Design of Multitarget Inhibitors as Tracheal Smooth Muscle Relaxants

Page: [257 - 266] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Introduction: Asthma complications and adverse effects associated with steroidal therapy highlight the need for non-steroidal compounds intercepting asthmatic pathophysiology at multiple targets. The present investigation was carried out to evaluate the tracheal smooth muscle relaxant effect of virtually designed, combinatorially synthesized polyfunctional N-heteroarylamides.

Methods: Virtual screening and molecular docking studies of designed compounds were performed using PyRx and AUTODOCK 4.2 software against molecular targets viz. FLAP, LTB4, and H1 receptor. Cross-validation of virtual screening results and active site, confirmation was performedusingVlife MDS software version 3.5. The combinatorial approach was used to synthesize designed compounds in which heterocyclic amines were reacted with substituted aromatic acid chlorides by nucleophilic substitution reaction to obtain a 5x5 mini-library. The structures of synthesized leads were confirmed by infrared and proton magnetic resonance spectroscopic analysis. Synthesized compounds were evaluated for their smooth muscle relaxation effect on isolated goat tracheal smooth muscle.

Results: Results were calculated as a percent decrease in contraction response observed using histamine and LTB4. The tested compounds produced anticipated tracheal smooth muscle relaxant activity. Based on the results of screening the structure-activity relationships (SAR) have been reported.

Conclusion: Present study concluded that synthesized polyfunctional N-heteroarylamides have a tracheal smooth muscle relaxant effect. The mode of action is predicted from the analysis of virtual screening results. A good correlation was observed between virtual screenings and biological activities of lead molecules suggesting the rationale used to optimize the structural requirements of a ligand for selected targets is appropriate.

Graphical Abstract

[1]
Stevenson, D.; Szczeklik, A. Clinical and pathologic perspectives on aspirin sensitivity and asthma. J. Allergy Clin. Immunol., 2006, 118(4), 773-786.
[http://dx.doi.org/10.1016/j.jaci.2006.07.024] [PMID: 17030227]
[2]
Mauad, T.; Bel, E.H.; Sterk, P.J. Asthma therapy and airway remodeling. J. Allergy Clin. Immunol., 2007, 120(5), 997-1009.
[http://dx.doi.org/10.1016/j.jaci.2007.06.031] [PMID: 17681364]
[3]
Nathan, R.A.; Kemp, J.P. Efficacy of antileukotriene agents in asthma management. Ann. Allergy Asthma Immunol., 2001, 86(6), 9-17.
[http://dx.doi.org/10.1016/S1081-1206(10)62306-X] [PMID: 11426917]
[4]
Whelan, C.J. Prospects for the development of new drugs for the therapy of respiratory diseases. Drugs Today , 1996, 32(4), 295-311.
[5]
Janssen, L.J.; Killian, K. Airway smooth muscle as a target of asthma therapy: History and new directions. Respir. Res., 2006, 7(1), 123.
[http://dx.doi.org/10.1186/1465-9921-7-123] [PMID: 17010205]
[6]
Barnes, P.J. Biochemical basis of asthma therapy. J. Biol. Chem., 2011, 286(38), 32899-32905.
[http://dx.doi.org/10.1074/jbc.R110.206466] [PMID: 21799015]
[7]
Tamm, M.; Richards, D.H.; Beghé, B.; Fabbri, L. Inhaled corticosteroid and long-acting β2-agonist pharmacological profiles: Effective asthma therapy in practice. Respir. Med., 2012, 106(S1), S9-S19.
[http://dx.doi.org/10.1016/S0954-6111(12)70005-7] [PMID: 23273165]
[8]
Crompton, G. A brief history of inhaled asthma therapy over the last fifty years. Prim. Care Respir. J., 2006, 15(6), 326-331.
[http://dx.doi.org/10.1016/j.pcrj.2006.09.002] [PMID: 17092772]
[9]
Sullivan, P.W.; Ghushchyan, V.H.; Globe, G.; Schatz, M. Oral corticosteroid exposure and adverse effects in asthmatic patients. J. Allergy Clin. Immunol., 2018, 141(1), 110-116.e7.
