Integrated Proteomics and Metabolomics Analyses of Serum in Chinese Patients with Severe and Active Graves’ Orbitopathy: A Cross-sectional Study

Page: [1151 - 1161] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Objective: The present study aims to investigate the alterations of serum proteomic and metabolomic profiles in Chinese patients with severe and active Graves’ Orbitopathy (GO).

Materials and Methods: Thirty patients with GO and 30 healthy volunteers were enrolled. The serum concentrations of FT3, FT4, T3, T4, and thyroid-stimulating hormone (TSH) were analyzed, after which TMT labeling-based proteomics and untargeted metabolomics were performed. Metabo- Analyst and Ingenuity Pathway Analysis (IPA) was used for integrated network analysis. A nomogram was established based on the model to explore the disease prediction ability of the identified feature metabolites.

Results: One hundred thirteen proteins (19 up-regulated and 94 down-regulated) and 75 metabolites (20 increased and 55 decreased) were significantly altered in GO compared to the control group. By combining the lasso regression, IPA network, and protein-metabolite-disease sub-networks, we extracted feature proteins (CPS1, GP1BA, and COL6A1) and feature metabolites (glycine, glycerol 3-phosphate, and estrone sulfate). The logistic regression analysis revealed that the full model with the prediction factors and three identified feature metabolites had better prediction performance for GO compared to the baseline model. The ROC curve also indicated better prediction performance (AUC = 0.933 vs. 0.789).

Conclusion: A new biomarker cluster combined with three blood metabolites with high statistical power can be used to discriminate patients with GO. These findings provide further insights into the pathogenesis, diagnosis, and potential therapeutic targets for this disease.

