CNS & Neurological Disorders - Drug Targets

Author(s): Hemlata Bhardwaj, Neeru Vasudeva* and Sunil Sharma*

DOI: 10.2174/1871527322666230221115328

In-vivo and In-vitro Investigations to Assess Traumatic Brain Injury

Page: [215 - 231] Pages: 17

  • * (Excluding Mailing and Handling)

Abstract

Traumatic brain injury (TBI) is a major source of death and disability worldwide; however, its pathogenesis is no longer regarded as an immediate, irreversible process that occurs at the time of injury. Long-term alterations in personality, sensory-motor function, and cognition are common among trauma survivors. The pathophysiology of brain injury is very complex, so it is difficult to understand. Establishing models such as weight drop, controlled cortical impact, fluid percussion, Accelerationdeceleration, hydrodynamic and cell line culture, etc., to simulate the event within controlled conditions has been a critical step in better understanding traumatic brain injury and enabling improved therapy. Establishing effective in vivo and in vitro models of traumatic brain injury and mathematical models is described here as part of the discovery of neuroprotective techniques. Some models, such as weight drop, fluid percussion, and cortical impact, help us understand the pathology of brain injury and provide suitable and effective therapeutic doses of the drug. A chemical mechanism such as prolonged or toxic exposure to chemicals and gases causes toxic encephalopathy, an acquired brain injury that may or may not be reversible. This review provides a comprehensive overview of numerous in-vivo and in-vitro models and molecular pathways to advance the knowledge of TBI. It covers traumatic brain damage pathophysiology, including apoptosis, the function of chemicals and genes, and a brief discussion on putative pharmacological remedies.

Graphical Abstract

[1]
Zhu H, Bian C, Yuan J, et al. Curcumin attenuates acute inflammatory injury by inhibiting the TLR4/MyD88/NF-κB signaling pathway in experimental traumatic brain injury. J Neuroinflammation 2014; 11(1): 59.
[http://dx.doi.org/10.1186/1742-2094-11-59] [PMID: 24669820]
[2]
Baldwin G, Breiding M, Sleet D. Using the public health model to address unintentional injuries and TBI: A perspective from the centers for disease control and prevention (CDC). NeuroRehabilitation 2016; 39(3): 345-9.
[http://dx.doi.org/10.3233/NRE-161366] [PMID: 27497467]
[3]
Rimel RW, Giordani B, Barth JT, Boll TJ, Jane JA. Disability caused by minor head injury. Neurosurgery 1981; 9(3): 221-8.
[PMID: 7301062]
[4]
Ghajar J. Traumatic brain injury. Lancet 2000; 356(9233): 923-9.
[http://dx.doi.org/10.1016/S0140-6736(00)02689-1] [PMID: 11036909]
[5]
a) Brain Trauma Task Force. Management and prognosis of severe traumatic brain injury. J Neurotrauma 2000; 17: 451-553.;
b) Gabriel EJ, Ghajar J, Jagoda A, Pons PT, Scalea T, Walters BC. Guidelines for prehospital management of traumatic brain injury. J Neurotrauma 2002; 9(1): 111-74.
[http://dx.doi.org/10.1089/089771502753460286]
[6]
Trinidad EM, Hlatky R. Critical care of patient with traumatic brain and spine injury. Irwin and Rippe’s Intens. Care Med 2008; pp. 1878-900.
[7]
Sosin DM, Sniezek JE, Thurman DJ. Incidence of mild and moderate brain injury in the United States, 1991. Brain Inj 1996; 10(1): 47-54.
[http://dx.doi.org/10.1080/026990596124719] [PMID: 8680392]
[8]
Rashno M, Ghaderi S, Nesari A, Khorsandi L, Farbood Y, Sarkaki A. Chrysin attenuates traumatic brain injury-induced recognition memory decline, and anxiety/depression-like behaviors in rats: Insights into underlying mechanisms. Psychopharmacology (Berl) 2020; 237(6): 1607-19.
[http://dx.doi.org/10.1007/s00213-020-05482-3] [PMID: 32088834]
[9]
Tran LV. Understanding the pathophysiology of traumatic brain injury and the mechanisms of action of neuroprotective interventions. Trauma Nurs JTN 2014; 21(1): 30-5.
[http://dx.doi.org/10.1097/JTN.0000000000000026]
[10]
Nestler EJ, Hyman SE, Malenka RC. Seizures and stroke. Molecular neuropharmacology a foundation for clinical neuroscience. 2000; p. 479-503.
[11]
Zhang L, Yang KH, Dwarampudi R, et al. Recent advances in brain injury research: A new human head model development and validation. Stapp Car Crash J 2001; 45: 369-94.
[http://dx.doi.org/10.4271/2001-22-0017] [PMID: 17458754]
[12]
Leker RR, Shohami E. Cerebral ischemia and trauma—different etiologies yet similar mechanisms: neuroprotective opportunities. Brain Res Brain Res Rev 2002; 39(1): 55-73.
[http://dx.doi.org/10.1016/S0165-0173(02)00157-1] [PMID: 12086708]
[13]
Cernak I. Animal models of head trauma. NeuroRx 2005; 2(3): 410-22.
[http://dx.doi.org/10.1602/neurorx.2.3.410]
[14]
Li X, Wang H, Wen G, et al. Neuroprotection by quercetin via mitochondrial function adaptation in traumatic brain injury: PGC-1α pathway as a potential mechanism. J Cell Mol Med 2018; 22(2): 883-91.
[PMID: 29205806]
[15]
Song J, Du G, Wu H, et al. Protective effects of quercetin on traumatic brain injury induced inflammation and oxidative stress in cortex through activating Nrf2/HO-1 pathway. Restor Neurol Neurosci 2021; 39(1): 73-84.
[http://dx.doi.org/10.3233/RNN-201119] [PMID: 33612499]
[16]
Du G, Zhao Z, Chen Y, et al. Quercetin protects rat cortical neurons against traumatic brain injury. Mol Med Rep 2018; 17(6): 7859-65.
[http://dx.doi.org/10.3892/mmr.2018.8801] [PMID: 29620218]
[17]
Lyeth BG. Historical review of the fluid-percussion TBI model. Front Neurol 2016; 7: 217.
[http://dx.doi.org/10.3389/fneur.2016.00217] [PMID: 27994570]
[18]
Schültke E, Kamencic H, Zhao M, et al. Neuroprotection following fluid percussion brain trauma: a pilot study using quercetin. J Neurotrauma 2005; 22(12): 1475-84.
[http://dx.doi.org/10.1089/neu.2005.22.1475] [PMID: 16379584]
[19]
Tan J, Yadav MK, Devi S, Kumar M. Neuroprotective effects of arbutin against oxygen and glucose deprivation-induced oxidative stress and neuroinflammation in rat cortical neurons. Acta Pharm 2022; 72(1): 123-34.
[http://dx.doi.org/10.2478/acph-2022-0002]
[20]
Hill CS, Coleman MP, Menon DK. Traumatic axonal injury: mechanisms and translational opportunities. Trends Neurosci 2016; 39(5): 311-24.
[http://dx.doi.org/10.1016/j.tins.2016.03.002] [PMID: 27040729]
[21]
Hopkins AL. Head Trauma. Vet Clin North Am Small Anim Pract 1996; 26(4): 875-91.
[http://dx.doi.org/10.1016/S0195-5616(96)50110-5] [PMID: 8813755]
[22]
Proulx J, Dhupa N. Severe brain injury: Part I. Pathophysiology. Compend Contin Educ Pract Vet 1998; 20: 897-905.
[23]
Fletcher EJ, Syring RS. Traumatic brain injury. In: Silverstein DC, Hopper K, Eds. Small Animal Critical Care Medicine. (1st ed.). Philadelphia: Elsevier Saunders 2009; pp. 658-62.
[http://dx.doi.org/10.1016/B978-1-4160-2591-7.10152-3]
[24]
Dewey CW. Emergency management of the head trauma patient. Principles and practice. Vet Clin North Am Small Anim Pract 2000; 30(1): 207-25.
[http://dx.doi.org/10.1016/S0195-5616(00)50010-2] [PMID: 10680216]
[25]
Dixon KJ. Pathophysiology of traumatic brain injury. Phys Med Rehabil Clin N Am 2017; 28(2): 215-25.