[http://dx.doi.org/10.1016/j.jaci.2017.04.009] [PMID: 28456623]
[10]
Sweeney, J.; Patterson, C.C.; Menzies-Gow, A.; Niven, R.M.; Mansur, A.H.; Bucknall, C.; Chaudhuri, R.; Price, D.; Brightling, C.E.; Heaney, L.G. Comorbidity in severe asthma requiring systemic corticosteroid therapy: Cross-sectional data from the optimum patient care research database and the british thoracic difficult asthma registry. Thorax, 2016, 71(4), 339-346.
[http://dx.doi.org/10.1136/thoraxjnl-2015-207630] [PMID: 26819354]
[11]
Poetker, D.M.; Reh, D.D. A comprehensive review of the adverse effects of systemic corticosteroids. Otolaryngol. Clin. North Am., 2010, 43(4), 753-768.
[http://dx.doi.org/10.1016/j.otc.2010.04.003] [PMID: 20599080]
[12]
Manson, S.C.; Brown, R.E.; Cerulli, A.; Vidaurre, C.F. The cumulative burden of oral corticosteroid side effects and the economic implications of steroid use. Respir. Med., 2009, 103(7), 975-994.
[http://dx.doi.org/10.1016/j.rmed.2009.01.003] [PMID: 19372037]
[13]
Sarnes, E.; Crofford, L.; Watson, M.; Dennis, G.; Kan, H.; Bass, D. Incidence and US costs of corticosteroid-associated adverse events: A systematic literature review. Clin. Ther., 2011, 33(10), 1413-1432.
[http://dx.doi.org/10.1016/j.clinthera.2011.09.009] [PMID: 21999885]
[14]
Fardet, L.; Flahault, A.; Kettaneh, A.; Tiev, K.P.; Généreau, T.; Tolédano, C.; Lebbé, C.; Cabane, J. Corticosteroid-induced clinical adverse events: Frequency, risk factors and patient?s opinion. Br. J. Dermatol., 2007, 157(1), 142-148.
[http://dx.doi.org/10.1111/j.1365-2133.2007.07950.x] [PMID: 17501951]
[15]
Shah, M.; Chaudhari, S.; McLaughlin, T.P.; Kan, H.J.; Bechtel, B.; Dennis, G.J.; Molta, C.T. Cumulative burden of oral corticosteroid adverse effects and the economic implications of corticosteroid use in patients with systemic lupus erythematosus. Clin. Ther., 2013, 35(4), 486-497.
[http://dx.doi.org/10.1016/j.clinthera.2013.03.001] [PMID: 23587268]
[16]
Ethgen, O.; de Lemos Esteves, F.; Bruyere, O.; Reginster, J.Y. What do we know about the safety of corticosteroids in rheumatoid arthritis? Curr. Med. Res. Opin., 2013, 29(9), 1147-1160.
[http://dx.doi.org/10.1185/03007995.2013.818531] [PMID: 23790244]
[17]
Walsh, L.J.; Wong, C.A.; Oborne, J.; Cooper, S.; Lewis, S.A.; Pringle, M.; Hubbard, R.; Tattersfield, A.E. Adverse effects of oral corticosteroids in relation to dose in patients with lung disease. Thorax, 2001, 56(4), 279-284.
[http://dx.doi.org/10.1136/thorax.56.4.279] [PMID: 11254818]
[18]
Smyllie, H.C.; Connolly, C.K. Incidence of serious complications of corticosteroid therapy in respiratory disease: A retrospective survey of patients in the Brompton Hospital. Thorax, 1968, 23(6), 571-581.
[http://dx.doi.org/10.1136/thx.23.6.571] [PMID: 5304705]
[19]
Rees, H.A.; Williams, D.A. Long-term steroid therapy in chronic intractable asthma. A study of 317 adult asthmatics on continuous steroid therapy for an average period of 2 1/2 years. BMJ, 1962, 1(5292), 1575-1579.
[http://dx.doi.org/10.1136/bmj.1.5292.1575] [PMID: 14490989]
[20]
Lieberman, P.; Patterson, R.; Kunske, R. Complications of long-term steroid therapy for asthma. J. Allergy Clin. Immunol., 1972, 49(6), 329-336.
[http://dx.doi.org/10.1016/0091-6749(72)90131-5] [PMID: 5025095]
[21]
Pearson, R.S.B.; Baylis, J.H.; Smellie, H.C. Treatment of chronic asthma with prednisolone and the newer steroids. BMJ, 1961, 1(5222), 315-319.
