2-Guanidinobenzazoles as Building Blocks to Afford Biologically Active Derivatives

Page: [38 - 54] Pages: 17

  • * (Excluding Mailing and Handling)

Abstract

1,3-Benzazoles (BZs) are interesting compounds in medicinal chemistry. For instance, compounds with the BZ nucleus exhibit diverse biological activities and some of them are broadly utilized in clinical applications. In this sense, medicinal chemists aim at the development of new procedures to synthesize these kinds of molecules. The 2-aminobenzimidazole 2ABI derivatives, such as Enviradine (antiviral), Astemizole (antihistaminic), and Albendazole (antimicrobial), which contain the intra-cyclic guanidine nucleus, are used in medicinal chemistry. The guanidine group, considered a super base, when bonded to a benzazole ring, results in the 2-guanidinobenzazoles (2GBZs), modifying the biological activity of these heterocycles. The structure of 2GBZs is of significance as the 10-π electron system of the aromatic benzazole ring is conjugated with the exocyclic guanidine group to acquire a planar delocalized structure. This class of molecules has at least four nitrogen atoms with free lone pairs and four labile hydrogen atoms, resulting in these compounds having amphoteric character. On the other hand, synthetic chemists have used 2GBZs as a building block to produce derivatives as medicinally important molecules. On these bases, in this work, we prepared a bibliographic review of the methodologies reported in the literature used in the synthesis of 2GBZ derivatives of pharmacological interest. We focused the investigation on 2-guanidinebenzoxazol (2GBO), 2-guanidinebenzothiazol (2GBT) and 2-guanidinebenzimidazole (2GBI) as building blocks. We found that compounds derivatives were N-substituted-2GBZs, 2-(pyrimidyl)-ABZs and 1,3,5-triazino[1,2-a]-BZs, which are described chronologically. This work will help searchers related to bioorganic chemistry, inorganic chemistry, medicinal chemistry and pharmaceutical industry in the recent methodologies to synthetize 2-guanidinobenzazole derivatives to be proposed as materials in the different areas. This topic will provide information on the utility for medicinal chemists dedicated to the design and synthesis of this class of compounds to be tested with respect to their biological activities and be proposed as new pharmacophores.

Graphical Abstract

[1]
Eckert-Maksić, M.; Glasovac, Z.; Trošelj, P.; Kütt, A.; Rodima, T.; Koppel, I.; Koppel, I.A. Basicity of guanidines with heteroalkyl side chains in acetonitrile. Eur. J. Org. Chem., 2008, 2008(30), 5176-5184.
[http://dx.doi.org/10.1002/ejoc.200800673]
[2]
(a) Yamada, T.; Liu, X.; Englert, U.; Yamane, H.; Dronskowski, R. Solid-state structure of free base guanidine achieved at last. Chemistry, 2009, 15(23), 5651-5655.
[http://dx.doi.org/10.1002/chem.200900508] [PMID: 19388036];
(b) Dworkin, A.; Naumann, R.; Seigfred, C.; Karty, J.M.; Mo, Y. Y-aromaticity: Why is the trimethylenemethane dication more stable than the butadienyl dication? J. Org. Chem., 2005, 70(19), 7605-7616.
[http://dx.doi.org/10.1021/jo0508090] [PMID: 16149789]
[3]
Greenhill, J.V.; Lue, P. Amidines and guanidines in medicinal chemistry. Prog. Med. Chem., 1993, 30, 203-326.
[http://dx.doi.org/10.1016/S0079-6468(08)70378-3] [PMID: 7905649]
[4]
Muttathukattil, A.N.; Srinivasan, S.; Halder, A.; Reddy, G. Role of guanidiniumcarboxylate ion interaction in enzyme inhibition with implications for drug design. J. Phys. Chem. B, 2019, 123(44), 9302-9311.
[http://dx.doi.org/10.1021/acs.jpcb.9b06130] [PMID: 31597039]
[5]
Gilbert, P.; Moore, L.E. Cationic antiseptics: Diversity of action under a common epithet. J. Appl. Microbiol., 2005, 99(4), 703-715.
[http://dx.doi.org/10.1111/j.1365-2672.2005.02664.x] [PMID: 16162221]
[6]
Carmona-Ribeiro, A.; de Melo Carrasco, L. Cationic antimicrobial polymers and their assemblies. Int. J. Mol. Sci., 2013, 14(5), 9906-9946.
[http://dx.doi.org/10.3390/ijms14059906] [PMID: 23665898]
[7]
Broxton, P.; Woodcock, P.M.; Heatley, F.; Gilbert, P. Interaction of some polyhexamethylene biguanides and membrane phospholipids in Escherichia coli. J. Appl. Bacteriol., 1984, 57(1), 115-124.
[http://dx.doi.org/10.1111/j.1365-2672.1984.tb02363.x] [PMID: 6386785]
[8]
Berlinck, R.G.S.; Berlinck, R.G.S.; Berlinck, R.G.S. Natural guanidine derivatives. Nat. Prod. Rep., 1999, 16(3), 339-365.
[http://dx.doi.org/10.1039/a900338j]
[9]
Akasaka, N.; Fujiwara, S. The therapeutic and nutraceutical potential of agmatine, and its enhanced production using Aspergillus oryzae. Amino Acids, 2020, 52(2), 181-197.
[http://dx.doi.org/10.1007/s00726-019-02720-7] [PMID: 30915570]
[10]
Wróbel, A.; Arciszewska, K.; Maliszewski, D.; Drozdowska, D. Trimethoprim and other nonclassical antifolates an excellent template for searching modifications of dihydrofolate reductase enzyme inhibitors. J. Antibiot., 2020, 73(1), 5-27.
[http://dx.doi.org/10.1038/s41429-019-0240-6] [PMID: 31578455]
[11]
Saczewski, F.; Balewski, Ł. Biological activities of guanidine compounds. Expert Opin. Ther. Pat., 2009, 19(10), 1417-1448.