[http://dx.doi.org/10.1016/j.pmr.2016.12.001] [PMID: 28390509]
[26]
Sande A, West C. Traumatic brain injury: A review of pathophysiology and management. J Vet Emerg Crit Care (San Antonio) 2010; 20(2): 177-90.
[http://dx.doi.org/10.1111/j.1476-4431.2010.00527.x] [PMID: 20487246]
[27]
Ray SK, Dixon CE, Banik NL. Molecular mechanisms in the pathogenesis of traumatic brain injury. Histol Histopathol 2002; 17(4): 1137-52.
[http://dx.doi.org/10.14670/HH-17.1137] [PMID: 12371142]
[28]
Ng SY, Lee AYW. Traumatic brain injuries: Pathophysiology and potential therapeutic targets. Front Cell Neurosci 2019; 13: 528.
[http://dx.doi.org/10.3389/fncel.2019.00528] [PMID: 31827423]
[29]
Prins M, Greco T, Alexander D, Giza CC. The pathophysiology of traumatic brain injury at a glance. Dis Model Mech 2013; 6(6): 1307-15.
[http://dx.doi.org/10.1242/dmm.011585] [PMID: 24046353]
[30]
Pearn ML, Niesman IR, Egawa J, et al. Pathophysiology associated with traumatic brain injury: current treatments and potential novel therapeutics. Cell Mol Neurobiol 2017; 37(4): 571-85.
[http://dx.doi.org/10.1007/s10571-016-0400-1] [PMID: 27383839]
[31]
Mustafa AG, Alshboul OA. Pathophysiology of traumatic brain injury. Neurosciences (Riyadh) 2013; 18(3): 222-34.
[PMID: 23887212]
[32]
Kaur P, Sharma S. Recent advances in pathophysiology of traumatic brain injury. Curr Neuropharmacol 2018; 16(8): 1224-38.
[http://dx.doi.org/10.2174/1570159X15666170613083606] [PMID: 28606040]
[33]
Werner C, Engelhard K. Pathophysiology of traumatic brain injury. Br J Anaesth 2007; 99(1): 4-9.
[http://dx.doi.org/10.1093/bja/aem131] [PMID: 17573392]
[34]
Gurdjian ES, Lissner HR, Webster JE, Latimer FR, Haddad BF. Studies on experimental concussion: relation of physiologic effect to time duration of intracranial pressure increase at impact. Neurology 1954; 4(9): 674-81.
[http://dx.doi.org/10.1212/WNL.4.9.674] [PMID: 13214267]
[35]
Walker AE. The physiological basis of concussion: 50 years later. J Neurosurg 1994; 81(3): 493-4.
[http://dx.doi.org/10.3171/jns.1994.81.3.0493] [PMID: 8057163]
[36]
Denny-Brown DE, Russell WR. Experimental Concussion. Proc R Soc Med 1941; 34(11): 691-2.
[http://dx.doi.org/10.1177/003591574103401102] [PMID: 19992388]
[37]
Kumaria A, Tolias CM. In vitro models of neurotrauma. Br J Neurosurg 2008; 22(2): 200-6.
[http://dx.doi.org/10.1080/02688690701772413] [PMID: 18348014]
[38]
Morrison B III, Elkin BS, Dollé JP, Yarmush ML. In vitro models of traumatic brain injury. Annu Rev Biomed Eng 2011; 13(1): 91-126.
[http://dx.doi.org/10.1146/annurev-bioeng-071910-124706] [PMID: 21529164]
[39]
Silva RFM, Falcão AS, Fernandes A, Gordo AC, Brito MA, Brites D. Dissociated primary nerve cell cultures as models for assessment of neurotoxicity. Toxicol Lett 2006; 163(1): 1-9.
[http://dx.doi.org/10.1016/j.toxlet.2005.09.033] [PMID: 16257146]
[40]
Harry GJ, Billingsley M, Bruinink A, et al. In vitro techniques for the assessment of neurotoxicity. Environ Health Perspect 1998; 106 (Suppl. 1): 131-58.
[http://dx.doi.org/10.1289/ehp.98106s1131] [PMID: 9539010]
[41]
Katzenberger R J, Ganetzky B, Wassarman D A. Age and diet affect genetically separable secondary injuries that cause acute mortality following traumatic brain injury in Drosophila. G3 Genes|Genomes|Genetics 2016; 6(12): 4151-66.
[http://dx.doi.org/10.1534/g3.116.036194]
[42]
Triyoso DH, Good TA. Pulsatile shear stress leads to DNA fragmentation in human SH‐SY5Y neuroblastoma cell line. J Physiol 1999; 515(2): 355-65.
[http://dx.doi.org/10.1111/j.1469-7793.1999.355ac.x] [PMID: 10050003]
[43]
Kane MJ, Hatic H, Delic V, et al. Modeling the pathobiology of repetitive traumatic brain injury in immortalized neuronal cell lines. Brain Res 2011; 1425: 123-31.
[http://dx.doi.org/10.1016/j.brainres.2011.09.047] [PMID: 22018688]
[44]
Irfan Maqsood M, Matin MM, Bahrami AR, Ghasroldasht MM. Immortality of cell lines: Challenges and advantages of establishment. Cell Biol Int 2013; 37(10): 1038-45.
[http://dx.doi.org/10.1002/cbin.10137] [PMID: 23723166]
[45]
Gähwiler B, Capogna M, Debanne D, McKinney RA, Thompson SM. Organotypic slice cultures: A technique has come of age. Trends Neurosci 1997; 20(10): 471-7.
[http://dx.doi.org/10.1016/S0166-2236(97)01122-3] [PMID: 9347615]
[46]
Adamchik Y, Frantseva MV, Weisspapir M, Carlen PL, Perez Velazquez JL. Methods to induce primary and secondary traumatic damage in organotypic hippocampal slice cultures. Brain Res Brain Res Protoc 2000; 5(2): 153-8.
[http://dx.doi.org/10.1016/S1385-299X(00)00007-6] [PMID: 10775835]
[47]
Yu Z, Morrison B III. Experimental mild traumatic brain injury induces functional alteration of the developing hippocampus. J Neurophysiol 2010; 103(1): 499-510.
[http://dx.doi.org/10.1152/jn.00775.2009] [PMID: 19923245]
[48]
Daviaud N, Garbayo E, Schiller PC, Perez-Pinzon M, Montero-Menei CN. Organotypic cultures as tools for optimizing central nervous system cell therapies. Exp Neurol 2013; 248: 429-40.
[http://dx.doi.org/10.1016/j.expneurol.2013.07.012] [PMID: 23899655]
[49]
Mukhin AG, Ivanova SA, Allen JW, Faden AI. Mechanical injury to neuronal/glial cultures in microplates: Role of NMDA receptors and pH in secondary neuronal cell death. J Neurosci Res 1998; 51(6): 748-58.
[http://dx.doi.org/10.1002/(SICI)1097-4547(19980315)51:6<748:AID-JNR8>3.0.CO;2-B] [PMID: 9545088]
[50]
Faden AI, Movsesyan VA, Knoblach SM, Ahmed F, Cernak I. Neuroprotective effects of novel small peptides in vitro and after brain injury. Neuropharmacology 2005; 49: 410-24.
[http://dx.doi.org/10.1016/j.neuropharm.2005.04.001]
[51]
Gross GW, Lucas JH, Higgins ML. Laser microbeam surgery: Ultrastructural changes associated with neurite transection in culture. J Neurosci 1983; 3(10): 1979-93.
[http://dx.doi.org/10.1523/JNEUROSCI.03-10-01979.1983] [PMID: 6619919]
[52]
Kirkpatrick JB, Higgins ML, Lucas JH, Gross GW. In vitro simulation of neural trauma by laser. J Neuropathol Exper - i mental. Neurology 1985; 44: 268-84.
[53]
Cengiz N, Öztürk G. Erdoğan E, Him A, Oğuz EK. Consequences of neurite transection in vitro. J Neurotrauma 2012; 29(15): 2465-74.
[http://dx.doi.org/10.1089/neu.2009.0947] [PMID: 20121423]
[54]
Povlishock JT, Christman CW. The pathobiology of traumatically induced axonal injury in animals and humans: A review of current thoughts. J Neurotrauma 1995; 12(4): 555-64.
