miRNA as Drug: Antagomir and Beyond

Page: [462 - 465] Pages: 4

  • * (Excluding Mailing and Handling)

Abstract

MicroRNA (miRNA) are small, single-stranded, non-coding RNA molecules containing 20 to 25 nucleotides, present in all body fluids; they can be used as biomarkers, but much more than this as a therapy to replace missing protein or to downregulate excess or aberrant synthesis; here we report possible insight to future studies, needed in this exciting field.

[1]
Jones K, Nourse JP, Keane C, Bhatnagar A, Gandhi MK. Plasma microRNA are disease response biomarkers in classical Hodgkin lymphoma. Clin Cancer Res 2014; 20(1): 253-64.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-1024] [PMID: 24222179]
[2]
Giannopoulou L, Zavridou M, Kasimir-Bauer S, Lianidou ES. Liquid biopsy in ovarian cancer: the potential of circulating miRNAs and exosomes. Transl Res 2019; 205: 77-91.
[http://dx.doi.org/10.1016/j.trsl.2018.10.003] [PMID: 30391474]
[3]
Piao XM, Cha EJ, Yun SJ, Kim WJ. Role of exosomal miRNA in bladder cancer: A promising liquid biopsy biomarker. Int J Mol Sci 2021; 22(4): 1713.
[http://dx.doi.org/10.3390/ijms22041713] [PMID: 33567779]
[4]
Cannataro R, Carbone L, Petro JL, et al. Sarcopenia: Etiology, nutritional approaches, and miRNAs. Int J Mol Sci 2021; 22(18): 9724.
[http://dx.doi.org/10.3390/ijms22189724]
[5]
Cione E, Cannataro R, Gallelli L, De Sarro G, Caroleo MC. Exosome microRNAs in metabolic syndrome as tools for the early monitoring of diabetes and possible therapeutic options. Pharmaceuticals (Basel) 2021; 14(12): 1257.
[http://dx.doi.org/10.3390/ph14121257] [PMID: 34959658]
[6]
Tingö L, Ahlberg E, Johansson L, et al. Non-Coding RNAs in human breast milk: A systematic review. Front Immunol 2021; 12: 725323.
[http://dx.doi.org/10.3389/fimmu.2021.725323]
[7]
Simonson B, Das S. MicroRNA Therapeutics: the Next Magic Bullet? Mini Rev Med Chem 2015; 15(6): 467-74.
[http://dx.doi.org/10.2174/1389557515666150324123208] [PMID: 25807941]
[8]
Deprey K, Batistatou N, Kritzer JA. A critical analysis of methods used to investigate the cellular uptake and subcellular localization of RNA therapeutics. Nucleic Acids Res 2020; 48(14): 7623-39.
[http://dx.doi.org/10.1093/nar/gkaa576] [PMID: 32644123]
[9]
Saliminejad K, Khorram Khorshid HR, Soleymani Fard S, Ghaffari SH. An overview of microRNAs: Biology, functions, therapeutics, and analysis methods. J Cell Physiol 2019; 234(5): 5451-65.
[http://dx.doi.org/10.1002/jcp.27486] [PMID: 30471116]
[10]
Cannataro R, Perri M, Gallelli L, Caroleo MC, De Sarro G, Cione E. Ketogenic diet acts on body remodeling and microRNAs expression profile. MicroRNA 2019; 8(2): 116-26.
[http://dx.doi.org/10.2174/2211536608666181126093903] [PMID: 30474543]
[11]
Cannataro R, Fazio A, La Torre C, Caroleo MC, Cione E. Polyphenols in the mediterranean diet: From dietary sources to microRNA modulation. Antioxidants 2021; 10(2): 328.
[http://dx.doi.org/10.3390/antiox10020328]
[12]
Domańska-Senderowska D, Laguette MJ, Jegier A, Cięszczyk P, September A, Brzeziańska-Lasota E. MicroRNA profile and adaptive response to exercise training: A review. Int J Sports Med 2019; 40(4): 227-35.