[http://dx.doi.org/10.1517/13543770903216675] [PMID: 19780701]
[12]
Sączewski, F.; Balewski, Ł. Biological activities of guanidine compounds, 2008 – 2012 update. Expert Opin. Ther. Pat., 2013, 23(8), 965-995.
[http://dx.doi.org/10.1517/13543776.2013.788645] [PMID: 23617396]
[13]
Berlinck, R.G.S.; Burtoloso, A.C.B.; Trindade-Silva, A.E.; Romminger, S.; Morais, R.P.; Bandeira, K.; Mizuno, C.M. The chemistry and biology of organic guanidine derivatives. Nat. Prod. Rep., 2010, 27(12), 1871-1907.
[http://dx.doi.org/10.1039/c0np00016g] [PMID: 20957265]
[14]
Castagnolo, D.; Schenone, S.; Botta, M. Guanylated diamines, triamines, and polyamines: chemistry and biological properties. Chem. Rev., 2011, 111(9), 5247-5300.
[http://dx.doi.org/10.1021/cr100423x] [PMID: 21657224]
[15]
Taylor, J.E.; Bull, S.D.; Williams, J.M.J. Amidines, isothioureas, and guanidines as nucleophilic catalysts. Chem. Soc. Rev., 2012, 41(6), 2109-2121.
[http://dx.doi.org/10.1039/c2cs15288f] [PMID: 22234578]
[16]
Brogden, R.N.; Carmine, A.A.; Heel, R.C.; Speight, T.M.; Avery, G.S. Trimethoprim. Drugs, 1982, 23(6), 405-430.
[http://dx.doi.org/10.2165/00003495-198223060-00001] [PMID: 7049657]
[17]
Oliver, D.W.; Dormehl, I.C.; Wikberg, J.E.S.; Dambrova, M. Guanidine: From molecule to primate. Med. Chem. Res., 2004, 13(6-7), 427-438.
[http://dx.doi.org/10.1007/s00044-004-0046-2]
[18]
Buxbaum, A.; Kratzer, C.; Graninger, W.; Georgopoulos, A. Antimicrobial and toxicological profile of the new biocide Akacid plus(R). J. Antimicrob. Chemother., 2006, 58(1), 193-197.
[http://dx.doi.org/10.1093/jac/dkl206] [PMID: 16751199]
[19]
(a) Jeschke, P.; Nauen, R.; Beck, M.E. Nicotinic acetylcholine receptor agonists: A milestone for modern crop protection. Angew. Chem. Int. Ed., 2013, 52(36), 9464-9485.
[http://dx.doi.org/10.1002/anie.201302550] [PMID: 23934864];
(b) Yang, D.; Wan, C.; Xiao, Y.; Che, C.; Rui, C.; Qin, Z. Design, synthesis, and insecticidal activity of novel 1-alkoxy-2-nitroguanidines. RSC Advances, 2018, 8(4), 1838-1845.
[http://dx.doi.org/10.1039/C7RA11454K] [PMID: 35542565]
[20]
Ishikawa, T.; Kumamoto, T. Guanidines in organic synthesis. Synthesis, 2006, 2006(5), 737-752.
[http://dx.doi.org/10.1055/s-2006-926325]
[21]
Ishikawa, T. Superbases for Organic Synthesis: Guanidines, Amidines, Phosphazenes and Related Organocatalysts; John Wiley & Sons: West Sussex, 2009.
[http://dx.doi.org/10.1002/9780470740859]
[22]
Ishikawa, T. Guanidine Chemistry. Chem. Pharm. Bull., 2010, 58(12), 1555-1564.
[http://dx.doi.org/10.1248/cpb.58.1555] [PMID: 21139254]
[23]
Muller, G.W.; Walters, D.E.; DuBois, G.E.N. N′-disubstituted guanidine high-potency sweeteners. J. Med. Chem., 1992, 35(4), 740-743.
[http://dx.doi.org/10.1021/jm00082a015] [PMID: 1542101]
[24]
Nash, D.T. Clinical trial with guanabenz, a new antihypertensive agent. J. Clin. Pharmacol., 1973, 13(10), 416-421.
[PMID: 4583572]
[25]
Buchdunger, E.; Zimmermann, J.; Mett, H.; Meyer, T.; Müller, M.; Druker, B.J.; Lydon, N.B. Inhibition of the Abl protein-tyrosine kinase in vitro and in vivo by a 2-phenylaminopyrimidine derivative. Cancer Res., 1996, 56(1), 100-104.
[PMID: 8548747]
[26]
von Itzstein, M. The war against influenza: discovery and development of sialidase inhibitors. Nat. Rev. Drug Discov., 2007, 6(12), 967-974.
[http://dx.doi.org/10.1038/nrd2400] [PMID: 18049471]
[27]
Kim, S.H.; Semenya, D.; Castagnolo, D. Antimicrobial drugs bearing guanidine moieties: A review. Eur. J. Med. Chem., 2021, 216, 113293.
[http://dx.doi.org/10.1016/j.ejmech.2021.113293] [PMID: 33640673]
[28]
Berlinck, R.G.S.; Burtoloso, A.C.B.; Kossuga, M.H. The chemistry and biology of organic guanidine derivatives. Nat. Prod. Rep., 2008, 25(5), 919-954.
[http://dx.doi.org/10.1039/b507874c] [PMID: 18820759]
[29]
Berlinck, R.G.S.; Trindade-Silva, A.E.; Santos, M.F.C. The chemistry and biology of organic guanidine derivatives. Nat. Prod. Rep., 2012, 29(12), 1382-1406.
[http://dx.doi.org/10.1039/c2np20071f] [PMID: 22991131]
[30]
Shaw, J.W.; Grayson, D.H.; Rozas, I. Guanidines as reagents and catalysts I. In: Topics in heterocyclic chemistry; Selig, P., Ed.; Springer: Berlin, 2015; Vol. 50, .
[31]
Berlinck, R.G.S.; Romminger, S. The chemistry and biology of organic guanidine derivatives. Nat. Prod. Rep., 2016, 33, 456-490.
