Solid Oxide Membrane-assisted Controllable Electrolytic Fabrication of Ti5Si3/TiC Composites in Molten Salt

Page: [453 - 462] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: The titanium silicide Ti5Si3 possesses many desirable properties, such as a high melting point, excellent high-temperature oxidation resistance, low density, and relatively high hardness, and it is considered a promising structural intermetallic compound. However, like most ceramic materials, originating from low symmetry (D88) in its crystal structure, Ti5Si3 has poor fracture toughness and limited flexibility at room temperature, and at high temperatures, its creep resistance also drops sharply, which hinders its application. To overcome these shortcomings, it is suggested that TiC is a practical addition to Ti5Si3 to overcome the brittleness. Compared with monolithic Ti5Si3, Ti5Si3/TiC composites have a higher fracture toughness. Ti5Si3/TiC composites can be prepared by many ways, which commonly require high energy cost, complex processes and provide low efficiency. Therefore, the search for environmentally friendly strategies for the production of Ti5Si3/TiC is still ongoing.

Objective: This article proves that we can successfully prepare Ti5Si3/TiC composites from CaTiO3/SiO2/C precursor by using SOM technology and explores the reaction mechanism of electrochemical process.

Methods: In the process of electroreduction of CaTiO3/SiO2/C particles into Ti5Si3/TiC composites, we mainly used SOM technology at 1273 K and 4.0 V in molten CaCl2 and under an argon atmosphere.

Results: The results show that the Ti5Si3/TiC composites can also be successfully electrosynthesized from CaTiO3/SiO2/C precursors by using SOM-based anode systems at 1273 K and 4.0 V in molten CaCl2.

Conclusion: This work demonstrates that Ti5Si3/TiC composites have been successfully electrosynthesized from CaTiO3/SiO2/C precursors using SOM-based anode systems at 1273 K and 4.0 V in molten CaCl2. The Ti5Si3/TiC has a smooth surface and micro/nano-porous structure. The formation routes for Ti5Si3 and TiC are independent. In summary, the SOM-assisted controllable electroreduction process has the potential to provide a novel one-step route from CaTiO3/ SiO2/C precursors to Ti5Si3/TiC composites in molten salts.