[http://dx.doi.org/10.1089/neu.1995.12.555] [PMID: 8683606]
[55]
Kumaria A. In vitro models as a platform to investigate traumatic brain injury. Altern Lab Anim 2017; 45(4): 201-11.
[http://dx.doi.org/10.1177/026119291704500405] [PMID: 28994300]
[56]
Margulies SS, Thibault LE, Gennarelli TA. Physical model simulations of brain injury in the primate. J Biomech 1990; 23(8): 823-36.
[http://dx.doi.org/10.1016/0021-9290(90)90029-3] [PMID: 2384494]
[57]
Lucas JH, Wolf A. In vitro studies of multiple impact injury to mammalian CNS neurons: Prevention of perikaryal damage and death by ketamine. Brain Res 1991; 543(2): 181-93.
[http://dx.doi.org/10.1016/0006-8993(91)90027-S] [PMID: 1711911]
[58]
LaPlaca MC, Cullen DK, McLoughlin JJ, Cargill RS II. High rate shear strain of three-dimensional neural cell cultures: A new in vitro traumatic brain injury model. J Biomech 2005; 38(5): 1093-105.
[http://dx.doi.org/10.1016/j.jbiomech.2004.05.032] [PMID: 15797591]
[59]
Arundine M, Aarts M, Lau A, Tymianski M. Vulnerability of central neurons to secondary insults after in vitro mechanical stretch. J Neurosci 2004; 24(37): 8106-23.
[http://dx.doi.org/10.1523/JNEUROSCI.1362-04.2004] [PMID: 15371512]
[60]
Ellis EF, Mc Kinney JS, Willoughby KA, Liang S, Povlishock JT. A new model for rapid stretch induced injury of cells in culture: Characterization of the model using astrocytes. J Neurotrauma 1995; 12: 325-9.
[http://dx.doi.org/10.1089/neu.1995.12.325]
[61]
Cargill RS II, Thibault L. Acute alterations in [Ca2+]i in NG108-15 cells subjected to high strain rate deformation and chemical hypoxia: an in vitro model for neural trauma. J Neurotrauma 1996; 13(7): 395-407.
[http://dx.doi.org/10.1089/neu.1996.13.395] [PMID: 8863195]
[62]
Church AJ, Andrew RD. Spreading depression expands traumatic injury in neocortical brain slices. J Neurotrauma 2005; 22(2): 277-90.
[http://dx.doi.org/10.1089/neu.2005.22.277] [PMID: 15716633]
[63]
Sieg F, Wahle P, Pape HC. Cellular reactivity to mechanical axonal injury in an organotypic in vitro model of neurotrauma. J Neurotrauma 1999; 16(12): 1197-213.
[http://dx.doi.org/10.1089/neu.1999.16.1197] [PMID: 10619198]
[64]
Cullen DK, LaPlaca MC. Neuronal response to high rate shear deformation depends on heterogeneity of the local strain field. J Neurotrauma 2006; 23(9): 1304-19.
[http://dx.doi.org/10.1089/neu.2006.23.1304] [PMID: 16958583]
[65]
Wolf JA, Stys PK, Lusardi T, Meaney D, Smith DH. Traumatic axonal injury induces calcium influx modulated by tetrodotoxin-sensitive sodium channels. J Neurosci 2001; 21(6): 1923-30.
[http://dx.doi.org/10.1523/JNEUROSCI.21-06-01923.2001] [PMID: 11245677]
[66]
Iwata A, Stys PK, Wolf JA, et al. Traumatic axonal injury induces proteolytic cleavage of the voltage-gated sodium channels modulated by tetrodotoxin and protease inhibitors. J Neurosci 2004; 24(19): 4605-13.
[http://dx.doi.org/10.1523/JNEUROSCI.0515-03.2004] [PMID: 15140932]
[67]
Kallakuri S, Cavanaugh JM, Özaktay AC, Takebayashi T. The effect of varying impact energy on diffuse axonal injury in the rat brain: A preliminary study. Exp Brain Res 2003; 148(4): 419-24.
[http://dx.doi.org/10.1007/s00221-002-1307-2] [PMID: 12582825]
[68]
Geddes DM, Cargill RS II. An in vitro model of neural trauma: device characterization and calcium response to mechanical stretch. J Biomech Eng 2001; 123(3): 247-55.
[http://dx.doi.org/10.1115/1.1374201] [PMID: 11476368]
[69]
Lusardi TA, Rangan J, Sun D, Smith DH, Meaney DF. A device to study the initiation and propagation of calcium transients in cultured neurons after mechanical stretch. Ann Biomed Eng 2004; 32(11): 1546-59.
[http://dx.doi.org/10.1114/B:ABME.0000049038.75368.75] [PMID: 15636114]
[70]
Pfister BJ, Weihs TP, Betenbaugh M, Bao G. An in vitro uniaxial stretch model for axonal injury. Ann Biomed Eng 2003; 31(5): 589-98.
[http://dx.doi.org/10.1114/1.1566445] [PMID: 12757202]
[71]
LaPlaca MC, Thibault LE. An in vitro traumatic injury model to examine the response of neurons to a hydrodynamically-induced deformation. Ann Biomed Eng 1997; 25(4): 665-77.
[http://dx.doi.org/10.1007/BF02684844] [PMID: 9236979]
[72]
Edwards ME, Wang SSS, Good TA. Role of viscoelastic properties of differentiated SH-SY5Y human neuroblastoma cells in cyclic shear stress injury. Biotechnol Prog 2001; 17(4): 760-7.
[http://dx.doi.org/10.1021/bp010040m] [PMID: 11485440]
[73]
Nakayama Y, Aoki Y, Niitsu H. Studies on the mechanisms responsible for the formation of focal swellings on neuronal processes using a novel in vitro model of axonal injury. J Neurotrauma 2001; 18(5): 545-54.
[http://dx.doi.org/10.1089/089771501300227341] [PMID: 11393257]
[74]
Chen T, Willoughby KA, Ellis EF. Group I metabotropic receptor antagonism blocks depletion of calcium stores and reduces potentiated capacitative calcium entry in strain-injured neurons and astrocytes. J Neurotrauma 2004; 21(3): 271-81.
[http://dx.doi.org/10.1089/089771504322972068] [PMID: 15115602]
[75]
Lea PM IV, Custer SJ, Stoica BA, Faden AI. Modulation of stretch-induced enhancement of neuronal NMDA receptor current by mGluR1 depends upon presence of glia. J Neurotrauma 2003; 20(11): 1233-49.
[http://dx.doi.org/10.1089/089771503770802907] [PMID: 14651810]
[76]
Lea PM IV, Custer SJ, Vicini S, Faden AI. Neuronal and glial mGluR5 modulation prevents stretch-induced enhancement of NMDA receptor current. Pharmacol Biochem Behav 2002; 73(2): 287-98.
[http://dx.doi.org/10.1016/S0091-3057(02)00825-0] [PMID: 12117582]
[77]
Geddes DM, Cargill RS II, LaPlaca MC. Mechanical stretch to neurons results in a strain rate and magnitude-dependent increase in plasma membrane permeability. J Neurotrauma 2003; 20(10): 1039-49.
[http://dx.doi.org/10.1089/089771503770195885] [PMID: 14588120]
[78]
Serbest G, Horwitz J, Barbee K. The effect of poloxamer-188 on neuronal cell recovery from mechanical injury. J Neurotrauma 2005; 22(1): 119-32.
[http://dx.doi.org/10.1089/neu.2005.22.119] [PMID: 15665607]
[79]
Serbest G, Horwitz J, Jost M, Barbee KA. Mechanisms of cell death and neuroprotection by poloxamer 188 after mechanical trauma. FASEB J 2006; 20(2): 308-10.
[http://dx.doi.org/10.1096/fj.05-4024fje] [PMID: 16371428]
[80]
Goforth PB, Ellis EF, Satin LS. Enhancement of AMPA-mediated current after traumatic injury in cortical neurons. J Neurosci 1999; 19(17): 7367-74.
[http://dx.doi.org/10.1523/JNEUROSCI.19-17-07367.1999] [PMID: 10460243]
[81]
Goforth PB, Ellis EF, Satin LS. Mechanical injury modulates AMPA receptor kinetics via an NMDA receptor-dependent pathway. J Neurotrauma 2004; 21(6): 719-32.