[http://dx.doi.org/10.1039/C5NP00108K] [PMID: 26689539]
[32]
Berlinck, R.G.S.; Bernardi, D.I.; Fill, T.; Fernandes, A.A.G.; Jurberg, I.D. The chemistry and biology of guanidine secondary metabolites. Nat. Prod. Rep., 2021, 38(3), 586-667.
[http://dx.doi.org/10.1039/D0NP00051E] [PMID: 33021301]
[33]
Selig, P. Guanidines as Reagents and Catalysts I. Top. Heterocycl. Chem., 2016, 50, 1-178.
[34]
Dong, S.; Feng, X.; Liu, X. Chiral guanidines and their derivatives in asymmetric synthesis. Chem. Soc. Rev., 2018, 47(23), 8525-8540.
[http://dx.doi.org/10.1039/C7CS00792B] [PMID: 30375584]
[35]
Cao, W.; Liu, X.; Feng, X. Chiral organobases: Properties and applications in asymmetric catalysis. Chin. Chem. Lett., 2018, 29(8), 1201-1208.
[http://dx.doi.org/10.1016/j.cclet.2018.05.041]
[36]
Chou, H.C.; Leow, D.; Tan, C.H. Recent advances in chiral guanidine-catalyzed enantioselective reactions. Chem. Asian J., 2019, 14(21), 3803-3822.
[http://dx.doi.org/10.1002/asia.201901183] [PMID: 31562680]
[37]
Coles, M.P. Application of neutral amidines and guanidines in coordination chemistry. Dalton Trans., 2006, (8), 985-1001.
[http://dx.doi.org/10.1039/b515490a] [PMID: 16474883]
[38]
Bailey, P.J.; Pace, S. The coordination chemistry of guanidines and guanidinates. Coord. Chem. Rev., 2001, 214(1), 91-141.
[http://dx.doi.org/10.1016/S0010-8545(00)00389-1]
[39]
Blondeau, P.; Segura, M.; Pérez-Fernández, R.; de Mendoza, J. Molecular recognition of oxoanions based on guanidinium receptors. Chem. Soc. Rev., 2007, 36(2), 198-210.
[http://dx.doi.org/10.1039/B603089K] [PMID: 17264923]
[40]
Edelmann, F.T. Lanthanide amidinates and guanidinates in catalysis and materials science: A continuing success story. Chem. Soc. Rev., 2012, 41(23), 7657-7672.
[http://dx.doi.org/10.1039/c2cs35180c] [PMID: 22777063]
[41]
Kiesewetter, M.K.; Shin, E.J.; Hedrick, J.L.; Waymouth, R.M. Organocatalysis: Opportunities and challenges for polymer synthesis. Macromolecules, 2010, 43(5), 2093-2107.
[http://dx.doi.org/10.1021/ma9025948]
[42]
Maksic, M.; Glasovac, Z. Preparation of N, N’, N’’-tris- (3- dimethylaminopropyl)-guanidine from carbodiimide and application in reactions of transesterifcation of oil. WO Patent 2005100306, 2005.
[43]
Manimala, J.C.; Anslyn, E.V. Solid-phase synthesis of guanidinium derivatives from thiourea and isothiourea functionalities. Eur. J. Org. Chem., 2002, 2002(23), 3909-3922.
[http://dx.doi.org/10.1002/1099-0690(200212)2002:23<3909::AIDEJOC3909>3.0.CO;2-J]
[44]
Katritzky, A.R.; Rogovoy, B.V. Recent developments in guanylating agents. ARKIVOC, 2005, 2005(4), 49-87.
[http://dx.doi.org/10.3998/ark.5550190.0006.406]
[45]
Suhs, T.; Konig, B. Synthesis of Guanidines in Solution. Mini Rev. Org. Chem., 2006, 3(4), 315-331.
[http://dx.doi.org/10.2174/157019306778742841]
[46]
Zhang, W.X.; Hou, Z. Catalytic addition of alkyne C–H, amine N–H, and phosphine P–H bonds to carbodiimides: An efficient route to propiolamidines, guanidines, and phosphaguanidines. Org. Biomol. Chem., 2008, 6(10), 1720-1730.
[http://dx.doi.org/10.1039/b800135a] [PMID: 18452004]
[47]
Kharul, R.K.; Goswami, A.; Gite, A.; Godha, A.K.; Jain, M.; Patel, P.R. Convenient synthesis of structurally novel 1,3‐disubstituted azetidine derivatives. Synth. Commun., 2008, 38(11), 1703-1717.
[http://dx.doi.org/10.1080/00397910801982340]
[48]
Lange, J.H.M.; den Hartog, A.P.; van der Neut, M.A.W.; van Vliet, B.J.; Kruse, C.G. Synthesis and SAR of 1,4,5,6-tetrahydropyridazines as potent cannabinoid CB1 receptor antagonists. Bioorg. Med. Chem. Lett., 2009, 19(19), 5675-5678.
[http://dx.doi.org/10.1016/j.bmcl.2009.08.007] [PMID: 19699640]
[49]
Bienemann, O.; Hoffmann, A.; Herres-Pawlis, S. (Guanidine) Copper complexes: structural variety and application in bioinorganic chemistry and catalysis. Rev. Inorg. Chem., 2011, 31(1), 83-108.
[http://dx.doi.org/10.1515/revic.2011.003]
[50]
Usachev, S.; Gridnev, A. Convenient preparation of bicyclic guanidines. Synth. Commun., 2011, 41(24), 3683-3688.
[http://dx.doi.org/10.1080/00397911.2010.519848]
[51]
Lange, J.H.M.; Verhoog, S.; Sanders, H.J.; van Loevezijn, A.; Kruse, C.G. A novel atom-efficient, one-pot synthesis of sulfonylguanidines and sulfamoylguanidines. Tetrahedron Lett., 2011, 52(25), 3198-3200.