[http://dx.doi.org/10.1136/bmj.1.5222.315] [PMID: 13733794]
[22]
Fitzsimons, R.; Grammer, L.C.; Halwig, J.M.; Aksamit, T.; Patterson, R. Prevalence of adverse effects in corticosteroid dependent asthmatics. Allergy Asthma Proc., 1988, 9(2), 157-162.
[http://dx.doi.org/10.2500/108854188778994922] [PMID: 3393124]
[23]
Zazzali, J.L.; Broder, M.; Chang, E. Oral corticosteroid use increases the risk of glucocorticoid-related adverse events in asthmatics. J. Allergy Clin. Immunol., 2012, 129(2), AB74.
[http://dx.doi.org/10.1016/j.jaci.2011.12.600]
[24]
Zazzali, J.L.; Broder, M.S.; Omachi, T.A.; Chang, E.; Sun, G.H.; Raimundo, K. Risk of corticosteroid-related adverse events in asthma patients with high oral corticosteroid use. Allergy Asthma Proc., 2015, 36(4), 268-274.
[http://dx.doi.org/10.2500/aap.2015.36.3863] [PMID: 26108084]
[25]
Chanarin, N.; Johnston, S.L. Leukotrienes as a target in asthma therapy. Drugs, 1994, 47(1), 12-24.
[http://dx.doi.org/10.2165/00003495-199447010-00002] [PMID: 7510618]
[26]
Simons, F.E.R. Is antihistamine (H 1 -receptor antagonist) therapy useful in clinical asthma? Clin. Exp. Allergy, 1999, 29(S3), 98-104.
[http://dx.doi.org/10.1046/j.1365-2222.1999.0290s3098.x] [PMID: 10444221]
[27]
Vogelberg, C.; Goldstein, S.; Graham, L.; Kaplan, A.; de la Hoz, A.; Hamelmann, E. A comparison of tiotropium, long-acting β2-agonists and leukotriene receptor antagonists on lung function and exacerbations in paediatric patients with asthma. Respir. Res., 2020, 21(1), 19.
[http://dx.doi.org/10.1186/s12931-020-1282-9] [PMID: 31931792]
[28]
Fanta, C.H.; Rossing, T.H.; McFadden, E.R. Treatment of acute asthma. Am. J. Med., 1986, 80(1), 5-10.
[http://dx.doi.org/10.1016/0002-9343(86)90041-0] [PMID: 3510540]
[29]
Kistemaker, L.E.M.; Oenema, T.A.; Meurs, H.; Gosens, R. Regulation of airway inflammation and remodeling by muscarinic receptors: Perspectives on anticholinergic therapy in asthma and COPD. Life Sci., 2012, 91(21-22), 1126-1133.
[http://dx.doi.org/10.1016/j.lfs.2012.02.021] [PMID: 22406302]
[30]
D’Amato, M.; Vitale, C.; Molino, A.; Lanza, M.; D’Amato, G. Anticholinergic drugs in asthma therapy. Curr. Opin. Pulm. Med., 2017, 23(1), 103-108.
[http://dx.doi.org/10.1097/MCP.0000000000000344] [PMID: 27820743]
[31]
Nathan, R.A. Anti-leukotriene agents: A new direction in asthma therapy. J. Asthma, 1996, 33(6), 353-366.
[http://dx.doi.org/10.3109/02770909609068181] [PMID: 8968291]
[32]
Liu, M.; Yokomizo, T. The role of leukotrienes in allergic diseases. Allergol. Int., 2015, 64(1), 17-26.
[http://dx.doi.org/10.1016/j.alit.2014.09.001] [PMID: 25572555]
[33]
Jo-Watanabe, A.; Okuno, T.; Yokomizo, T. The role of leukotrienes as potential therapeutic targets in allergic disorders. Int. J. Mol. Sci., 2019, 20(14), 3580.
[http://dx.doi.org/10.3390/ijms20143580] [PMID: 31336653]
[34]
Israel, E.; Dermarkarian, R.; Rosenberg, M.; Sperling, R.; Taylor, G.; Rubin, P.; Drazen, J.M. The effects of a 5-lipoxygenase inhibitor on asthma induced by cold, dry air. N. Engl. J. Med., 1990, 323(25), 1740-1744.
[http://dx.doi.org/10.1056/NEJM199012203232505] [PMID: 2247106]
[35]
Misson, J.; Clark, W.; Kendall, M.J. Therapeutic advances: Leukotriene antagonists for the treatment of asthma. J. Clin. Pharm. Ther., 1999, 24(1), 17-22.