[http://dx.doi.org/10.1089/0897715041269704] [PMID: 15253800]
[82]
Weber JT, Rzigalinski BA, Ellis EF. Traumatic injury of cortical neurons causes changes in intracellular calcium stores and capacitative calcium influx. J Biol Chem 2001; 276(3): 1800-7.
[http://dx.doi.org/10.1074/jbc.M009209200] [PMID: 11050103]
[83]
Weber JT, Rzigalinski BA, Ellis EF. Calcium responses to caffeine and muscarinic receptor agonists are altered in traumatically injured neurons. J Neurotrauma 2002; 19(11): 1433-43.
[http://dx.doi.org/10.1089/089771502320914660] [PMID: 12490008]
[84]
Weber JT, Rzigalinski BA, Willoughby KA, Moore SF, Ellis EF. Alterations in calcium-mediated signal transduction after traumatic injury of cortical neurons. Cell Calcium 1999; 26(6): 289-99.
[http://dx.doi.org/10.1054/ceca.1999.0082] [PMID: 10668567]
[85]
Kao CQ, Goforth PB, Ellis EF, Satin LS. Potentiation of GABA(A) currents after mechanical injury of cortical neurons. J Neurotrauma 2004; 21(3): 259-70.
[http://dx.doi.org/10.1089/089771504322972059] [PMID: 15115601]
[86]
Geddes DM, LaPlaca MC, Cargill RS II. Susceptibility of hippocampal neurons to mechanically induced injury. Exp Neurol 2003; 184(1): 420-7.
[http://dx.doi.org/10.1016/S0014-4886(03)00254-1] [PMID: 14637111]
[87]
Tavalin SJ, Ellis EF, Satin LS. Inhibition of the electrogenic Na pump underlies delayed depolarization of cortical neurons after mechanical injury or glutamate. J Neurophysiol 1997; 77(2): 632-8.
[http://dx.doi.org/10.1152/jn.1997.77.2.632] [PMID: 9065836]
[88]
Lusardi TA, Wolf JA, Putt ME, Smith DH, Meaney DF. Effect of acute calcium influx after mechanical stretch injury in vitro on the viability of hippocampal neurons. J Neurotrauma 2004; 21(1): 61-72.
[http://dx.doi.org/10.1089/089771504772695959] [PMID: 14987466]
[89]
Pike BR, Zhao X, Newcomb JK, Glenn CC, Anderson DK, Hayes RL. Stretch injury causes calpain and caspase-3 activation and necrotic and apoptotic cell death in septo-hippocampal cell cultures. J Neurotrauma 2000; 17(4): 283-98.
[http://dx.doi.org/10.1089/neu.2000.17.283] [PMID: 10776913]
[90]
Arundine M, Chopra GK, Wrong A, et al. Enhanced vulnerability to NMDA toxicity in sublethal traumatic neuronal injury in vitro. J Neurotrauma 2003; 20(12): 1377-95.
[http://dx.doi.org/10.1089/089771503322686166] [PMID: 14748985]
[91]
Laskowski A, Schmidt W, Dinkel K, Martínez-Sánchez M, Reymann KG. bFGF and EGF modulate trauma-induced proliferation and neurogenesis in juvenile organotypic hippocampal slice cultures. Brain Res 2005; 1037(1-2): 78-89.
[http://dx.doi.org/10.1016/j.brainres.2004.12.035] [PMID: 15777755]
[92]
Allen JW, Knoblach SM, Faden AI. Combined mechanical trauma and metabolic impairment in vitro induces NMDA receptor‐dependent neuronal cell death and caspase‐3‐dependent apoptosis. FASEB J 1999; 13(13): 1875-82.
[http://dx.doi.org/10.1096/fasebj.13.13.1875] [PMID: 10506592]
[93]
Blank-Reid C, Reid PC. Penetrating trauma to the head. Crit Care Nurs Clin North Am 2000; 12(4): 477-87.
[http://dx.doi.org/10.1016/S0899-5885(18)30084-4] [PMID: 11855251]
[94]
Elkin BS, Azeloglu EU, Costa KD, Morrison B III. Mechanical heterogeneity of the rat hippocampus measured by AFM indentation. J Neurotrauma 2007; 24: 812-22.
[http://dx.doi.org/10.1089/neu.2006.0169]
[95]
Chung RS, Staal JA, McCormack GH, et al. Mild axonal stretch injury in vitro induces a progressive series of neurofilament alterations ultimately leading to delayed axotomy. J Neurotrauma 2005; 22(10): 1081-91.
[http://dx.doi.org/10.1089/neu.2005.22.1081] [PMID: 16238485]
[96]
Burger R, Bendszus M, Vince GH, Roosen K, Marmarou A. A new reproducible model of an epidural mass lesion in rodents, Part 1: Characterization by neurophysiological monitoring, magnetic resonance imaging and histopathological analysis. J Neurosurg 2002; 97: 1410-8.
[http://dx.doi.org/10.3171/jns.2002.97.6.1410]
[97]
Burger R, Bendszus M, Vince GH, Solymosi L, Roosen K. Neurophysiological monitoring, magnetic resonance imaging, and histological assays confirm the beneficial effects of moderate hypothermia after epidural focal mass lesion development in rodents. Neurosurgery 2004; 54(3): 701-12.
[http://dx.doi.org/10.1227/01.NEU.0000108784.80585.EE] [PMID: 15028147]
[98]
Catani M, Mesulam M. What is a disconnection syndrome? Cortex 2008; 44(8): 911-3.
[http://dx.doi.org/10.1016/j.cortex.2008.05.001] [PMID: 18603236]
[99]
Sporns O. Structure and function of complex brain networks. Dialogues Clin Neurosci 2013; 15(3): 247-62.
[http://dx.doi.org/10.31887/DCNS.2013.15.3/osporns] [PMID: 24174898]
[100]
Crossley NA, Mechelli A, Scott J, et al. The hubs of the human connectome are generally implicated in the anatomy of brain disorders. Brain 2014; 137(8): 2382-95.
[http://dx.doi.org/10.1093/brain/awu132] [PMID: 25057133]
[101]
Williams AJ, Ling GSF, Tortella FC. Severity level and injury track determine outcome following a penetrating ballistic-like brain injury in the rat. Neurosci Lett 2006; 408(3): 183-8.
[http://dx.doi.org/10.1016/j.neulet.2006.08.086] [PMID: 17030434]
[102]
Williams AJ, Hartings JA, Lu XCM, Rolli ML, Tortella FC. Penetrating ballistic-like brain injury in the rat: differential time courses of hemorrhage, cell death, inflammation, and remote degeneration. J Neurotrauma 2006; 23(12): 1828-46.
[http://dx.doi.org/10.1089/neu.2006.23.1828] [PMID: 17184192]
[103]
Wei HH, Lu XCM, Shear DA, et al. NNZ-2566 treatment inhibits neuroinflammation and pro-inflammatory cytokine expression induced by experimental penetrating ballistic-like brain injury in rats. J Neuroinflammation 2009; 6(1): 19.
[http://dx.doi.org/10.1186/1742-2094-6-19] [PMID: 19656406]
[104]
Zhang YP, Cai J, Shields LBE, Liu N, Xu XM, Shields CB. Traumatic brain injury using mouse models. Transl Stroke Res 2014; 5(4): 454-71.
[http://dx.doi.org/10.1007/s12975-014-0327-0] [PMID: 24493632]
[105]
Hampton DW, Asher RA, Kondo T, Steeves JD, Ramer MS, Fawcett JW. A potential role for bone morphogenetic protein signalling in glial cell fate determination following adult central nervous system injury in vivo. Eur J Neurosci 2007; 26(11): 3024-35.
[http://dx.doi.org/10.1111/j.1460-9568.2007.05940.x] [PMID: 18028109]
[106]
Plantman S, Ng KC, Lu J, Davidsson J, Risling M. Characterization of a novel rat model of penetrating traumatic brain injury. J Neurotrauma 2012; 29(6): 1219-32.