[http://dx.doi.org/10.1016/j.tetlet.2011.04.031]
[52]
Chorvat, R.J.; Berbaum, J.; Seriacki, K.; McElroy, J.F. JD-5006 and JD-5037: Peripherally restricted (PR) cannabinoid-1 receptor blockers related to SLV-319 (Ibipi-nabant) as metabolic disorder therapeutics devoid of CNS liabilities. Bioorg. Med. Chem. Lett., 2012, 22(19), 6173-6180.
[http://dx.doi.org/10.1016/j.bmcl.2012.08.004] [PMID: 22959249]
[53]
Alonso-Moreno, C.; Antiñolo, A.; Carrillo-Hermosilla, F.; Otero, A. Guanidines: from classical approaches to efficient catalytic syntheses. Chem. Soc. Rev., 2014, 43(10), 3406-3425.
[http://dx.doi.org/10.1039/C4CS00013G] [PMID: 24626874]
[54]
Tan, D.; Mottillo, C.; Katsenis, A.D.; Štrukil, V.; Friščić, T. Development of C-N coupling using mechanochemistry: catalytic coupling of arylsulfonamides and car-bodiimides. Angew. Chem. Int. Ed., 2014, 53(35), 9321-9324.
[http://dx.doi.org/10.1002/anie.201404120] [PMID: 25044238]
[55]
Tahir, S.; Badshah, A.; Hussain, R.A. Guanidines from ‘toxic substances’ to compounds with multiple biological applications – Detailed outlook on synthetic proce-dures employed for the synthesis of guanidines. Bioorg. Chem., 2015, 59, 39-79.
[http://dx.doi.org/10.1016/j.bioorg.2015.01.006] [PMID: 25681571]
[56]
Zhang, W.X.; Xu, L.; Xi, Z. Recent development of synthetic preparation methods for guanidines via transition metal catalysis. Chem. Commun., 2015, 51(2), 254-265.
[http://dx.doi.org/10.1039/C4CC05291A] [PMID: 25298218]
[57]
Gu, Z.Y.; Liu, Y.; Wang, F.; Bao, X.; Wang, S.Y.; Ji, S.J. Cobalt(II)-catalyzed synthesis of sulfonyl guanidines via nitrene radical coupling with isonitriles: A combined experimental and computational study. ACS Catal., 2017, 7(6), 3893-3899.
[http://dx.doi.org/10.1021/acscatal.7b00798]
[58]
Zhang, Z.; Qiao, G.; Zhang, Z.; Huang, B.; Zhu, L.; Xiao, F. Palladium-catalyzed one-pot synthesis of N-sulfonyl, N-phosphoryl, and N-acyl guanidines. Synthesis, 2018, 50(2), 330-340.
[http://dx.doi.org/10.1055/s-0036-1588576]
[59]
Azzam, R.A. Tailored-design synthesis of sulfapyrimidine derivatives. J. Heterocycl. Chem., 2019, 56(2), 619-627.
[http://dx.doi.org/10.1002/jhet.3439]
[60]
Fang, Y.; Yang, J.M.; Zhang, R.; Wang, S.Y.; Ji, S.J. Cobalt-catalyzed condensation of sulfonyl azides with o -diisocyanoarenes and anilines: A new approach to N -sulfonyl guanidines. Org. Chem. Front., 2019, 6(19), 3383-3386.
[http://dx.doi.org/10.1039/C9QO00815B]
[61]
Hazarika, D.; Borah, A.J.; Phukan, P. Facile, catalyst-free cascade synthesis of sulfonyl guanidines via carbodiimide coupling with amines. Chem. Commun., 2019, 55(10), 1418-1421.
[http://dx.doi.org/10.1039/C8CC08564A] [PMID: 30640335]
[62]
Wang, F.; Yumaier, A.; Wusiman, A. Facile one-pot synthesis of tetrasubstituted N-sulfonylguanidines from sulfonamides and ureas. Monatsh. Chem., 2021, 152(8), 993-999.
[http://dx.doi.org/10.1007/s00706-021-02815-6]
[63]
Cruz, A.; Martínez, I.I.P.; Ramos-Organillo, A.A. Methods to Access 2-aminobenzimidazoles of Medicinal Importance. Curr. Org. Chem., 2020, 23(23), 2573-2597.
[http://dx.doi.org/10.2174/1385272823666191023150201]
[64]
Nguyen, T.V.; Blackledge, M.S.; Lindsey, E.A.; Minrovic, B.M.; Ackart, D.F.; Jeon, A.B.; Obregón-Henao, A.; Melander, R.J.; Basaraba, R.J.; Melander, C. The discovery of 2-aminobenzimidazoles that sensitize Mycobacterium smegmatis and M. tuberculosis to β-lactam antibiotics in a pattern distinct from β-lactamase Inhibitors. Angew. Chem. Int. Ed., 2017, 56(14), 3940-3944.
[http://dx.doi.org/10.1002/anie.201612006] [PMID: 28247991]
[65]
Nguyen, T.V.; Peszko, M.T.; Melander, R.J.; Melander, C. Using 2-aminobenzimidazole derivatives to inhibit Mycobacterium smegmatis biofilm formation. MedChemComm, 2019, 10(3), 456-459.
[http://dx.doi.org/10.1039/C9MD00025A] [PMID: 31015909]
[66]
Acerete, C.; Catalán, J.; Fabero, F.; Sánchez-Cabezudo, M.; Claramunt, R.M.; Elguero, J. Structure and Basicity of 2-Guanidiobenzimidazoles. Heterocycles, 1987, 26, 1581-1586.
[http://dx.doi.org/10.3987/R-1987-06-1581]
[67]
Gründemann, E.; Graubaum, H.; Martin, D.; Schiewald, E. NMR investigations on benzheteroazoles. 2—NMR investigations ofN-acylated 2-aminobenzimidazoles. Magn. Reson. Chem., 1986, 24(1), 21-30.
[http://dx.doi.org/10.1002/mrc.1260240107]
[68]
Bedford, G.R.; Taylor, P.J.; Webb, G.A. 15N NMR studies of guanidines. I—hydrogen bonding and electronic effects in conformationally flexible guanidines. Magn. Reson. Chem., 1995, 33(5), 383-388.