[http://dx.doi.org/10.1055/a-0824-4813] [PMID: 30791082]
[13]
Zhang L, Peng H, Zhang W, Li Y, Liu L, Leng T. Yeast cell wall particle mediated nanotube-RNA delivery system loaded with miR365 antagomir for post-traumatic osteoarthritis therapy via oral route. Theranostics 2020; 10(19): 8479-93.
[http://dx.doi.org/10.7150/thno.46761] [PMID: 32754258]
[14]
Roberts TC, Langer R, Wood MJA. Advances in oligonucleotide drug delivery. Nat Rev Drug Discov 2020; 19(10): 673-94.
[http://dx.doi.org/10.1038/s41573-020-0075-7] [PMID: 32782413]
[15]
Osborn MF, Khvorova A. Improving siRNA delivery in vivo through lipid conjugation. Nucleic Acid Ther 2018; 28(3): 128-36.
[http://dx.doi.org/10.1089/nat.2018.0725] [PMID: 29746209]
[16]
Gallant-Behm CL, Piper J, Lynch JM, et al. A MicroRNA-29 mimic (Remlarsen) represses extracellular matrix expression and fibropla-sia in the skin. J Invest Dermatol 2019; 139(5): 1073-81.
[http://dx.doi.org/10.1016/j.jid.2018.11.007] [PMID: 30472058]
[17]
Huang Y. Preclinical and clinical advances of GalNAc-decorated nucleic acid therapeutics. Mol Ther Nucleic Acids 2017; 6: 116-32.
[http://dx.doi.org/10.1016/j.omtn.2016.12.003] [PMID: 28325278]
[18]
Drenth JPH, Schattenberg JM. The nonalcoholic steatohepatitis (NASH) drug development graveyard: Established hurdles and planning for future success. Expert Opin Investig Drugs 2020; 29(12): 1365-75.
[http://dx.doi.org/10.1080/13543784.2020.1839888] [PMID: 33074035]
[19]
Zhou J, Rossi J. Aptamers as targeted therapeutics: Current potential and challenges. Nat Rev Drug Discov 2017; 16(3): 181-202.
[http://dx.doi.org/10.1038/nrd.2016.199] [PMID: 27807347]
[20]
Russo V, Paciocco A, Affinito A, et al. Aptamer-miR-34c conjugate affects cell proliferation of non-small-cell lung cancer cells. Mol Ther Nucleic Acids 2018; 13: 334-46.
[http://dx.doi.org/10.1016/j.omtn.2018.09.016] [PMID: 30340138]
[21]
Lai X, Eberhardt M, Schmitz U, Vera J. Systems biology-based investigation of cooperating microRNAs as monotherapy or adjuvant therapy in cancer. Nucleic Acids Res 2019; 47(15): 7753-66.
[http://dx.doi.org/10.1093/nar/gkz638] [PMID: 31340025]
[22]
Barta T, Peskova L, Hampl A. miRNAsong: A web-based tool for generation and testing of miRNA sponge constructs in silico. Sci Rep 2016; 6(1): 36625.
[http://dx.doi.org/10.1038/srep36625] [PMID: 27857164]
[23]
Meng L, Liu C, Lü J, et al. Small RNA zippers lock miRNA molecules and block miRNA function in mammalian cells. Nat Commun 2017; 8(1): 13964.
[http://dx.doi.org/10.1038/ncomms13964] [PMID: 28045030]
[24]
Yoo J, Hajjar RJ, Jeong D. Generation of efficient miRNA inhibitors using tough decoy constructs. Methods Mol Biol 2017; 1521: 41-53.
[http://dx.doi.org/10.1007/978-1-4939-6588-5_3] [PMID: 27910040]
[25]
Hong DS, Kang YK, Borad M, et al. Phase 1 study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours. Br J Cancer 2020; 122(11): 1630-7.
[http://dx.doi.org/10.1038/s41416-020-0802-1] [PMID: 32238921]
[26]
Valentijn LJ, Bolhuis PA, Zorn I, et al. The peripheral myelin gene PMP–22/GAS–3 is duplicated in Charcot–Marie–Tooth disease type 1A. Nat Genet 1992; 1(3): 166-70.
[http://dx.doi.org/10.1038/ng0692-166] [PMID: 1303229]