[http://dx.doi.org/10.1089/neu.2011.2182] [PMID: 22181060]
[107]
Sanders MJ, Dietrich WD, Green EJ. Cognitive function following traumatic brain injury: Effects of injury severity and recovery period in a parasagittal fluid-percussive injury model. J Neurotrauma 1999; 16(10): 915-25.
[http://dx.doi.org/10.1089/neu.1999.16.915] [PMID: 10547100]
[108]
Vink R, Mullins PGM, Temple MD, Bao W, Faden AI. Small shifts in craniotomy position in the lateral fluid percussion injury model are associated with differential lesion development. J Neurotrauma 2001; 18(8): 839-47.
[http://dx.doi.org/10.1089/089771501316919201] [PMID: 11526990]
[109]
Floyd CL, Golden KM, Black RT, Hamm RJ, Lyeth BG. Craniectomy position affects morris water maze performance and hippocampal cell loss after parasagittal fluid percussion. J Neurotrauma 2002; 19(3): 303-16.
[http://dx.doi.org/10.1089/089771502753594873] [PMID: 11939498]
[110]
McINTOSH TK. Noble L, Andrews B, Faden A. Traumatic brain injury in the rat: Characterization of a midline fluid-percussion model. Cent Nerv Syst Trauma 1987; 4(2): 119-34.
[http://dx.doi.org/10.1089/cns.1987.4.119] [PMID: 3690695]
[111]
Hicks R, Soares H, Smith D, McIntosh T. Temporal and spatial characterization of neuronal injury following lateral fluid-percussion brain injury in the rat. Acta Neuropathol 1996; 91(3): 236-46.
[http://dx.doi.org/10.1007/s004010050421] [PMID: 8834535]
[112]
Morales DM, Marklund N, Lebold D, et al. Experimental models of traumatic brain injury: Do we really need to build a better mousetrap? Neuroscience 2005; 136(4): 971-89.
[http://dx.doi.org/10.1016/j.neuroscience.2005.08.030] [PMID: 16242846]
[113]
Cernak I, Merkle AC, Koliatsos VE, et al. The pathobiology of blast injuries and blast-induced neurotrauma as identified using a new experimental model of injury in mice. Neurobiol Dis 2011; 41(2): 538-51.
[http://dx.doi.org/10.1016/j.nbd.2010.10.025] [PMID: 21074615]
[114]
Xiong Y, Mahmood A, Chopp M. Animal models of traumatic brain injury. Nat Rev Neurosci 2013; 14(2): 128-42.
[http://dx.doi.org/10.1038/nrn3407] [PMID: 23329160]
[115]
Acosta SA, Tajiri N, Shinozuka K, et al. Long-term upregulation of inflammation and suppression of cell proliferation in the brain of adult rats exposed to traumatic brain injury using the controlled cortical impact model. PLoS One 2013; 8(1): e53376.
[http://dx.doi.org/10.1371/journal.pone.0053376] [PMID: 23301065]
[116]
Raslan F, Schwarz T, Meuth SG, et al. Inhibition of bradykinin receptor B1 protects mice from focal brain injury by reducing blood-brain barrier leakage and inflammation. J Cereb Blood Flow Metab 2010; 30(8): 1477-86.
[http://dx.doi.org/10.1038/jcbfm.2010.28] [PMID: 20197781]
[117]
Rákos G, Kis Z, Nagy D, et al. Evans Blue fluorescence permits the rapid visualization of non-intact cells in the perilesional rim of cold-injured rat brain. Acta Neurobiol Exp (Warsz) 2007; 67(2): 149-54.
[PMID: 17691222]
[118]
Pifarré P, Prado J, Giralt M, Molinero A, Hidalgo J, Garcia A. Cyclic GMP phosphodiesterase inhibition alters the glial inflammatory response, reduces oxidative stress and cell death and increases angiogenesis following focal brain injury. J Neurochem 2010; 112(3): 807-17.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06518.x] [PMID: 20002517]
[119]
Giralt M, Penkowa M, Lago N, Molinero A, Hidalgo J. Metallothionein protect the CNS after a focal brain injury. Exp Neurol 2002; 173(1): 114-28.
[http://dx.doi.org/10.1006/exnr.2001.7772]
[120]
Stoffel M, Blau C, Reinl H, et al. Identification of brain tissue necrosis by MRI: validation by histomorphometry. J Neurotrauma 2004; 21(6): 733-40.
[http://dx.doi.org/10.1089/0897715041269678] [PMID: 15253801]
[121]
Penkowa M, Giralt M, Carrasco J, Hadberg H, Hidalgo J. Impaired inflammatory response and increased oxidative stress and neurodegeneration after brain injury in interleukin-6-deficient mice. Glia 2000; 32(3): 271-85.
[http://dx.doi.org/10.1002/1098-1136(200012)32:3<271:AID-GLIA70>3.0.CO;2-5] [PMID: 11102968]
[122]
Quintana A, Giralt M, Rojas S, et al. Differential role of tumor necrosis factor receptors in mouse brain inflammatory responses in cryolesion brain injury. J Neurosci Res 2005; 82(5): 701-16.
[http://dx.doi.org/10.1002/jnr.20680] [PMID: 16267827]
[123]
Albert-Weissenberger C, Sirén AL. Experimental traumatic brain injury. Exp Transl Stroke Med 2010; 2(1): 16.
[http://dx.doi.org/10.1186/2040-7378-2-16] [PMID: 20707892]
[124]
Carey ME, Sarna GS, Farrell JB. Brain edema after an experimental missile wound. Adv Neurol 1990; 52: 301-5.
[PMID: 2396527]
[125]
Finnie JW. Pathology of experimental traumatic craniocerebral missile injury. J Comp Pathol 1993; 108(1): 93-101.
[http://dx.doi.org/10.1016/S0021-9975(08)80231-9] [PMID: 8473562]
[126]
Scott SG, Belanger HG, Vanderploeg RD, Massengale J, Scholten J. Mechanism-of-injury approach to evaluating patients with blast-related polytrauma. J Am Osteopath Assoc 2006; 106(5): 265-70.
[PMID: 16717367]
[127]
DePalma RG, Burris DG, Champion HR, Hodgson MJ. Blast Injuries. N Engl J Med 2005; 352(13): 1335-42.
[http://dx.doi.org/10.1056/NEJMra042083] [PMID: 15800229]
[128]
Steevens JA, Duke BM, Lotufo GR, Bridges TS. Toxicity of the explosives 2,4,6-trinitrotoluene, hexahydro-1,3,5-trinitro-1,3,5-triazine, and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine in sediments to Chironomus tentans and Hyalella azteca: Low-dose hormesis and high-dose mortality. Environ Toxicol Chem 2002; 21(7): 1475-82.
[http://dx.doi.org/10.1002/etc.5620210720] [PMID: 12109749]
[129]
Lachance B, Renoux AY, Sarrazin M, Hawari J, Sunahara GI. Toxicity and bioaccumulation of reduced TNT metabolites in the earthworm Eisenia andrei exposed to amended forest soil. Chemosphere 2004; 55(10): 1339-48.
[http://dx.doi.org/10.1016/j.chemosphere.2003.11.049] [PMID: 15081777]
[130]
Deitchman S, Decker J, Santis L. A novel source of carbon monoxide poisoning: explosives used in construction. Ann Emerg Med 1998; 32(3): 381-4.
[http://dx.doi.org/10.1016/S0196-0644(98)70019-8] [PMID: 9737505]
[131]
Bakke B, Ulvestad B, Stewart P, Lund MB, Eduard W. Effects of blasting fumes on exposure and short-term lung function changes in tunnel construction workers. Scand J Work Environ Health 2001; 27(4): 250-7.
[http://dx.doi.org/10.5271/sjweh.612] [PMID: 11560339]
[132]
Williams AJ, Wei HH, Dave JR, Tortella FC. Acute and delayed neuroinflammatory response following experimental penetrating ballistic brain injury in the rat. J Neuroinflammation 2007; 4(1): 17.
[http://dx.doi.org/10.1186/1742-2094-4-17] [PMID: 17605820]
[133]
Carbonell WS, Maris DO. McCALL TODD, Grady MS. Adaptation of the fluid percussion injury model to the mouse. J Neurotrauma 1998; 15(3): 217-29.