[http://dx.doi.org/10.1002/mrc.1260330510]
[69]
Andrade-López, N.; Ariza-Castolo, A.; Contreras, R.; Tlahuex, H. Vázquez-Olmos, A. and Barba-Behrens, N. “Versatile Behavior of 2-Guanidinobenzimidazole Nitrogen Atoms toward Protonation, Coordination and Methylation”. Heteroatom Chem., 1997, 8, 397-410.
[http://dx.doi.org/10.1002/(SICI)1098-1071(1997)8:5<397::AIDHC4>3.0.CO;2-6]
[70]
Caira, M.R.; Watson, W.H.; Vogtle, F.; Müller, W. A 1:2 complex between 1,4,7,10,13,16-hexaoxacyclooctadecane (18-crown-6) and 2-(2-benzimidazolyl)guanidine, C12H24O6.2C8H9N5. Acta Crystallogr., 1984, C40, 1047-1050.
[71]
Steel, P.J. Heterocyclic tautomerism. V. 2-Guanidinobenzimidazole. J. Heterocycl. Chem., 1991, 28(7), 1817-1818.
[http://dx.doi.org/10.1002/jhet.5570280729]
[72]
Hernández-García, R.M.; Barba-Behrens, N.; Salcedo, R.; Höjer, G. Theoretical study of 2-guanidinobenzimidazole. HF, MP2 and DFT calculations. J. Mol. Struct. THEOCHEM, 2003, 637(1-3), 55-72.
[http://dx.doi.org/10.1016/S0166-1280(03)00370-1]
[73]
Watson, W.H.; Galloy, J.; Grossie, D.A.; Voegtle, F.; Mueller, W.M. Host-guest complex chemistry. Structures of 18-crown-6 and diaza-18-crown-6 with neutral mole-cules. J. Org. Chem., 1984, 49(2), 347-353.
[http://dx.doi.org/10.1021/jo00176a025]
[74]
Bishop, M.M.; Lindoy, L.F.; Bishop, M.M.; Thorn-Seshold, O.T.; Piltz, R.O.; Turner, P. A supramolecular assembly containing an unusually short n-h…n hydrogen bond - an x-ray and neutron diffraction study. J. Heterocycl. Chem., 2001, 38(6), 1377-1382.
[http://dx.doi.org/10.1002/jhet.5570380620]
[75]
Chen, J.; Willis, P.G.; Parkin, S.; Cammers, A. In search of the weak, six-membered intramolecular hydrogen bond in the solution and solid states of guanidinobenzimid-azole. Eur. J. Org. Chem., 2005, 2005(1), 171-178.
[http://dx.doi.org/10.1002/ejoc.200400448]
[76]
Bishop, M.M.; Lee, A.H.W.; Lindoy, L.F.; Turner, P. A comparative study of supramolecular assemblies containing N″-(5,6-dimethyl-1H-benzimidazol-2-yl)guanidine, 2-guanidinobenzimidazole and their Ni(II) complexes. Polyhedron, 2003, 22(5), 735-743.
[http://dx.doi.org/10.1016/S0277-5387(02)01404-3]
[77]
Mohamed, S.K.; Horton, P.N.; El-Remaily, M.A.A.; Ng, S.W. 2-(1,3-Benzoxazol-2-yl)guanidinium chloride. Acta Crystallogr. Sect. E Struct. Rep. Online, 2011, 67(11), o3133.
[http://dx.doi.org/10.1107/S1600536811044655] [PMID: 22220135]
[78]
Mohamed, S.K.; El-Remaily, M.A.A.; Soliman, A.M.; Gurbanov, A.V.; Ng, S.W. 2-(1,3-Benzothiazol-2-yl)guanidine. Acta Crystallogr. Sect. E Struct. Rep. Online, 2011, 67(4), o786.
[http://dx.doi.org/10.1107/S160053681100732X] [PMID: 21754077]
[79]
Horton, P.N.; Coles, S.J.; Mohamed, S.K.; El-Remaily, M.E.A.A.A.A.; Soliman, A.M. 2-(1,3-Benzothiazol-2-yl)guanidin-2-ium acetate. Acta Crystallogr., 2011, E67, o2920.
[80]
Mohamed, S.K.; Horton, P.N.; El-Remaily, M.E.A.A.A.A.; Weng Ng, S.W. 2-(1,3-Benzothiazol-2-yl)guanidinium chloride. Acta Crystallogr., 2011, E67, o3132.
[81]
Li, J.H.Y.; Cragoe, E.J., Jr; Lindemann, B. Structure-activity relationship of amiloride analogs as blockers of epithelial Na channels: II. Side-chain modifications. J. Membr. Biol., 1987, 95(2), 171-185.
[http://dx.doi.org/10.1007/BF01869162] [PMID: 2437309]
[82]
Eskesen, K.; Ussing, H.H. The effect of amiloride and benzimidazoleguanidine added to the inside medium on electrolyte pathways in the frog skin glands. Acta Physiol. Scand., 1989, 136(4), 547-550.
[http://dx.doi.org/10.1111/j.1748-1716.1989.tb08700.x] [PMID: 2551128]
[83]
Pinelli, A.; Trivulzio, S.; Malvezzi, L.; Rossoni, G.; Beretta, L. 2-substituted derivatives of benzimidazole inhibiting gastric acid secretion in rats. Arzneimittelforschung, 1989, 39(4), 467-469.
[PMID: 2751732]
[84]
Murthy, G.R.; Reddy, V.M. New hypoglycemic agents. Part III. Synthesis and hypoglycemic activity of some new 1-(2-benzimidazolamidino-3-aryl/cyclohexyl-2-thioureas. Indian J. Pharm. Sci., 1987, 49, 175-177.
[85]
Serafin, B.; Borkowska, G.; Główczyk, J.; Kowalska, I.; Rump, S. Potential antihypertensive benzimidazole derivatives. Pol. J. Pharmacol. Pharm., 1989, 41(1), 89-96.