[http://dx.doi.org/10.1046/j.1365-2710.1999.00191.x] [PMID: 10319903]
[36]
Rådmark, O.; Malmsten, C.; Samuelsson, B.; Goto, G.; Marfat, A.; Corey, E.J.; Leukotriene, A.; Leukotriene, A. Isolation from human polymorphonuclear leukocytes. J. Biol. Chem., 1980, 255(24), 11828-11831.
[http://dx.doi.org/10.1016/S0021-9258(19)70208-7] [PMID: 6254983]
[37]
Camp, R.D.R.; Coutts, A.A.; GreavesM, M.W.; Kay, A.B.; Walport, M.J. Responses of human skin to intradermal injection of leukotrienes C4, D4 and B4. Br. J. Pharmacol., 1983, 80(3), 497-502.
[http://dx.doi.org/10.1111/j.1476-5381.1983.tb10721.x] [PMID: 6315118]
[38]
Bruno, F.; Spaziano, G.; Liparulo, A.; Roviezzo, F.; Nabavi, S.M.; Sureda, A.; Filosa, R.; D’Agostino, B. Recent advances in the search for novel 5-lipoxygenase inhibitors for the treatment of asthma. Eur. J. Med. Chem., 2018, 153, 65-72.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.020] [PMID: 29133059]
[39]
Gür, Z.T.; Çalışkan, B.; Banoglu, E. Drug discovery approaches targeting 5-lipoxygenase-activating protein (FLAP) for inhibition of cellular leukotriene biosynthesis. Eur. J. Med. Chem., 2018, 153, 34-48.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.019] [PMID: 28784429]
[40]
Wenzel, S.E. Antileukotriene drugs in the management of asthma. JAMA, 1998, 280(24), 2068-2069.
[http://dx.doi.org/10.1001/jama.280.24.2068] [PMID: 9875862]
[41]
Yamauchi, K.; Ogasawara, M. The role of histamine in the pathophysiology of asthmaand the clinical efficacy of antihistamines in asthma therapy. Int. J. Mol. Sci., 2019, 20(7), 1733.
[http://dx.doi.org/10.3390/ijms20071733] [PMID: 30965592]
[42]
Baççıoğlu, A.; Yorgancioglu, A.; Cingi, C.; Çuhadaroglu, C. Role of leukotriene antagonists and antihistamines in treatment of allergic rhinitis and asthma comorbidity. Internet J. Medical Update., 2013, 3(1), 34-39.
[http://dx.doi.org/10.2399/jmu.2013001008]
[43]
2022 GINA Report, Global Strategy for Asthma Management and Prevention. 2022. Available from: http://www.ginasthma.org/
[44]
Mansour, E.; Nassar, I.F.; Mekawey, A.A.I.; Mekawey, A.A. Synthesis of some new pyrazoline-based thiazole derivatives and evaluation of their antimicrobial, antifungal, and anticancer activities. Russ. J. Bioorganic Chem., 2020, 46(3), 382-392.
[http://dx.doi.org/10.1134/S1068162020030061]
[45]
Prachayasittikul, S.; Pingaew, R.; Worachartcheewan, A.; Sinthupoom, N.; Prachayasittikul, V.; Ruchirawat, S.; Prachayasittikul, V. Roles of pyridine and pyrimidine derivatives as privileged scaffolds in anticancer agents. Mini Rev. Med. Chem., 2017, 17(10), 869-901.
[PMID: 27670581]
[46]
Budriesi, R.; Ioan, P.; Locatelli, A.; Cosconati, S.; Leoni, A.; Ugenti, M.P.; Andreani, A.; Di Toro, R.; Bedini, A.; Spampinato, S.; Marinelli, L.; Novellino, E.; Chiarini, A. Imidazo[2,1-b]thiazole system: A scaffold endowing dihydropyridines with selective cardiodepressant activity. J. Med. Chem., 2008, 51(6), 1592-1600.
[http://dx.doi.org/10.1021/jm070681+] [PMID: 18303827]
[47]
Mak, J.Y.; Xu, W.; Fairlie, D.P. Thiazoles in peptides and peptidomimetics. In: Peptidomimetics I. Topics in Heterocyclic Chemistry; Lubell, W., Ed.; Springer: Cham, 2015; pp. 235-266.