[http://dx.doi.org/10.1089/neu.1998.15.217] [PMID: 9528921]
[134]
Chen Y, Constantini S, Trembovler V, Weinstock M, Shohami E. An experimental model of closed head injury in mice: Pathophysiology, histopathology, and cognitive deficits. J Neurotrauma 1996; 13(10): 557-68.
[http://dx.doi.org/10.1089/neu.1996.13.557] [PMID: 8915907]
[135]
Dikranian K, Cohen R, Mac Donald C, et al. Mild traumatic brain injury to the infant mouse causes robust white matter axonal degeneration which precedes apoptotic death of cortical and thalamic neurons. Exp Neurol 2008; 211(2): 551-60.
[http://dx.doi.org/10.1016/j.expneurol.2008.03.012] [PMID: 18440507]
[136]
Flierl MA, Stahel PF, Beauchamp KM, Morgan SJ, Smith WR, Shohami E. Mouse closed head injury model induced by a weight-drop device. Nat Protoc 2009; 4(9): 1328-37.
[http://dx.doi.org/10.1038/nprot.2009.148] [PMID: 19713954]
[137]
Leinhase I, Rozanski M, Harhausen D, et al. Inhibition of the alternative complement activation pathway in traumatic brain injury by a monoclonal anti-factor B antibody: a randomized placebo-controlled study in mice. J Neuroinflammation 2007; 4(1): 13.
[http://dx.doi.org/10.1186/1742-2094-4-13] [PMID: 17474994]
[138]
Marciano D, Shohami E, Kloog Y, Alexandrovitch A, Brandeis R, Goelman G. Neuroprotective effects of the Ras inhibitor S-trans-trans-farnesylthiosalicylic acid, measured by diffusion-weighted imaging after traumatic brain injury in rats. J Neurotrauma 2007; 24(8): 1378-86.
[http://dx.doi.org/10.1089/neu.2007.0318] [PMID: 17711399]
[139]
Nadler Y, Alexandrovich A, Grigoriadis N, et al. Increased expression of the γ-secretase components presenilin-1 and nicastrin in activated astrocytes and microglia following traumatic brain injury. Glia 2008; 56(5): 552-67.
[http://dx.doi.org/10.1002/glia.20638] [PMID: 18240300]
[140]
Reshef A, Shirvan A, Shohami E, et al. Targeting cell death in vivo in experimental traumatic brain injury by a novel molecular probe. J Neurotrauma 2008; 25(6): 569-80.
[http://dx.doi.org/10.1089/neu.2007.0341] [PMID: 18447626]
[141]
Schumann J, Alexandrovich GA, Biegon A, Yaka R. Inhibition of NR2B phosphorylation restores alterations in NMDA receptor expression and improves functional recovery following traumatic brain injury in mice. J Neurotrauma 2008; 25(8): 945-57.
[http://dx.doi.org/10.1089/neu.2008.0521] [PMID: 18721106]
[142]
Shohami E, Yatsiv I, Alexandrovich A, et al. The Ras inhibitor S-trans, trans-farnesylthiosalicylic acid exerts long-lasting neuroprotection in a mouse closed head injury model. J Cereb Blood Flow Metab 2003; 23(6): 728-38.
[http://dx.doi.org/10.1097/01.WCB.0000067704.86573.83] [PMID: 12796721]
[143]
von Baumgarten L, Trabold R, Thal S, Back T, Plesnila N. Role of cortical spreading depressions for secondary brain damage after traumatic brain injury in mice. J Cereb Blood Flow Metab 2008; 28(7): 1353-60.
[http://dx.doi.org/10.1038/jcbfm.2008.30] [PMID: 18414497]
[144]
Zaltzman R, Beni SM, Giladi E, et al. Injections of the neuroprotective peptide NAP to newborn mice attenuate head-injury-related dysfunction in adults. Neuroreport 2003; 14(3): 481-4.
[http://dx.doi.org/10.1097/00001756-200303030-00037] [PMID: 12634508]
[145]
Gomes PS, Fernandes MH. Rodent models in bone-related research: the relevance of calvarial defects in the assessment of bone regeneration strategies. Lab Anim 2011; 45(1): 14-24.
[http://dx.doi.org/10.1258/la.2010.010085] [PMID: 21156759]
[146]
Baranova AI, Whiting MD, Hamm RJ. Delayed, post-injury treatment with aniracetam improves cognitive performance after traumatic brain injury in rats. J Neurotrauma 2006; 23(8): 1233-40.
[http://dx.doi.org/10.1089/neu.2006.23.1233] [PMID: 16928181]
[147]
Chrzaszcz M, Venkatesan C, Dragisic T, Watterson DM, Wainwright MS. Minozac treatment prevents increased seizure susceptibility in a mouse “two-hit” model of closed skull traumatic brain injury and electroconvulsive shock-induced seizures. J Neurotrauma 2010; 27(7): 1283-95.
[http://dx.doi.org/10.1089/neu.2009.1227] [PMID: 20486807]
[148]
James ML, Wang H, Venkatraman T, Song P, Lascola CD, Laskowitz DT. Brain natriuretic peptide improves long-term functional recovery after acute CNS injury in mice. J Neurotrauma 2010; 27(1): 217-28.
[http://dx.doi.org/10.1089/neu.2009.1022] [PMID: 19803787]
[149]
Beckman DL, Bean JW. Pulmonary pressure-volume changes attending head injury. J Appl Physiol 1970; 29(5): 631-6.
[http://dx.doi.org/10.1152/jappl.1970.29.5.631] [PMID: 4990843]
[150]
Bakay L, Lee JC, Lee GC, Peng JR. Experimental cerebral concussion. J Neurosurg 1977; 47(4): 525-31.
[http://dx.doi.org/10.3171/jns.1977.47.4.0525] [PMID: 903805]
[151]
Nilsson B, Pontén U, Voigt G. Experimental head injury in the rat. J Neurosurg 1977; 47(2): 241-51.
[http://dx.doi.org/10.3171/jns.1977.47.2.0241] [PMID: 874547]
[152]
Tornheim PA, McDermott F, Shiguma M. Effect of experimental blunt head injury on acute regional cerebral blood flow and edema. Adv Neurol 1990; 52: 377-84.
[PMID: 2396534]
[153]
Lighthall JW, Dixon CE, Anderson T. Experimental models of brain injury. J Neurotrauma 1989; 6(2): 83-97.
[http://dx.doi.org/10.1089/neu.1989.6.83] [PMID: 2671392]
[154]
Wagner KR, Tornheim PA, Eichhold MK. Acute changes in regional cerebral metabolite values following experimental blunt head trauma. J Neurosurg 1985; 63(1): 88-96.
[http://dx.doi.org/10.3171/jns.1985.63.1.0088] [PMID: 4009280]
[155]
Goldman H, Hodgson V, Morehead M, Hazlett J, Murphy S. Cerebrovascular changes in a rat model of moderate closed-head injury. J Neurotrauma 1991; 8(2): 129-44.
[http://dx.doi.org/10.1089/neu.1991.8.129] [PMID: 1870136]
[156]
Morehead M, Bartus RT, Dean RL, et al. Histopathologic consequences of moderate concussion in an animal model: Correlations with duration of unconsciousness. J Neurotrauma 1994; 11(6): 657-67.
[http://dx.doi.org/10.1089/neu.1994.11.657] [PMID: 7723065]
[157]
Katzenberger RJ, Loewen CA, Wassarman DR, Petersen AJ, Ganetzky B, Wassarman DA. A Drosophila model of closed head traumatic brain injury. Proc Natl Acad Sci USA 2013; 110(44): E4152-9.
[http://dx.doi.org/10.1073/pnas.1316895110] [PMID: 24127584]
[158]
Barekat A, Gonzalez A, Mauntz RE, et al. Using Drosophila as an integrated model to study mild repetitive traumatic brain injury. Sci Rep 2016; 6(1): 25252.
[http://dx.doi.org/10.1038/srep25252] [PMID: 27143646]
[159]
Shah EJ, Gurdziel K, Ruden DM. Mammalian models of traumatic brain injury and a place for Drosophila in TBI research. Front Neurosci 2019; 13: 409.
[http://dx.doi.org/10.3389/fnins.2019.00409] [PMID: 31105519]
[160]
Koliatsos VE, Cernak I, Xu L, et al. A mouse model of blast injury to brain: Initial pathological, neuropathological, and behavioral characterization. J Neuropathol Exp Neurol 2011; 70(5): 399-416.