[PMID: 2587441]
[86]
Hong, L.; Singh, V.; Wulff, H.; Tombola, F. Interrogation of the intersubunit interface of the open Hv1 proton channel with a probe of allosteric coupling. Sci. Rep., 2015, 5(1), 14077.
[http://dx.doi.org/10.1038/srep14077] [PMID: 26365828]
[87]
Lim, V.T.; Geragotelis, A.D.; Lim, N.M.; Freites, J.A.; Tombola, F.; Mobley, D.L.; Tobias, D.J. Insights on small molecule binding to the Hv1 proton channel from free energy calculations with molecular dynamics simulations. Sci. Rep., 2020, 10(1), 13587.
[http://dx.doi.org/10.1038/s41598-020-70369-4] [PMID: 32788614]
[88]
Padilla-Martinez, I.I.; Andrade-López, N.; Gama-Goicochea, M.; Aguilar-Cruz, E.; Cruz, A.; Contreras, R.; Tlahuext, H. Benzazole-N(single bond)BH3 adducts. Reductive transposition of 2-benzimidazole, 2-benzothiazole, and 2-benzoxazole N(single bond)BH3 adducts to 1,3,2-benzimidazaborole, 1,3,2-benzoxaborole, and 1,3,2-benzothiazaborole". Heteroatom Chem., 1996, 7, 323-335.
[http://dx.doi.org/10.1002/(SICI)1098-1071(199610)7:5<323:AID-HC7>3.0.CO;2-C]
[89]
Andrade-López, N.; Cartas-Rosado, R.; García-Báez, E.; Contreras, R.; Tlahuext, H. Boron Heterocycles derived from 2-guanidinobenzimidazole. Heteroatom Chem., 1998, 9, 399-409.
[http://dx.doi.org/10.1002/(SICI)1098-1071(1998)9:4<399::AIDHC8>3.0.CO;2-3]
[90]
Dadheech, M.; Verma, S.M.; Meena, R.P. Design and Synthesis of Some Benzthaizole Analogs as A2A Receptor Antagonist. J. Pharm. Sci. Technol., 2012, 4, 873-882.
[91]
Sethi, K.K.; Verma, S.M.; Prasanthi, N.; Annapurna, M.M. Synthesis, neurotoxicity and anticonvulsant study of some benzothiazole analogs. Lett. Drug Des. Discov., 2011, 8, 774-777.
[http://dx.doi.org/10.2174/157018011796575953]
[92]
Ramesh, U.; Look, G.; Singh, R.; Issakani, S. Ubiquitin ligase inhibitors. US20050009871A1, 2005.
[93]
Baladi, T.; Hamouda-Tekaya, N.; Gonçalves, L.C.P.; Rocchi, S.; Ronco, C.; Benhida, R. Sulfonylguanidine derivatives as potential antimelanoma agents. ChemMedChem, 2020, 15(13), 1113-1117.
[http://dx.doi.org/10.1002/cmdc.202000218] [PMID: 32347004]
[94]
Sondhi, S.M.; Singh, J.; Roy, P.; Agrawal, S.K.; Saxena, A.K. Conventional and microwave-assisted synthesis of imidazole and guanidine derivatives and their biological evaluation. Med. Chem. Res., 2011, 20(7), 887-897.
[http://dx.doi.org/10.1007/s00044-010-9410-6]
[95]
Aremu, J.A.; Durosinmi, L.M.; Oluyemi, E.A.; Ojo, I.A.O. Synthesis and characterization of guanidine derivatives of benzothiazole and their Cobalt(II), Nickel(II), Zinc(II), Copper(II) and Iron(II) complexes. IOSR J. App. Chem. (IOSR-JAC), 2018, 11(53), 71.
[96]
Lafzi, F.; Kilic, D.; Yildiz, M.; Saracoglu, N. Design, synthesis, antimicrobial evaluation, and molecular docking of novel chiral urea/thiourea derivatives bearing indole, benzimidazole, and benzothiazole scaffolds. J. Mol. Struct., 2021, 1241, 130566.
[http://dx.doi.org/10.1016/j.molstruc.2021.130566]
[97]
Capuano, L.; Schrepfer, H.J.; Jaeschke, M.E.; Porschen, H. Heterocyclisierungen, XII. Synthese von Benzimidazo[1,2‐ a]‐ s ‐triazinen. Chem. Ber., 1974, 107(1), 62-67.
[http://dx.doi.org/10.1002/cber.19741070108]
[98]
Yang, Z.; She, M.; Ma, S.; Yin, B.; Liu, P.; Liu, X.; Zhao, S.; Li, J. Rhodamine based guanidinobenzimidazole functionalized fluorescent probe for tetravalent tin and its application in living cells imaging. Sens. Actuators, 2017, 242, 872-879.
[http://dx.doi.org/10.1016/j.snb.2016.09.170]
[99]
Furukawa, M.; Kawanabe, K.; Yoshimi, A.; Okawara, T.; Noguchi, Y. Reaction of biguanides and related compounds. XV. Cyclizations of arylbiguanides and 2-guanidinobenzimidazole with bifunctional unsaturated dicarboxylates to s-triazines and imidazolines. Chem. Pharm. Bull., 1983, 31(7), 2473-2479.
[http://dx.doi.org/10.1248/cpb.31.2473]
[100]
Dolzhenko, A.V.; Chui, W.K. Synthesis of 2-amino- s -triazino[1,2- a]benzimidazoles as potential antifolates from 2-guanidino- and 2-guanidino-5-methylbenzimidazoles. J. Heterocycl. Chem., 2006, 43(1), 95-100.
[http://dx.doi.org/10.1002/jhet.5570430115]
[101]
Dolzhenko, A.V.; Chui, W.K. Synthesis and biological activity of 1,3,5-triazino[1,2-a]benzimidazol-2-amines. Pharm. Chem. J., 2007, 41(9), 470-473.
