Hu, J. Plant peroxisomes: Small organelles with versatility and complexity. J. Integr. Plant Biol., 2019, 61(7), jipb.12839. [http://dx.doi.org/10.1111/jipb.12839] [PMID: 31099462]
Ebeed, H.T.; El-helely, A.A. Programmed cell death in plants: Insights into developmental and stress-induced cell death. Curr. Protein Pept. Sci., 2021, 22(12), 873-889. [http://dx.doi.org/10.2174/1389203722666211109102209] [PMID: 34751115]
[5]
Schumann, U.; Prestele, J.; O’Geen, H.; Brueggeman, R.; Wanner, G.; Gietl, C. Requirement of the C3 HC4 zinc RING finger of the Arabidopsis PEX10 for photorespiration and leaf peroxisome contact with chloroplasts. Proc. Natl. Acad. Sci. USA, 2007, 104(3), 1069-1074. [http://dx.doi.org/10.1073/pnas.0610402104] [PMID: 17215364]
[6]
Ferreira, A.R.; Marques, M.; Ramos, B.; Kagan, J.C.; Ribeiro, D. Emerging roles of peroxisomes in viral infections. Trends Cell Biol., 2022, 32(2), 124-139. [http://dx.doi.org/10.1016/j.tcb.2021.09.010] [PMID: 34696946]
[7]
Cook, K.C.; Moreno, J.A.; Jean Beltran, P.M.; Cristea, I.M. Peroxisome plasticity at the virus–host interface. Trends Microbiol., 2019, 27(11), 906-914. [http://dx.doi.org/10.1016/j.tim.2019.06.006] [PMID: 31331665]
[8]
Schrader, M.; Yoon, Y. Mitochondria and peroxisomes: Are the ‘big brother’ and the ‘little sister’ closer than assumed? BioEssays, 2007, 29(11), 1105-1114. [http://dx.doi.org/10.1002/bies.20659] [PMID: 17935214]
[9]
Antonenkov, V.D.; Hiltunen, J.K. Transfer of metabolites across the peroxisomal membrane. Biochim. Biophys. Acta Mol. Basis Dis., 2012, 1822(9), 1374-1386. [http://dx.doi.org/10.1016/j.bbadis.2011.12.011] [PMID: 22206997]
[10]
Rottensteiner, H.; Theodoulou, F.L. The ins and outs of peroxisomes: Co-ordination of membrane transport and peroxisomal metabolism. Biochim. Biophys. Acta Mol. Cell Res., 2006, 1763(12), 1527-1540. [http://dx.doi.org/10.1016/j.bbamcr.2006.08.012] [PMID: 17010456]
[11]
Charton, L.; Plett, A.; Linka, N. Plant peroxisomal solute transporter proteins. J. Integr. Plant Biol., 2019, 61(7), 817-835. [PMID: 30761734]
[12]
Hoepfner, D.; Schildknegt, D.; Braakman, I.; Philippsen, P.; Tabak, H.F. Contribution of the endoplasmic reticulum to peroxisome formation. Cell, 2005, 122(1), 85-95. [http://dx.doi.org/10.1016/j.cell.2005.04.025] [PMID: 16009135]
[13]
Cross, L.L.; Ebeed, H.T.; Baker, A. Peroxisome biogenesis, protein targeting mechanisms and PEX gene functions in plants. Biochim. Biophys. Acta Mol. Cell Res., 2016, 1863(5), 850-862. [http://dx.doi.org/10.1016/j.bbamcr.2015.09.027] [PMID: 26408938]
[14]
Schrader, M.; Costello, J.L.; Godinho, L.F.; Azadi, A.S.; Islinger, M. Proliferation and fission of peroxisomes-An update. Biochim. Biophys. Acta Mol. Cell Res., 2016, 1863(5), 971-983. [http://dx.doi.org/10.1016/j.bbamcr.2015.09.024] [PMID: 26409486]
[15]
Yuan, W.; Veenhuis, M.; van der Klei, I.J. The birth of yeast peroxisomes. Biochim Biophys Acta (BBA). Mol. Cell Res., 2016, 1863, 902-910.