[http://dx.doi.org/10.1097/NEN.0b013e3182189f06] [PMID: 21487304]
[161]
Wang Y, Wei Y, Oguntayo S, et al. Tightly coupled repetitive blast-induced traumatic brain injury: Development and characterization in mice. J Neurotrauma 2011; 28(10): 2171-83.
[http://dx.doi.org/10.1089/neu.2011.1990] [PMID: 21770761]
[162]
Zhao Y, Wang ZG. Blast-induced traumatic brain injury: A new trend of blast injury research. Chin J Traumatol 2015; 18(4): 201-3.
[http://dx.doi.org/10.1016/j.cjtee.2015.10.002] [PMID: 26764540]
[163]
Marmarou A, Foda MAAE, Brink W, Campbell J, Kita H, Demetriadou K. A new model of diffuse brain injury in rats. J Neurosurg 1994; 80(2): 291-300.
[http://dx.doi.org/10.3171/jns.1994.80.2.0291] [PMID: 8283269]
[164]
Ma X, Aravind A, Pfister BJ, Chandra N, Haorah J. Animal models of traumatic brain injury and assessment of injury severity. Mol Neurobiol 2019; 56(8): 5332-45.
[http://dx.doi.org/10.1007/s12035-018-1454-5] [PMID: 30603958]
[165]
Giarratana AO, Teng S, Reddi S, et al. BDNF Val66Met genetic polymorphism results in poor recovery following repeated mild traumatic brain injury in a mouse model and treatment with AAV-BDNF improves outcomes. Front Neurol 2019; 10: 1175.
[http://dx.doi.org/10.3389/fneur.2019.01175] [PMID: 31787925]
[166]
Hsieh CL, Niemi EC, Wang SH, et al. CCR2 deficiency impairs macrophage infiltration and improves cognitive function after traumatic brain injury. J Neurotrauma 2014; 31(20): 1677-88.
[http://dx.doi.org/10.1089/neu.2013.3252] [PMID: 24806994]
[167]
Miao W, Zhao Y, Huang Y, et al. IL-13 ameliorates neuroinflammation and promotes functional recovery after traumatic brain injury. J Immunol 2020; 204(6): 1486-98.
[http://dx.doi.org/10.4049/jimmunol.1900909] [PMID: 32034062]
[168]
Xiong Y, Lu D, Qu C, et al. Effects of erythropoietin on reducing brain damage and improving functional outcome after traumatic brain injury in mice. J Neurosurg 2008; 109(3): 510-21.
[http://dx.doi.org/10.3171/JNS/2008/109/9/0510] [PMID: 18759585]
[169]
Wu H, Li J, Xu D, Zhang Q, Cui T. Growth differentiation factor 5 improves neurogenesis and functional recovery in adult mouse hippocampus following traumatic brain injury. Front Neurol 2018; 9: 592.
[http://dx.doi.org/10.3389/fneur.2018.00592] [PMID: 30083129]
[170]
Cortes D, Pera MF. The genetic basis of inter-individual variation in recovery from traumatic brain injury. NPJ Regen Med 2021; 6(1): 5.
[http://dx.doi.org/10.1038/s41536-020-00114-y] [PMID: 33479258]
[171]
Morrison B III, Cater HL, Benham CD, Sundstrom LE. An in vitro model of traumatic brain injury utilising two-dimensional stretch of organotypic hippocampal slice cultures. J Neurosci Methods 2006; 150(2): 192-201.
[http://dx.doi.org/10.1016/j.jneumeth.2005.06.014] [PMID: 16098599]
[172]
Morrison B III, Meaney DF, McIntosh TK. Mechanical characterization of an in vitro device designed to quantitatively injure living brain tissue. Ann Biomed Eng 1998; 26(3): 381-90.
[http://dx.doi.org/10.1114/1.61] [PMID: 9570221]
[173]
Ashworth BE, Stephens E, Bartlett CA, et al. Comparative assessment of phototherapy protocols for reduction of oxidative stress in partially transected spinal cord slices undergoing secondary degeneration. BMC Neurosci 2016; 17(1): 21-1.
[http://dx.doi.org/10.1186/s12868-016-0259-6] [PMID: 27194427]
[174]
Guijarro-Belmar A, Viskontas M, Wei Y, Bo X, Shewan D, Huang W. Epac2 elevation reverses inhibition by chondroitin sulfate proteoglycans in vitro and transforms postlesion inhibitory environment to promote axonal outgrowth in an ex vivo model of spinal cord injury. J Neurosci 2019; 39(42): 8330-46.
[http://dx.doi.org/10.1523/JNEUROSCI.0374-19.2019] [PMID: 31409666]
[175]
Han Z, Chen F, Ge X, Tan J, Lei P, Zhang J. miR-21 alleviated apoptosis of cortical neurons through promoting PTEN-Akt signaling pathway in vitro after experimental traumatic brain injury. Brain Res 2014; 1582: 12-20.
[http://dx.doi.org/10.1016/j.brainres.2014.07.045] [PMID: 25108037]
[176]
Sahuquillo J, Poca MA. Diffuse axonal injury after head trauma. A review. Adv Tech Stand Neurosurg 2002; 27: 23-86.
[http://dx.doi.org/10.1007/978-3-7091-6174-6_2] [PMID: 11887581]
[177]
Dollé JP, Morrison B III, Schloss RS, Yarmush ML. Brain-on-a-chip microsystem for investigating traumatic brain injury: Axon diameter and mitochondrial membrane changes play a significant role in axonal response to strain injuries. Technology (Singap) 2014; 2(2): 106-17.
[http://dx.doi.org/10.1142/S2339547814500095] [PMID: 25101309]
[178]
Omelchenko A, Shrirao AB, Bhattiprolu AK, et al. Dynamin and reverse-mode sodium calcium exchanger blockade confers neuroprotection from diffuse axonal injury. Cell Death Dis 2019; 10(10): 727.
[http://dx.doi.org/10.1038/s41419-019-1908-3] [PMID: 31562294]
[179]
Shrirao AB, Kung FH, Omelchenko A, et al. Microfluidic platforms for the study of neuronal injury in vitro. Biotechnol Bioeng 2018; 115(4): 815-30.
[http://dx.doi.org/10.1002/bit.26519] [PMID: 29251352]
[180]
Okonkwo DO, Povlishock JT. An intrathecal bolus of cyclosporin A before injury preserves mitochondrial integrity and attenuates axonal disruption in traumatic brain injury. J Cereb Blood Flow Metab 1999; 19(4): 443-51.
[http://dx.doi.org/10.1097/00004647-199904000-00010] [PMID: 10197514]
[181]
Sullivan PG, Thompson MB, Scheff SW. Cyclosporin A attenuates acute mitochondrial dysfunction following traumatic brain injury. Exp Neurol 1999; 160(1): 226-34.
[http://dx.doi.org/10.1006/exnr.1999.7197] [PMID: 10630207]
[182]
Nadler V, Mechoulam R, Sokolovsky M. The non-psychotropic cannabinoid (+)-(3S,4S)-7-hydroxy-delta 6- tetrahydrocannabinol 1,1-dimethylheptyl (HU-211) attenuates N-methyl-D-aspartate receptor-mediated neurotoxicity in primary cultures of rat forebrain. Neurosci Lett 1993; 162(1-2): 43-5.
[http://dx.doi.org/10.1016/0304-3940(93)90555-Y] [PMID: 8121633]
[183]
Shohami E, Novikov M, Bass R. Long-term effect of HU-211, a novel non-competitive NMDA antagonist, on motor and memory functions after closed head injury in the rat. Brain Res 1995; 674(1): 55-62.
[http://dx.doi.org/10.1016/0006-8993(94)01433-I] [PMID: 7773695]
[184]
Goda M, Isono M, Fujiki M, Kobayashi H. Both MK801 and NBQX reduce the neuronal damage after impact-acceleration brain injury. J Neurotrauma 2002; 19(11): 1445-56.
[http://dx.doi.org/10.1089/089771502320914679] [PMID: 12490009]
[185]
Imer M, Omay B, Uzunkol A, et al. Effect of magnesium, MK-801 and combination of magnesium and MK-801 on blood–brain barrier permeability and brain edema after experimental traumatic diffuse brain injury. Neurol Res 2009; 31(9): 977-81.