[48]
Nayyar, A.; Jain, R. Recent advances in new structural classes of anti-tuberculosis agents. Curr. Med. Chem., 2005, 12(16), 1873-1886.
[http://dx.doi.org/10.2174/0929867054546654] [PMID: 16101507]
[49]
Salem, M.S.; Sakr, S.I.; El-Senousy, W.M.; Madkour, H.M.F. Synthesis, antibacterial, and antiviral evaluation of new heterocycles containing the pyridine moiety. Arch. Pharm., 2013, 346(10), 766-773.
[http://dx.doi.org/10.1002/ardp.201300183] [PMID: 24105721]
[50]
Banoglu, E.; Çalışkan, B.; Luderer, S.; Eren, G.; Özkan, Y.; Altenhofen, W.; Weinigel, C.; Barz, D.; Gerstmeier, J.; Pergola, C.; Werz, O. Identification of novel benzimidazole derivatives as inhibitors of leukotriene biosynthesis by virtual screening targeting 5-lipoxygenase-activating protein (FLAP). Bioorg. Med. Chem., 2012, 20(12), 3728-3741.
[http://dx.doi.org/10.1016/j.bmc.2012.04.048] [PMID: 22607880]
[51]
Ferguson, A.D.; McKeever, B.M.; Xu, S.; Wisniewski, D.; Miller, D.K.; Yamin, T.T.; Spencer, R.H.; Chu, L.; Ujjainwalla, F.; Cunningham, B.R.; Evans, J.F.; Becker, J.W. Crystal structure of inhibitor-bound human 5-lipoxygenase-activating protein. Science, 2007, 317(5837), 510-512.
[http://dx.doi.org/10.1126/science.1144346] [PMID: 17600184]
[52]
Hori, T.; Ishijima, J.; Yokomizo, T.; Ago, H.; Shimizu, T.; Miyano, M. Crystal structure of anti-configuration of indomethacin and leukotriene B4 12-hydroxydehydrogenase/15-oxo-prostaglandin 13-reductase complex reveals the structural basis of broad spectrum indomethacin efficacy. J. Biochem., 2006, 140(3), 457-466.
[http://dx.doi.org/10.1093/jb/mvj176] [PMID: 16916844]
[53]
Shimamura, T.; Shiroishi, M.; Weyand, S.; Tsujimoto, H.; Winter, G.; Katritch, V.; Abagyan, R.; Cherezov, V.; Liu, W.; Han, G.W.; Kobayashi, T.; Stevens, R.C.; Iwata, S. Structure of the human histamine H1 receptor complex with doxepin. Nature, 2011, 475(7354), 65-70.
[http://dx.doi.org/10.1038/nature10236] [PMID: 21697825]
[54]
Morris, G.M.; Goodsell, D.S.; Halliday, R.S.; Huey, R.; Hart, W.E.; Belew, R.K.; Olson, A.J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem., 1998, 19(14), 1639-1662.
[http://dx.doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639:AID-JCC10>3.0.CO;2-B]
[55]
Rizvi, S.M.; Shakil, S.; Haneef, M. A simple click by click protocol to perform docking: AutoDock 4.2 made easy for non-bioinformaticians. EXCLI J., 2013, 12, 831-857.
[PMID: 26648810]
[56]
Jiménez, J.; Škalič, M.; Martínez-Rosell, G.; De Fabritiis, G. KDEEP: Protein-ligand absolute binding affinity prediction via 3D-convolutional neural networks. J. Chem. Inf. Model., 2018, 58(2), 287-296.
[http://dx.doi.org/10.1021/acs.jcim.7b00650] [PMID: 29309725]
[57]
Walters, W.P.; Stahl, M.T.; Murcko, M.A. Virtual screening-an overview. Drug Discov. Today, 1998, 3(4), 160-178.
[http://dx.doi.org/10.1016/S1359-6446(97)01163-X]
[58]
Furniss, B.S.; Hannaford, A.J.; Smith, P.W.G.; Tatchell, A.R. Vogel’s Textbook of Practical Organic Chemistry, 5th ed; Pearson Publication, 1989, pp. 708-709.
[59]
Fedan, J.S.; Frazer, D.G. Influence of epithelium on the reactivity of guinea pig isolated, perfused trachea to bronchoactive drugs. J. Pharmacol. Exp. Ther., 1992, 262(2), 741-750.
[PMID: 1501119]