Graphical Abstract

[1]
Lei M, Zhao HZ, Yang H, Song B, Tang WH. Synthesis of transition metal carbide nanoparticles through melamine and metal oxides. J Eur Ceram Soc 2008; 28(8): 1671-7.
[http://dx.doi.org/10.1016/j.jeurceramsoc.2007.11.013]
[2]
Liu L, Xu J, Xie ZH, Munroe P. The roles of passive layers in regulating the electrochemical behavior of Ti5Si3 -based nanocomposite films. J Mater Chem A Mater Energy Sustain 2013; 1(6): 2064-78.
[http://dx.doi.org/10.1039/C2TA00510G]
[3]
Meselhy AF, Reda MM. Investigation of mechanical properties of nanostructured Al-SiC composite manufactured by accumulative roll bonding. J Compos Mater 2019; 53(28-30): 3951-61.
[http://dx.doi.org/10.1177/0021998319851831]
[4]
Elwan M, Fathy A, Wagih A, Essa ARS, Abu-Oqail A, EL-Nikhaily AE. Fabrication and investigation on the properties of ilmenite (FeTiO3)-based Al composite by accumulative roll bonding. J Compos Mater 2020; 54(10): 1259-71.
[http://dx.doi.org/10.1177/0021998319876684]
[5]
Mahallawy NE, Fathy A, Hassan M, Abdelaziem W. Evaluation of mechanical properties and microstructure of Al/Al-12%Si multilayer via warm accumulative roll bonding process. J Compos Mater 2017.
[http://dx.doi.org/10.1177/0021998317692141]
[6]
Sadoun AM, Najjar IMR, Abd-Elwahed MS, Meselhy A. Experimental study on properties of Al-Al2O3 nanocomposite hybridized by graphene nanosheets. J Mater Res Technol 2020; 9(6): 14708-17.
[http://dx.doi.org/10.1016/j.jmrt.2020.10.011]
[7]
Tang Z, Williams JJ, Thom AJ, Akinc M. High temperature oxidation behavior of Ti5Si3-based intermetallics. Intermetallics 2008; 16(9): 1118-24.
[http://dx.doi.org/10.1016/j.intermet.2008.06.013]
[8]
Wang X, Jie J, Liu S, Dong Z, Yin G, Li T. Growth mechanism of primary Ti5Si3 phases in special brasses and their ef-fect on wear resistance. J Mater Sci Technol 2021; 61: 138-46.
[http://dx.doi.org/10.1016/j.jmst.2020.05.063]
[9]
Xu J, Liu L, Li Z, Munroe P, Xie ZH. Niobium addition enhancing the corrosion resistance of nanocrystalline Ti5Si3 coating in H2SO4 solution. Acta Mater 2014; 63: 245-60.
[http://dx.doi.org/10.1016/j.actamat.2013.10.040]
[10]
Kasraee K, Yousefpour M, Tayebifard SA. Microstructure and mechanical properties of Ti5Si3 fabricated by spark plasma sintering. J Alloys Compd 2019; 779: 942-9.
[http://dx.doi.org/10.1016/j.jallcom.2018.11.319]
[11]
Schneibe JH, Rawn C. Thermal expansion anisotropy of ternary titanium silicides based on Ti5Si3. J Acta Mater 2004; 52(13): 3843-8.
[12]
Li S, Zou X, Zheng K, et al. Electrosynthesis of Ti5Si3, Ti5Si3/TiC, and Ti5Si3/Ti3SiC2 from Ti-bearing blast furnace slag in molten CaCl2. Metall Mater Trans, B, Process Metall Mater Proc Sci 2018; 49(2): 790-802.
[http://dx.doi.org/10.1007/s11663-018-1192-0]
[13]
Min KS, Ardell AJ, Eck SJ, Chen FC. A small-specimen investigation of the fracture toughness of Ti5Si3. J Mater Sci 1995; 30(21): 5479-83.
[http://dx.doi.org/10.1007/BF00351561]
[14]
Jiao H, Wang Q, Ge J, Sun H, Jiao S. Electrochemical synthesis of Ti5Si3 in CaCl2 melt. J Alloys Compd 2014; 582: 146-50.
[http://dx.doi.org/10.1016/j.jallcom.2013.08.050]
[15]
Zhang L, Wu J. Ti5Si3 and Ti5Si3-based alloys: Alloyingbehavior, microstructure and mechanical property evaluation. Acta Mater 1998; 46(10): 3535-46.
[http://dx.doi.org/10.1016/S1359-6454(98)00026-3]
[16]
Zou X, Li S, Lu X, et al. Direct extraction of titanium alloys/composites from titanium compounds ores in molten CaCl2. Mater Trans 2017; 58(3): 331-40.
[http://dx.doi.org/10.2320/matertrans.MK201603]
[17]
Kishida K, Fujiwara M, Adachi H, Tanaka K, Inui H. Plastic deformation of single crystals of Ti5Si3 with the hexagonal D88 structure. Acta Mater 2010; 58(3): 846-57.
[http://dx.doi.org/10.1016/j.actamat.2009.09.062]
[18]
Mitra R. Microstructure and mechanical behavior of reaction hot-pressed titanium silicide and titanium silicide-based alloys and composites. Metall Mater Trans, A Phys Metall Mater Sci 1998; 29(6): 1629-41.
[http://dx.doi.org/10.1007/s11661-998-0086-1]
[19]
Zou X, Chen C, Lu X, et al. Solid Oxide Membrane (SOM) process for facile electrosynthesis of metal carbides and composites. Metall Mater Trans, B, Process Metall Mater Proc Sci 2017; 48(1): 664-77.
[http://dx.doi.org/10.1007/s11663-016-0817-4]
[20]
Vasudévan AK, Petrovic JJ. A comparative overview of molybdenum disilicide composites. Mater Sci Eng A 1992; 155(1-2): 1-17.
[http://dx.doi.org/10.1016/0921-5093(92)90308-N]
[21]
Shon IJ, Kim HC, Rho DH, Munir ZA. Simultaneous synthesis and densification of Ti5Si3 and Ti5Si3-20 vol% ZrO2 composites by field-activated and pressure-assisted combustion. Mater Sci Eng A 1999; 269(1-2): 129-35.