[16]
Yoshida, H. ER stress response, peroxisome proliferation, mitochondrial unfolded protein response and Golgi stress response. IUBMB Life, 2009, 61(9), 871-879. [http://dx.doi.org/10.1002/iub.229] [PMID: 19504573]
[17]
Hua, R.; Gidda, S.K.; Aranovich, A.; Mullen, R.T.; Kim, P.K. Multiple domains in PEX16 mediate its trafficking and recruitment of peroxisomal proteins to the ER. Traffic, 2015, 16(8), 832-852. [http://dx.doi.org/10.1111/tra.12292] [PMID: 25903784]
Schuhmann, H.; Huesgen, P.F.; Gietl, C.; Adamska, I. The DEG15 serine protease cleaves peroxisomal targeting signal 2-containing proteins in Arabidopsis. Plant Physiol., 2008, 148(4), 1847-1856. [http://dx.doi.org/10.1104/pp.108.125377] [PMID: 18952862]
[20]
Kataya, A.R.A.; Heidari, B.; Hagen, L.; Kommedal, R.; Slupphaug, G.; Lillo, C. Protein phosphatase 2A holoenzyme is targeted to peroxisomes by piggybacking and positively affects peroxisomal β-oxidation. Plant Physiol., 2015, 167(2), 493-506. [http://dx.doi.org/10.1104/pp.114.254409] [PMID: 25489022]
[21]
Glover, J.R.; Andrews, D.W.; Rachubinski, R.A. Saccharomyces cerevisiae peroxisomal thiolase is imported as a dimer. Proc. Natl. Acad. Sci. USA, 1994, 91(22), 10541-10545. [http://dx.doi.org/10.1073/pnas.91.22.10541] [PMID: 7937990]
[22]
Nayidu, N.K.; Wang, L.; Xie’, W.; Zhang, C.; Fan, C.; Lian, X.; Zhang, Q.; Xiong, L. Comprehensive sequence and expression profile analysis of PEX11 gene family in rice. Gene, 2008, 412(1-2), 59-70. [http://dx.doi.org/10.1016/j.gene.2008.01.006] [PMID: 18291602]
[23]
Ebeed, H.T.; Stevenson, S.R.; Cuming, A.C.; Baker, A. Conserved and differential transcriptional responses of peroxisome associated pathways to drought, dehydration and ABA. J. Exp. Bot., 2018, 69(20), 4971-4985. [http://dx.doi.org/10.1093/jxb/ery266] [PMID: 30032264]
[24]
Mitsuya, S.; El-Shami, M.; Sparkes, I.A.; Charlton, W.L.; De Marcos Lousa, C.; Johnson, B.; Baker, A. Salt stress causes peroxisome proliferation, but inducing peroxisome proliferation does not improve NaCl tolerance in Arabidopsis thaliana. PLoS One, 2010, 5(2)e9408 [http://dx.doi.org/10.1371/journal.pone.0009408] [PMID: 20195524]
Ebeed, H.T. Bioinformatics Studies on the Identification of New Players and Candidate Genes to Improve Brassica Response to Abiotic Stress. In: Plant Fam Brassicaceae; Hassanuzzaman, M., Ed.; Springer: Singapore, 2020; pp. 483-496. [http://dx.doi.org/10.1007/978-981-15-6345-4_18]
[27]
Ebeed, H.T. Omics Approaches for Developing Abiotic Stress Tolerance in Wheat. In: Wheat Production in Changing Environments; Hassanuzzaman, M.; Nahar, K.; Hossain, M., Eds.; Springer: Singapore, 2019; pp. 443-463. [http://dx.doi.org/10.1007/978-981-13-6883-7_17]