[http://dx.doi.org/10.1007/s11094-007-0103-5]
[102]
Toyoda, T.; Brobey, R.K.B.; Sano, G.; Horii, T.; Tomioka, N.; Itai, A. Lead discovery of inhibitors of the dihydrofolate reductase domain of Plasmodium falciparum dihydrofolate reductase-thymidylate synthase. Biochem. Biophys. Res. Commun., 1997, 235(3), 515-519.
[http://dx.doi.org/10.1006/bbrc.1997.6814] [PMID: 9207187]
[103]
Gulyás, G.; Emri, T.; Simon, A.; Györgydeák, Z. In vitro antimicrobial activity of 3,4-dihydro-s-triazinobenzimidazole derivatives. Folia Microbiol., 2002, 47(1), 29-31.
[http://dx.doi.org/10.1007/BF02818561] [PMID: 11980265]
[104]
Badawey, E-S.A.M.; Kappe, T. Synthesis andin vitro anti-HIV Activity of Certain 2-(1H-Benzimidazol-2-ylamino)pyrimidin-4(3H)-ones and Related Derivatives. Arch. Pharm., 1997, 330(3), 59-62.
[http://dx.doi.org/10.1002/ardp.19973300304] [PMID: 9167448]
[105]
Dolzhenko, A.V.; Chui, W.K.; Dolzhenko, A.V.; Chan, L.W. Synthesis and biological activity of fluorinated 2-amino-4-aryl-3,4-dihydro[1,3,5]triazino[1,2-a]benzimidazoles. J. Fluor. Chem., 2005, 126(5), 759-763.
[http://dx.doi.org/10.1016/j.jfluchem.2005.02.009]
[106]
Dolzhenko, A.V.; Chui, W.K.; Dolzhenko, A.V. Synthesis of ethyl 6-aryl-4-oxo-4,6-dihydro-1(12)(13) h -pyrimido-[2′,1′:4,5][1,3,5]triazino[1,2- a]benzimidazole-3-carboxylates. J. Heterocycl. Chem., 2006, 43(6), 1513-1521.
[http://dx.doi.org/10.1002/jhet.5570430614]
[107]
Martin, D.; Graubaum, H.; Kempter, G.; Ehrlichmann, W. Cyanic Acid Esters. 31. Reactions of 2-Guanidino-benzimidazole with Electrophilic Compounds. Adv. Synth. Catal., 1981, 323, 303-310.
[108]
Potapov, A.Y.; Shestakov, A.S.; Verezhnikov, V.N.; Shikhaliev, K.S. Three-component condensation of 4-aryl-1,4-dihydro-benzo[4,5]imidazo[1,2-a][1,3,5]triazin-2-amines with formaldehyde and primary amines. Russ. J. Org. Chem., 2011, 47(7), 1074-1076.
[http://dx.doi.org/10.1134/S1070428011070177]
[109]
Žutautaitė, I.; Brukštus, A.; Čikotienė, I. Synthesis of 4,4-dialkyl-3,4-dihydro[1,3,5]triazino[1,2-a] benzimidazol-2-amines. Chemija, 2011, 22, 138-142.
[110]
Soliman, A.M.; Mohamed, S.K.; El Remaily, M.A.A.; Abdel-Ghany, H. Synthesis and biological activity of dihydroimidazole and 3,4-dihydrobenzo[4,5]imidazo[1,2-a][1,3,5]triazins. Eur. J. Med. Chem., 2012, 47(1), 138-142.
[http://dx.doi.org/10.1016/j.ejmech.2011.10.034] [PMID: 22093758]
[111]
Hranjec, M.; Pavlović, G.; Karminski-Zamola, G. Synthesis, crystal structure determination and antiproliferative activity of novel 2-amino-4-aryl-4,10-dihydro[1,3,5]triazino[1,2-a]benzimidazoles. J. Mol. Struct., 2012, 1007, 242-251.
[http://dx.doi.org/10.1016/j.molstruc.2011.10.054]
[112]
Monia, C.; Hammouda, C.; Hedi, M.; Youssef, A. Theoretical and experimental study of the reaction of 2-guanidinobenzimidazole on a series of meta-substituted ben-zaldehydes. Chem. Res. Chin. Univ., 2017, 33(5), 765-772.
[http://dx.doi.org/10.1007/s40242-017-6476-4]
[113]
Ahmadi, F.; Mirzaei, P.; Bazgir, A. Cobalt-catalyzed isocyanide insertion cyclization to dihydrobenzoimidazotriazins. Tetrahedron Lett., 2017, 58(45), 4281-4284.
[http://dx.doi.org/10.1016/j.tetlet.2017.09.088]
[114]
Zeng, M.; Xie, Z.P.; Cui, D.M.; Zhang, C. Ruthenium-catalyzed synthesis of 1,3,5-triazin-2(1 H)-ones and dihydro[1,3,5]triazino[1,2- a]benzimidazoles from alcohols and guanides. New J. Chem., 2018, 42(14), 11905-11907.
[http://dx.doi.org/10.1039/C8NJ02035C]
[115]
Ismail, M.M.F.; El-Sehrawi, H.; Elzahabi, H.S.A.; Shawer, T.; Ammar, Y.A. Synthesis and antitumor activity of novel hybrids of pyrimidine/benzimidazole scaffolds. Polycycl. Aromat. Compd., 2022, 42(5), 2363-2377.
[http://dx.doi.org/10.1080/10406638.2020.1833050]
[116]
Krylsky, D.V.; Shikhaliev, K.S.; Solovyev, A.S. Synthesis of 2-imino-3,4-dihydro2H-benzoxa(thia)zolo[3,2-a]- 1,3,5-triazin-4-ones(thiones) by Reaction of Ben-zoxa(thia)-zolyl-2-guanidines with Tosyl Isocyanate and Phenyl Isothiocyanate. Chem. Heterocycl. Compd., 2001, 37(4), 524-525.