Graphical Abstract

[1]
Hu, Y.F.; Hua, L.; Tuo, X.; Shi, T.T.; Yang, Y.L.; Liu, Y.F.; Yan, Z.Y.; Xin, Z. Preliminary evidence of the association between DNAm and orbital volumetry in GO. Endocr. Connect., 2020, 9(7), 617-626.
[http://dx.doi.org/10.1530/EC-20-0147] [PMID: 32508316]
[2]
Bahn, R.S. Graves’. Ophthalmopathy. N. Engl. J. Med., 2010, 362(8), 726-738.
[http://dx.doi.org/10.1056/NEJMra0905750] [PMID: 20181974]
[3]
Bartalena, L.; Tanda, M.L. Clinical practice. Graves’ ophthalmopathy. N. Engl. J. Med., 2009, 360(10), 994-1001.
[http://dx.doi.org/10.1056/NEJMcp0806317] [PMID: 19264688]
[4]
Seo, S.; Sánchez Robledo, M. Usefulness of TSH receptor antibodies as biomarkers for Graves’ ophthalmopathy: A systematic review. J. Endocrinol. Invest., 2018, 41(12), 1457-1468.
[http://dx.doi.org/10.1007/s40618-018-0945-6] [PMID: 30194634]
[5]
Kahaly, G.J.; Wüster, C.; Olivo, P.D.; Diana, T. High titers of thyrotropin receptor antibodies are associated with orbitopathy in patients with graves disease. J. Clin. Endocrinol. Metab., 2019, 104(7), 2561-2568.
[http://dx.doi.org/10.1210/jc.2018-02705] [PMID: 30753531]
[6]
Byeon, S.K.; Park, S.H.; Lee, J.C.; Hwang, S.; Ku, C.R.; Shin, D.Y.; Yoon, J.S.; Lee, E.J.; Moon, M.H. Lipidomic differentiation of Graves’ ophthalmopathy in plasma and urine from Graves’ disease patients. Anal. Bioanal. Chem., 2018, 410(27), 7121-7133.
[http://dx.doi.org/10.1007/s00216-018-1313-2] [PMID: 30135996]
[7]
Ji, D.Y.; Park, S.H.; Park, S.J.; Kim, K.H.; Ku, C.R.; Shin, D.Y.; Yoon, J.S.; Lee, D.Y.; Lee, E.J. Comparative assessment of Graves’ disease and main extrathyroidal manifestation, Graves’ ophthalmopathy, by non-targeted metabolite profiling of blood and orbital tissue. Sci. Rep., 2018, 8(1), 9262.
[http://dx.doi.org/10.1038/s41598-018-27600-0] [PMID: 29915201]
[8]
Huang, Q.; Luo, L.; Alamdar, A.; Zhang, J.; Liu, L.; Tian, M.; Eqani, S.A.M.A.S.; Shen, H. Integrated proteomics and metabolomics analysis of rat testis: Mechanism of arsenic-induced male reproductive toxicity. Sci. Rep., 2016, 6(1), 32518.
[http://dx.doi.org/10.1038/srep32518] [PMID: 27585557]
[9]
Liu, J.; Fu, J.; Jia, Y.; Yang, N.; Li, J.; Wang, G. Serum metabolomic patterns in patients with autoimmune thyroid disease. Endocr. Pract., 2020, 26(1), 82-96.
[http://dx.doi.org/10.4158/EP-2019-0162] [PMID: 31557082]
[10]
Billiet, B.; Chao de la Barca, J.M.; Ferré, M.; Muller, J.; Vautier, A.; Assad, S.; Blanchet, O.; Tessier, L.; Wetterwald, C.; Faure, J.; Urbanski, G.; Simard, G.; Mirebeau-Prunier, D.; Rodien, P.; Gohier, P.; Reynier, P. A tear metabolomic profile showing increased ornithine decarbox-ylase activity and spermine synthesis in thyroid-associated orbitopathy. J. Clin. Med., 2022, 11(2), 404.
[http://dx.doi.org/10.3390/jcm11020404] [PMID: 35054098]
[11]
Kang, J.; Li, Y.; Zhao, Z.; Zhang, H. Differentiation between thyroidassociated orbitopathy and Graves’ disease by iTRAQ‐based quantitative proteomic analysis. FEBS Open Bio, 2021, 11(7), 1930-1940.
[http://dx.doi.org/10.1002/2211-5463.13172] [PMID: 33934566]
[12]
Zhang, Y.; Yuan, S.; Pu, J.; Yang, L.; Zhou, X.; Liu, L.; Jiang, X.; Zhang, H.; Teng, T.; Tian, L.; Xie, P. Integrated metabolomics and prote-omics analysis of hippocampus in a rat model of depression. Neuroscience, 2018, 371, 207-220.
[http://dx.doi.org/10.1016/j.neuroscience.2017.12.001] [PMID: 29237567]
[13]
Cavill, R.; Jennen, D.; Kleinjans, J.; Briedé, J.J. Transcriptomic and metabolomic data integration. Brief. Bioinform., 2016, 17(5), 891-901.
[http://dx.doi.org/10.1093/bib/bbv090] [PMID: 26467821]
[14]
