. Mol. Pharmacol., 2002, 62(4), 795-805.
[http://dx.doi.org/10.1124/mol.62.4.795] [PMID: 12237326]
[152]
Sun, B.; Feng, D.; Chu, M.L.H.; Fish, I.; Lovera, S.; Sands, Z.A.; Kelm, S.; Valade, A.; Wood, M.; Ceska, T.; Kobilka, T.S.; Lebon, F.; Kobilka, B.K. Crystal structure of dopamine D1 receptor in complex with G protein and a non-catechol agonist. Nat. Commun., 2021, 12(1), 3305.
[http://dx.doi.org/10.1038/s41467-021-23519-9] [PMID: 34083522]
[153]
Wang, S.; Che, T.; Levit, A.; Shoichet, B.K.; Wacker, D.; Roth, B.L. Structure of the D2 dopamine receptor bound to the atypical antipsychotic drug risperidone. Nature, 2018, 555(7695), 269-273.
[http://dx.doi.org/10.1038/nature25758] [PMID: 29466326]
[154]
Deffains, M. Canron, M.H.; Teil, M.; Li, Q.; Dehay, B.; Bezard, E.; Fernagut, P.O. L‐DOPA regulates α‐synuclein accumulation in experimental parkinsonism. Neuropathol. Appl. Neurobiol., 2021, 47(4), 532-543.
[http://dx.doi.org/10.1111/nan.12678] [PMID: 33275784]
[155]
Antonini, A.; Calandrella, D. Pharmacokinetic evaluation of pramipexole. Expert Opin. Drug Metab. Toxicol., 2011, 7(10), 1307-1314.
[http://dx.doi.org/10.1517/17425255.2011.614232] [PMID: 21892895]
[156]
Zhuang, Y.; Xu, P.; Mao, C.; Wang, L.; Krumm, B.; Zhou, X.E.; Huang, S.; Liu, H.; Cheng, X.; Huang, X.P.; Shen, D.D.; Xu, T.; Liu, Y.F.; Wang, Y.; Guo, J.; Jiang, Y.; Jiang, H.; Melcher, K.; Roth, B.L.; Zhang, Y.; Zhang, C.; Xu, H.E. Structural insights into the human D1 and D2 dopamine receptor signaling complexes. Cell, 2021, 184(4), 931-942.e18.
[http://dx.doi.org/10.1016/j.cell.2021.01.027] [PMID: 33571431]
[157]
Jenner, P.; Mori, A.; Aradi, S.D.; Hauser, R.A. Istradefylline – a first generation adenosine A 2A antagonist for the treatment of Parkinson’s disease. Expert Rev. Neurother., 2021, 21(3), 317-333.
[http://dx.doi.org/10.1080/14737175.2021.1880896] [PMID: 33507105]
[158]
Hansen, R.N.; Suh, K.; Serbin, M.; Yonan, C.; Sullivan, S.D. Cost-effectiveness of opicapone and entacapone in reducing OFF-time in Parkinson’s disease patients treated with levodopa/carbidopa. J. Med. Econ., 2021, 24(1), 563-569.
[http://dx.doi.org/10.1080/13696998.2021.1916750] [PMID: 33866942]
[159]
Watermeyer, J.M.; Kröger, W.L.; O’Neill, H.G.; Sewell, B.T.; Sturrock, E.D. Probing the basis of domain-dependent inhibition using novel ketone inhibitors of Angiotensin-converting enzyme. Biochemistry, 2008, 47(22), 5942-5950.
[http://dx.doi.org/10.1021/bi8002605] [PMID: 18457420]
[160]
Giacomini, A.C.V.V.; Bueno, B.W.; Marcon, L.; Scolari, N.; Genario, R.; Demin, K.A.; Kolesnikova, T.O.; Kalueff, A.V.; de Abreu, M.S. An acetylcholinesterase inhibitor, donepezil, increases anxiety and cortisol levels in adult zebrafish. J. Psychopharmacol., 2020, 34(12), 1449-1456.
[http://dx.doi.org/10.1177/0269881120944155] [PMID: 32854587]
[161]
Cumming, J.N.; Smith, E.M.; Wang, L.; Misiaszek, J.; Durkin, J.; Pan, J.; Iserloh, U.; Wu, Y.; Zhu, Z.; Strickland, C.; Voigt, J.; Chen, X.; Kennedy, M.E.; Kuvelkar, R.; Hyde, L.A.; Cox, K.; Favreau, L.; Czarniecki, M.F.; Greenlee, W.J.; McKittrick, B.A.; Parker, E.M.; Stamford, A.W. Structure based design of iminohydantoin BACE1 inhibitors: Identification of an orally available, centrally active BACE1 inhibitor. Bioorg. Med. Chem. Lett., 2012, 22(7), 2444-2449.