[http://dx.doi.org/10.1179/174313209X385617] [PMID: 19215660]
[186]
Follett PL, Rosenberg PA, Volpe JJ, Jensen FE. NBQX attenuates excitotoxic injury in developing white matter. J Neurosci 2000; 20(24): 9235-41.
[http://dx.doi.org/10.1523/JNEUROSCI.20-24-09235.2000] [PMID: 11125001]
[187]
Jarrahi A, Braun M, Ahluwalia M, et al. Revisiting traumatic brain injury: From molecular mechanisms to therapeutic interventions. Biomedicines 2020; 8(10): 389.
[http://dx.doi.org/10.3390/biomedicines8100389] [PMID: 33003373]
[188]
Tikka TM, Koistinaho JE. Minocycline provides neuroprotection against N-methyl-D-aspartate neurotoxicity by inhibiting microglia. J Immunol 2001; 166(12): 7527-33.
[http://dx.doi.org/10.4049/jimmunol.166.12.7527] [PMID: 11390507]
[189]
Filipovic R, Zecevic N. Neuroprotective role of minocycline in co-cultures of human fetal neurons and microglia. Exp Neurol 2008; 211(1): 41-51.
[http://dx.doi.org/10.1016/j.expneurol.2007.12.024] [PMID: 18359018]
[190]
Ng SY, Semple BD, Morganti-Kossmann MC, Bye N. Attenuation of microglial activation with minocycline is not associated with changes in neurogenesis after focal traumatic brain injury in adult mice. J Neurotrauma 2012; 29(7): 1410-25.
[http://dx.doi.org/10.1089/neu.2011.2188] [PMID: 22260446]
[191]
Nichol A, French C, Little L, et al. Erythropoietin in traumatic brain injury (EPO-TBI): A double-blind randomised controlled trial. Lancet 2015; 386(10012): 2499-506.
[http://dx.doi.org/10.1016/S0140-6736(15)00386-4] [PMID: 26452709]
[192]
Alder J, Fujioka W, Lifshitz J, Crockett DP, Thakker-Varia S. Lateral fluid percussion: model of traumatic brain injury in mice. J Vis Exp 2011; 22(54): e3063.
[http://dx.doi.org/10.3791/3063]
[193]
Kelsen J, Karlsson M, Hansson MJ, et al. Copenhagen head injury ciclosporin (CHIC) study: A phase IIA safety, pharmacokinetics and biomarker study of ciclosporin in severe traumatic brain injury patients. J Neurotrauma 2019; 36(23): 3253-63.
[http://dx.doi.org/10.1089/neu.2018.6369] [PMID: 31210099]
[194]
Kawamura M, Nakajima W, Ishida A, Ohmura A, Miura S, Takada G. Calpain inhibitor MDL 28170 protects hypoxic–ischemic brain injury in neonatal rats by inhibition of both apoptosis and necrosis. Brain Res 2005; 1037(1-2): 59-69.
[http://dx.doi.org/10.1016/j.brainres.2004.12.050] [PMID: 15777753]
[195]
Thompson SN, Carrico KM, Mustafa AG, Bains M, Hall ED. A pharmacological analysis of the neuroprotective efficacy of the brain- and cell-permeable calpain inhibitor MDL-28170 in the mouse controlled cortical impact traumatic brain injury model. J Neurotrauma 2010; 27(12): 2233-43.
[http://dx.doi.org/10.1089/neu.2010.1474] [PMID: 20874056]
[196]
Clark RSB, Kochanek PM, Watkins SC, et al. Caspase-3 mediated neuronal death after traumatic brain injury in rats. J Neurochem 2000; 74(2): 740-53.
[http://dx.doi.org/10.1046/j.1471-4159.2000.740740.x] [PMID: 10646526]
[197]
Knoblach SM, Alroy DA, Nikolaeva M, Cernak I, Stoica BA, Faden AI. Caspase inhibitor z-DEVD-fmk attenuates calpain and necrotic cell death in vitro and after traumatic brain injury. J Cereb Blood Flow Metab 2004; 24(10): 1119-32.
[http://dx.doi.org/10.1097/01.WCB.0000138664.17682.32] [PMID: 15529012]
[198]
Bradbury EJ, Moon LDF, Popat RJ, et al. Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 2002; 416(6881): 636-40.
[http://dx.doi.org/10.1038/416636a] [PMID: 11948352]
[199]
Barritt AW, Davies M, Marchand F, Hartley R, Grist J, Yip P. Chondroitinase ABC has a long-lasting effect on chondroitin sulphate glycosaminoglycan content in the injured rat brain. J Neurochem 2008; 104: 400-8.
[200]
Monnier PP, Sierra A, Schwab JM, Henke-Fahle S, Mueller BK. The Rho/ROCK pathway mediates neurite growth-inhibitory activity associated with the chondroitin sulfate proteoglycans of the CNS glial scar. Mol Cell Neurosci 2003; 22: 319-30.
[201]
Okiyama K, Smith DH, Thomas MJ, McIntosh TK. Evaluation of a novel calcium channel blocker, (S)-emopamil, on regional cerebral edema and neurobehavioral function after experimental brain injury. J Neurosurg 1992; 77(4): 607-15.
[http://dx.doi.org/10.3171/jns.1992.77.4.0607] [PMID: 1527621]
[202]
Samii A, Badie H, Fu K, Luther RR, Hovda DA. Effects of an N-type calcium channel antagonist (SNX 111; Ziconotide) on calcium-45 accumulation following fluid-percussion injury. J Neurotrauma 1999; 16(10): 879-92.
[http://dx.doi.org/10.1089/neu.1999.16.879] [PMID: 10547097]
[203]
Lee LL, Galo E, Lyeth BG, Muizelaar JP, Berman RF. Neuroprotection in the rat lateral fluid percussion model of traumatic brain injury by SNX-185, an N-type voltage-gated calcium channel blocker. Exp Neurol 2004; 190(1): 70-8.
[http://dx.doi.org/10.1016/j.expneurol.2004.07.003] [PMID: 15473981]
[204]
Shahlaie K, Lyeth BG, Gurkoff GG, Muizelaar JP, Berman RF. Neuroprotective effects of selective N-type VGCC blockade on stretch-injury-induced calcium dynamics in cortical neurons. J Neurotrauma 2010; 27(1): 175-87.
[http://dx.doi.org/10.1089/neu.2009.1003] [PMID: 19772476]
[205]
Veng LM, Mesches MH, Browning MD. Age-related working memory impairment is correlated with increases in the L-type calcium channel protein α1D (Cav1.3) in area CA1 of the hippocampus and both are ameliorated by chronic nimodipine treatment. Brain Res Mol Brain Res 2003; 110(2): 193-202.
[http://dx.doi.org/10.1016/S0169-328X(02)00643-5] [PMID: 12591156]
[206]
Compton JS, Lee T, Jones NR, Waddell G, Teddy PJ. A double blind placebo controlled trial of the calcium entry blocking drug, nicardipine, in the treatment of vasospasm following severe head injury. Br J Neurosurg 1990; 4(1): 9-15.
[http://dx.doi.org/10.3109/02688699009000676] [PMID: 2185791]
[207]
Yu P, Huang L, Zou J, et al. Immunization with recombinant Nogo-66 receptor (NgR) promotes axonal regeneration and recovery of function after spinal cord injury in rats. Neurobiol Dis 2008; 32(3): 535-42.
[http://dx.doi.org/10.1016/j.nbd.2008.09.012] [PMID: 18930141]
[208]
Zhang L, Wang H, Zhou Y, Zhu Y, Fei M. Fisetin alleviates oxidative stress after traumatic brain injury via the Nrf2-ARE pathway. Neurochem Int 2018; 118: 304-13.
[http://dx.doi.org/10.1016/j.neuint.2018.05.011] [PMID: 29792955]
[209]
Zhang Y, Ang BT, Xiao ZC, Ng I, Steiger HJ. DNA vaccination against neurite growth inhibitors to enhance functional recovery following traumatic brain injury. Acta Neurochir Suppl (Wien) 2008; 102: 347-51.
[http://dx.doi.org/10.1007/978-3-211-85578-2_66] [PMID: 19388343]