[http://dx.doi.org/10.1016/S0921-5093(99)00131-8]
[22]
Li J, Jiang D, Tan S. Microstructure and mechanical properties of in situ produced Ti5Si3/TiC nanocomposites. J Eur Ceram Soc 2002; 22(4): 551-8.
[http://dx.doi.org/10.1016/S0955-2219(01)00304-1]
[23]
Xu J, Liu L, Jiang L, Munroe P, Xie ZH. Unraveling the mechanical and tribological properties of a novel Ti5Si3/TiC nanocomposite coating synthesized by a double glow discharge plasma technique. Ceram Int 2013; 39(8): 9471-81.
[http://dx.doi.org/10.1016/j.ceramint.2013.05.065]
[24]
Weng F, Yu H, Liu J, Chen C, Dai J, Zhao Z. Microstructure and wear property of the Ti5Si3/TiC reinforced Co-based coatings fabricated by laser cladding on Ti-6Al-4V. Opt Laser Technol 2017; 92: 156-62.
[http://dx.doi.org/10.1016/j.optlastec.2017.01.014]
[25]
Viala JC, Peillon N, Bosselet F, Bouix J. Phase equilibria at 1000°C in the AlCSiTi quaternary system: An experimental approach. Mater Sci Eng A 1997; 229(1-2): 95-113.
[http://dx.doi.org/10.1016/S0921-5093(97)00002-6]
[26]
Zheng K, Lu FH, Long Q, et al. Solid oxide membrane-assisted controllable electrolytic production of TaC nanoparti-cles in molten CaCl2. Int J Electrochem Sci 2021; 16(2): 210260.
[http://dx.doi.org/10.20964/2021.02.10]
[27]
Wakelkamp WJJ, van Loo FJJ, Metselaar R. Phase relations in the Ti-Si-C system. J Eur Ceram Soc 1991; 8(3): 135-9.
[http://dx.doi.org/10.1016/0955-2219(91)90067-A]
[28]
Liu Y, Chen J, Zhou Y. Effect of Ti5Si3 on wear properties of Ti3Si(Al)C2. J Eur Ceram Soc 2009; 29(16): 3379-85.
[http://dx.doi.org/10.1016/j.jeurceramsoc.2009.07.012]
[29]
Yang YF, Mu D. Effect of Ni addition on the formation mechanism of Ti5Si3 during self-propagation high-temperature synthesis and mechanical property. J Eur Ceram Soc 2014; 34(10): 2177-85.
[http://dx.doi.org/10.1016/j.jeurceramsoc.2014.02.018]
[30]
Kasraee K, Tayebifard A, Salahi E. Effect of substitution of Si by Al on microstructure and synthesis behavior of Ti5Si3 based alloys fabricated by mechanically activated self-propagating high-temperature synthesis. Adv Powder Technol 2014; 25(3): 885-90.
[http://dx.doi.org/10.1016/j.apt.2014.01.008]
[31]
Zheng K, Zou X, Xie X, et al. Electrolytic Production of Ti5Si3/TiC Composites by solid oxide membrane technology. J Miner Met Mater Soc 2018; 70(2): 138-43.
[http://dx.doi.org/10.1007/s11837-017-2693-z]
[32]
Lin ZJ, He LF, Wang JY, Li MS, Bao YW, Zhou YC. Atomic-scale microstructure and elastic properties of quaternary Zr-Al-Si-C ceramics. Acta Mater 2008; 56(9): 2022-31.
[http://dx.doi.org/10.1016/j.actamat.2007.12.055]
[33]
Fathy A, Shaker A, Hamid MA, Megahed AA. The effects of nano-silica/nano-alumina on fatigue behavior of glass fiber-reinforced epoxy composites. J Compos Mater 2017; 51(12): 1667-79.
[http://dx.doi.org/10.1177/0021998316661870]
[34]
EL-Wazery MS. Electrical and mechanical performance of zirconia-nickel functionally graded materials. Int J of Eng 2013; 26(4 (A)): 375-82.
[http://dx.doi.org/10.5829/idosi.ije.2013.26.04a.06]
[35]
Abd-Elwahed MS, Ibrahim AF, Reda MM. Effects of ZrO2 nanoparticle content on microstructure and wear behavior of titanium matrix composite. J Mater Res Technol 2020; 9(4): 8528-34.
[http://dx.doi.org/10.1016/j.jmrt.2020.05.021]
[36]
Mohamed A, Mohammed MM, Ibrahim AF, El-Kady OA. Effect of nano Al2O3 coated Ag reinforced Cu matrix nanocomposites on mechanical and tribological behavior synthesis by P/M technique. J Compos Mater 2020; 54(30): 4921-8.
[http://dx.doi.org/10.1177/0021998320934860]
[37]
Zou X, Li S, Lu X, et al. Direct extraction of titanium alloys/composites from titanium compounds ores in molten CaCl. Mater Trans 2017; 58(3): 331-40.
[http://dx.doi.org/10.2320/matertrans.MK201603]
[38]
Li S, Zou X, Zheng K, et al. Direct production of TiAl3 from Ti/Al-containing oxides precursors by solid oxide membrane (SOM) process. J Alloys Compd 2017; 727: 1243-52.
[http://dx.doi.org/10.1016/j.jallcom.2017.08.213]
[39]
Lu X, Zou X, Li C, Zhong Q, Ding W, Zhou Z. Green electrochemical process solid-oxide oxygenion-conducting membrane (SOM): Direct extraction of Ti-Fe alloys from natural ilmenite. Metall Mater Trans, B, Process Metall Mater Proc Sci 2012; 43(3): 503-12.
[http://dx.doi.org/10.1007/s11663-012-9633-7]
[40]
Martin A, Lambertin D, Poignet J-C, et al. The electrochemical deoxidation of metal oxides by calcium using a solid oxide membrane. J Miner Met Mater Soc 2003; 55(10): 52-4.
[http://dx.doi.org/10.1007/s11837-003-0177-9]