[http://dx.doi.org/10.1023/A:1017684812128]
[117]
Dolzhenko, A.V.; Chui, W-K.; Dolzhenko, A.V. Microwave-Assisted Synthesis of s-Triazino[2,1-b][1,3]benzoxazoles, s-Triazino[2,1-b][1,3]benzothiazoles and s-Triazino[1,2-a]benzimidazoles. Synthesis, 2006, (4), 597-602.
[118]
Soliman, A.M.; Mohamed, S.K.; El-Remaily, M.A.E.A.A.A.; Abdel-Ghany, H. Synthesis of pyrimidine, dihydropyrimidinone, and dihydroimidazole derivatives under free solvent conditions and their antibacterial evaluation. J. Heterocycl. Chem., 2014, 51(4), 1202-1209.
[http://dx.doi.org/10.1002/jhet.1657]
[119]
Mohamed, S.K.; Horton, P.N.; El-Remaily, M.A.E.A.A.A.; Hussam Abdel-Ghany, H.A.; Ng, S.W.N. -(4,6-Dimethylpyrimidin-2-yl)-1,3-benzothiazol-2-amine. Acta Crystallogr., 2011, E67, O3131.
[120]
Mohamed, S.K.; El-Remaily, M.A.E.A.A.A.; Gurbanov, A.B.; Khalilov, A.N.; Ng, S.W.N. -(4,6-Dimethylpyrimidin-2-yl)-1H-benzimidazol-2-amine. Acta Crystallogr., 2011, E67, O719.
[121]
Shikhaliev, Kh.S.; Kryl’skaya, V.I.; Potapov, A.Y. Three component synthesis of 4-aryl-5-cyano-2-hetarylaminopyrimidines. Russ. Chem. Bull. Int. Ed, 2006, 55, 1089-1090.
[122]
Suvorova, E.Y.; Vikrishchuk, N.I.; Popov, L.D.; Starikova, Z.A.; Vikrishchuk, A.D.; Zhdanov, Y.A. Reactions of 4-oxo-1,3-benzoxazinium perchlorates with guani-dines. Russ. J. Org. Chem., 2007, 43(10), 1553-1558.
[http://dx.doi.org/10.1134/S1070428007100259]
[123]
Mohamed, S.K.; Soliman, A.M.; El-Remaily, M.E.A.A.A.A.; Abdel-Ghany, H. Eco-friendly synthesis of pyrimidine and dihydropyrimidinone derivatives under sol-vent free condition and their anti-microbial activity. Chem. Sci. J., 2013, 110, 1-11.
[124]
Youssef, A.M.; Noaman, E. Synthesis and evaluation of some novel benzothiazole derivatives as potential anticancer and antimicrobial agents. Arzneimittelforschung, 2007, 57(8), 547-553.
[PMID: 17915643]
[125]
Bonacorso, H.G.; Calheiro, T.P.; Zanatta, N.; Martins, M.A.P.; Martins, M.A.P. Efficient synthetic access to novel N-(Pyrimidinyl)-N-(1H-benzo[d]imidazolyl)amines in an aqueous medium. Monatsh. Chem., 2015, 146(11), 1851-1857.
[http://dx.doi.org/10.1007/s00706-015-1524-6]
[126]
Prajapat, P.; Yogi, P.; Talesara, G.L. Synthesis of biological significant new 1-(1,3-benzoxazol-2-yl)guanidine derivatives. J. Chem. Chem. Sci., 2015, 5, 670-681.
[127]
Prajapat, P.; Rathorea, K.K.; Hussainb, N.; Yogic, P.; Talesara, G.L. Synthesis of novel pyrimidines, pyrimidopyrimidines and their oxygen substituted hydroxylamine derivatives as potential pharmacological interest. Iran. J. Org. Chem., 2015, 7, 1605-1612.
[128]
Prajapat, P.; Kumawat, M.; Kherodiya, B.; Talesara, G.L. An expedient synthesis and antimicrobial evaluation of ethoxyphthalimido derivatives of pyrimido[4,5-e]pyrimidine analogues from 1-(1H-benzimidazol- 2-yl)guanidine. Ind. J. Chem. Soc, 2016, 93, 539-544.
[129]
Prajapat, P.; Talesara, G.L. Synthesis of Novel Benzothiazole Based Pyrimido[4,5-d]pyrimidines containing Ethoxyphthalimide moiety. R.N.T. J. Curr. Dis. Chem, 2016, 1, 9-13.
[130]
Bonacorso, H.G.; Calheiro, T.P.; Rodrigues, M.B.; Stefanello, S.T.; Soares, F.A.A.; Zanatta, N.; Martins, M.A.P. Eco-friendly synthesis and antioxidant activity of new trifluoromethyl-substituted N-(pyrimidin-2-yl)benzo[d]thiazol-2-amines and some N-derivatives. Monatsh. Chem., 2016, 147(12), 2185-2194.
[http://dx.doi.org/10.1007/s00706-016-1829-0]
[131]
Prajapat, P.; Talesara, G.L. Synthesis and anti-inflammatory screening of some mono and bis-alkoxyphthalimide linked benzimidazole and their quinazoline and pyrimi-dine derivatives. J. Heterocycl. Chem., 2016, 53(5), 1603-1610.
[http://dx.doi.org/10.1002/jhet.2471]
[132]
Chikhale, R.; Thorat, S.; Choudhary, R.K.; Gadewal, N.; Khedekar, P. Design, synthesis and anticancer studies of novel aminobenzazolyl pyrimidines as tyrosine kinase inhibitors. Bioorg. Chem., 2018, 77, 84-100.
[http://dx.doi.org/10.1016/j.bioorg.2018.01.008] [PMID: 29342447]
[133]
Bardovskyi, R.; Grytsai, O.; Ronco, C.; Benhida, R. Synthesis and characterization of new heterocycles related to aryl[ e][1,3]diazepinediones. rearrangement to 2,4-diamino-1,3,5-triazine derivatives. New J. Chem., 2020, 44(20), 8171-8175.
[http://dx.doi.org/10.1039/D0NJ01229G]