[http://dx.doi.org/10.1016/j.bmcl.2012.02.013] [PMID: 22390835]
[162]
Berg, S.; Bergh, M.; Hellberg, S.; Högdin, K.; Lo-Alfredsson, Y.; Söderman, P.; von Berg, S.; Weigelt, T.; Ormö, M.; Xue, Y.; Tucker, J.; Neelissen, J.; Jerning, E.; Nilsson, Y.; Bhat, R. Discovery of novel potent and highly selective glycogen synthase kinase-3β (GSK3β) inhibitors for Alzheimer’s disease: design, synthesis, and characterization of pyrazines. J. Med. Chem., 2012, 55(21), 9107-9119.
[http://dx.doi.org/10.1021/jm201724m] [PMID: 22489897]
[163]
Niu, X.; Umland, S.; Ingram, R.; Beyer, B.M.; Liu, Y.H.; Sun, J.; Lundell, D.; Orth, P. IK682, a tight binding inhibitor of TACE. Arch. Biochem. Biophys., 2006, 451(1), 43-50.
[http://dx.doi.org/10.1016/j.abb.2006.03.034] [PMID: 16762314]
[164]
CLC Bio Company. Mollegro Virtual Docker 6.0.
[165]
De Azevedo, W., Jr; Walter, F. MolDock applied to structure-based virtual screening. Curr. Drug Targets, 2010, 11(3), 327-334.
[http://dx.doi.org/10.2174/138945010790711941] [PMID: 20210757]
[166]
Thomsen, R.; Christensen, M.H. MolDock: a new technique for high-accuracy molecular docking. J. Med. Chem., 2006, 49(11), 3315-3321.
[http://dx.doi.org/10.1021/jm051197e] [PMID: 16722650]
[167]
Wu, F.; Zhou, Y.; Li, L.; Shen, X.; Chen, G.; Wang, X.; Liang, X.; Tan, M.; Huang, Z. Computational approaches in preclinical studies on drug discovery and development. Front Chem., 2020, 8, 726.
[http://dx.doi.org/10.3389/fchem.2020.00726] [PMID: 33062633]
[168]
Prasanna, S.; Doerksen, R. Topological polar surface area: a useful descriptor in 2D-QSAR. Curr. Med. Chem., 2009, 16(1), 21-41.
[http://dx.doi.org/10.2174/092986709787002817] [PMID: 19149561]
[169]
Price, G.; Patel, D.A. Drug bioavailability. 2022; Statpearls Publishing, 2022.
[170]
Alagga, A.A.; Gupta, V. Drug Absorption; StatPearls, 2021.
[171]
Benet, L.Z.; Hosey, C.M.; Ursu, O.; Oprea, T.I. BDDCS, the Rule of 5 and drugability. Adv. Drug Deliv. Rev., 2016, 101, 89-98.
[http://dx.doi.org/10.1016/j.addr.2016.05.007] [PMID: 27182629]
[172]
Shimohama, S.; Tanino, H.; Kawakami, N.; Okamura, N.; Kodama, H.; Yamaguchi, T.; Hayakawa, T.; Nunomura, A.; Chiba, S.; Perry, G.; Smith, M.A.; Fujimoto, S. Activation of NADPH oxidase in Alzheimer’s disease brains. Biochem. Biophys. Res. Commun., 2000, 273(1), 5-9.
[http://dx.doi.org/10.1006/bbrc.2000.2897] [PMID: 10873554]
[173]
Ansari, M.A.; Scheff, S.W. NADPH-oxidase activation and cognition in Alzheimer disease progression. Free Radic. Biol. Med., 2011, 51(1), 171-178.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.03.025] [PMID: 21457777]
[174]
Tambosi, G.; Coelho, P.F.; Luciano, S.; Lenschow, I.C.S.; Zétola, M.; Stulzer, H.K.; Pezzini, B.R. Challenges to improve the biopharmaceutical properties of poorly water-soluble drugs and the application of the solid dispersion technology. Materia (Rio J.), 2018, 23(4), 23.
[http://dx.doi.org/10.1590/s1517-707620180004.0558]
[175]
Lobo, S. Is there enough focus on lipophilicity in drug discovery? Expert Opin. Drug Discov., 2020, 15(3), 261-263.
[http://dx.doi.org/10.1080/17460441.2020.1691995] [PMID: 31736369]
[176]
FIOCRUZ. Risco Químico. 2018.