Bartalena, L.; Baldeschi, L.; Boboridis, K.; Eckstein, A.; Kahaly, G.J.; Marcocci, C.; Perros, P.; Salvi, M.; Wiersinga, W.M. The 2016 european thyroid association/european group on graves’ orbitopathy guidelines for the management of graves’ orbitopathy. Eur. Thyroid J., 2016, 5(1), 9-26.
[http://dx.doi.org/10.1159/000443828] [PMID: 27099835]
[15]
Ross, D.S.; Burch, H.B.; Cooper, D.S.; Greenlee, M.C.; Laurberg, P.; Maia, A.L.; Rivkees, S.A.; Samuels, M.; Sosa, J.A.; Stan, M.N.; Walter, M.A. 2016 American Thyroid Association guidelines for diagnosis and management of hyperthyroidism and other causes of thyrotoxicosis. Thyroid, 2016, 26(10), 1343-1421.
[http://dx.doi.org/10.1089/thy.2016.0229] [PMID: 27521067]
[16]
Kahaly, G.J.; Bartalena, L.; Hegedüs, L.; Leenhardt, L.; Poppe, K.; Pearce, S.H. 2018 European thyroid association guideline for the management of graves’ hyperthyroidism. Eur. Thyroid J., 2018, 7(4), 167-186.
[http://dx.doi.org/10.1159/000490384] [PMID: 30283735]
[17]
Kahaly, G.J.; Diana, T.; Glang, J.; Kanitz, M.; Pitz, S.; König, J. Thyroid stimulating antibodies are highly prevalent in hashimoto’s thyroiditis and associated orbitopathy. J. Clin. Endocrinol. Metab., 2016, 101(5), 1998-2004.
[http://dx.doi.org/10.1210/jc.2016-1220] [PMID: 26964732]
[18]
Ruiz-Ramírez, A.; Ortiz-Balderas, E.; Cardozo-Saldaña, G.; Diaz-Diaz, E.; El-Hafidi, M. Glycine restores glutathione and protects against oxidative stress in vascular tissue from sucrose-fed rats. Clin. Sci., 2014, 126(1), 19-29.
[http://dx.doi.org/10.1042/CS20130164] [PMID: 23742196]
[19]
Lanzolla, G.; Marcocci, C.; Marinò, M. Oxidative stress in graves disease and graves orbitopathy. Eur. Thyroid J., 2020, 9(Suppl. 1), 40-50.
[http://dx.doi.org/10.1159/000509615] [PMID: 33511084]
[20]
Mandal, M.K.; Chanda, B.; Xia, Y.; Yu, K.; Sekine, K.; Gao, Q.; Selote, D.; Kachroo, A.; Kachroo, P. Glycerol-3-phosphate and systemic immunity. Plant Signal. Behav., 2011, 6(11), 1871-1874.
[http://dx.doi.org/10.4161/psb.6.11.17901] [PMID: 22067992]
[21]
Maciolek, J.A.; Alex Pasternak, J.; Wilson, H.L. Metabolism of activated T lymphocytes. Curr. Opin. Immunol., 2014, 27, 60-74.
[http://dx.doi.org/10.1016/j.coi.2014.01.006] [PMID: 24556090]
[22]
Rauchová, H.; Mráček, T.; Novák, P.; Vokurková, M.; Soukup, T. Glycerol-3-phosphate dehydrogenase expression and oxygen consumption in liver mitochondria of female and male rats with chronic alteration of thyroid status. Horm. Metab. Res., 2011, 43(1), 43-47.
[http://dx.doi.org/10.1055/s-0030-1265220] [PMID: 20886417]
[23]
Piras, C.; Pibiri, M.; Leoni, V.P.; Balsamo, A.; Tronci, L.; Arisci, N.; Mariotti, S.; Atzori, L. Analysis of metabolomics profile in hypothyroid patients before and after thyroid hormone replacement. J. Endocrinol. Invest., 2021, 44(6), 1309-1319.
[http://dx.doi.org/10.1007/s40618-020-01434-y] [PMID: 33025552]
[24]
Capellino, S.; Straub, R.H.; Cutolo, M. Aromatase and regulation of the estrogen-to-androgen ratio in synovial tissue inflammation: Common pathway in both sexes. Ann. N. Y. Acad. Sci., 2014, 1317(1), 24-31.
[http://dx.doi.org/10.1111/nyas.12398] [PMID: 24684533]
[25]
Cutolo, M.; Brizzolara, R.; Atzeni, F.; Capellino, S.; Straub, R.H.; Puttini, P.C.S. The immunomodulatory effects of estrogens. Ann. N. Y. Acad. Sci., 2010, 1193(1), 36-42.
[http://dx.doi.org/10.1111/j.1749-6632.2009.05383.x] [PMID: 20398006]
[26]
Bernier, M.; Mikaeloff, Y.; Hudson, M.; Suiss, A.S. Combined oral contraceptive use and the risk of systemic lupus erythematosus. Arthritis Rheum., 2009, 61(4), 476-481.
[http://dx.doi.org/10.1002/art.24398] [PMID: 19333988]
[27]
Hudson, M.; Thombs, B.; Baron, M. Time to diagnosis in systemic sclerosis: Is sex a factor? Arthritis Rheum., 2009, 61(2), 274-278.
[http://dx.doi.org/10.1002/art.24284] [PMID: 19177534]