[177]
Sushko, I.; Novotarskyi, S.; Körner, R.; Pandey, A.K.; Cherkasov, A.; Li, J.; Gramatica, P.; Hansen, K.; Schroeter, T.; Müller, K.R.; Xi, L.; Liu, H.; Yao, X.; Öberg, T.; Hormozdiari, F.; Dao, P.; Sahinalp, C.; Todeschini, R.; Polishchuk, P.; Artemenko, A.; Kuz’min, V.; Martin, T.M.; Young, D.M.; Fourches, D.; Muratov, E.; Tropsha, A.; Baskin, I.; Horvath, D.; Marcou, G.; Muller, C.; Varnek, A.; Prokopenko, V.V.; Tetko, I.V. Applicability domains for classification problems: Benchmarking of distance to models for Ames mutagenicity set. J. Chem. Inf. Model., 2010, 50(12), 2094-2111.
[http://dx.doi.org/10.1021/ci100253r] [PMID: 21033656]
[178]
Sato, Y.; Bando, H.; Di Piazza, M.; Gowing, G.; Herberts, C.; Jackman, S.; Leoni, G.; Libertini, S.; MacLachlan, T.; McBlane, J.W.; Pereira Mouriès, L.; Sharpe, M.; Shingleton, W.; Surmacz-Cordle, B.; Yamamoto, K.; van der Laan, J.W. Tumorigenicity assessment of cell therapy products: The need for global consensus and points to consider. Cytotherapy, 2019, 21(11), 1095-1111.
[http://dx.doi.org/10.1016/j.jcyt.2019.10.001] [PMID: 31711733]
[179]
Chandra, S.A.; Stokes, A.H.; Hailey, R.; Merrill, C.L.; Melich, D.H.; DeSmet, K.; Furst, S.M.; Peterson, R.A.; Mellon-Kusibab, K.; Adler, R.R. Dermal toxicity studies: factors impacting study interpretation and outcome. Toxicol. Pathol., 2015, 43(4), 474-481.
[http://dx.doi.org/10.1177/0192623314548765] [PMID: 25389277]
[180]
Rousseau, C. F.; Sabbah-Petrover, E.; Revaud, D.; Voisin, E. M.; Ruthsatz, M.; Chiavaroli, C. Toxicological aspects in the regulation of gene therapy medicinal products. Regul. Toxicol., 2021, 1431M-1458.
[181]
Vonk, J.A.; Benigni, R.; Hewitt, M.; Nendza, M.; Segner, H.; van de Meent, D.; Cronin, M.T.D. The use of mechanisms and modes of toxic action in integrated testing strategies: the report and recommendations of a workshop held as part of the European Union OSIRIS Integrated Project. Altern. Lab. Anim., 2009, 37(5), 557-571.
[http://dx.doi.org/10.1177/026119290903700512] [PMID: 20017584]
[182]
Khan, T.; Lawrence, A.J.; Azad, I.; Raza, S.; Joshi, S.; Khan, A.R. Computational drug designing and prediction of important parameters using in silico methods- a review. Curr. Computeraided Drug Des., 2019, 15(5), 384-397.
[http://dx.doi.org/10.2174/1573399815666190326120006] [PMID: 30914032]
[183]
Koes, D.R.; Baumgartner, M.P.; Camacho, C.J. Lessons learned in empirical scoring with smina from the CSAR 2011 benchmarking exercise. J. Chem. Inf. Model., 2013, 53(8), 1893-1904.
[http://dx.doi.org/10.1021/ci300604z] [PMID: 23379370]
[184]
Daligaux, P.; Bernadat, G.; Tran, L.; Cavé, C.; Loiseau, P.M.; Pomel, S.; Ha-Duong, T. Comparative study of structural models of Leishmania donovani and human GDP-mannose pyrophosphorylases. Eur. J. Med. Chem., 2016, 107, 109-118.
[http://dx.doi.org/10.1016/j.ejmech.2015.10.037] [PMID: 26562546]
[185]
Monteiro, A.F.M.; Viana, J.D.O.; Nayarisseri, A.; Zondegoumba, E.N.; Mendonça Junior, F.J.B.; Scotti, M.T.; Scotti, L. Computational studies applied to flavonoids against Alzheimer’s and Parkinson’s diseases. Oxid. Med. Cell. Longev., 2018, 2018, 1-21.
[http://dx.doi.org/10.1155/2018/7912765] [PMID: 30693065]
[186]
Albohy, A.; Zahran, E.M.; Abdelmohsen, U.R.; Salem, M.A.; Al-Warhi, T.; Al-Sanea, M.M.; Abelyan, N.; Khalil, H.E.; Desoukey, S.Y.; Fouad, M.A. Multitarget in silico studies of ocimum menthiifolium, family lamiaceae against sars-cov-2 supported by molecular dynamics simulation. J. Biomol. Struct. Dyn., 2020, 0(0), 1-11.
[http://dx.doi.org/10.1080/07391102.2020.1852964] [PMID: 33317409]