An Evolution of Bilirubin Physiology and Analysis

Article ID: e160223213734 Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Bilirubin is a yellow tetrapyrrole molecule found in the gastrointestinal system, and it is produced when hemoglobin (Hb) is degraded. For treating various liver disorders like jaundice, serum bilirubin in the body is a testing marker. Jaundice develops when the serum bilirubin level is more significant than 2.0 to 2.5 mg/dl. Examining different forms of bilirubin, i.e., conjugated (direct) bilirubin, unconjugated (indirect) bilirubin, and total bilirubin, helps the physician identify the cause and metabolic disorder of jaundice. Inconsistent bilirubin production and removal results in lasting neurologic consequences (kernicterus). In this paper, we have presented a brief introduction to jaundice, the physiological mechanism of bilirubin, its types and causes, clinical approaches toward patients having jaundice, i.e., the conventional method being practiced in clinical laboratories, and various non-invasive systems in the point-of-care settings along with their advantages and disadvantages. Information on bilirubin production and elimination with tracking of bilirubin levels may help to guide the proper clinical management of jaundice. The primary focus is on the progression of established methodologies and techniques to newer ones capable of measuring bilirubin in biological materials.

Graphical Abstract

[1]
Chavez D. Newborns: Improving survival and well-beingWorld Health Organization. 2020. Available from : https://www.who.int/news-room/fact-sheets/detail/newborns-reducing-mortality
[2]
Olusanya BO, Teeple S, Kassebaum NJ. The contribution of neonatal jaundice to global child mortality: Findings from the GBD 2016 Study. Pediatrics 2018; 141(2)e20171471
[http://dx.doi.org/10.1542/peds.2017-1471] [PMID: 29305393]
[3]
Roche SP, Kobos R. Jaundice in the adult patient. Am Fam Physician 2004; 69(2): 299-304.
[PMID: 14765767]
[4]
Batra B, Lata S. Sunny, Rana JS, Pundir CS. Construction of an amperometric bilirubin biosensor based on covalent immobilization of bilirubin oxidase onto zirconia coated silica nanoparticles/chitosan hybrid film. Biosens Bioelectron 2013; 44: 64-9.
[http://dx.doi.org/10.1016/j.bios.2012.12.034] [PMID: 23395724]
[5]
Chung JO, Park SY, Chung DJ, Chung MY. Relationship between anemia, serum bilirubin concentrations, and diabetic retinopathy in individuals with type 2 diabetes. Medicine 2019; 98(43)e17693
[http://dx.doi.org/10.1097/MD.0000000000017693] [PMID: 31651899]
[6]
van der Geest BAM, Theeuwen IM, Reiss IKM, Steegers EAP, Been JV. Assessing knowledge and skills of maternity care professionals regarding neonatal hyperbilirubinaemia: A nationwide survey. BMC Pregnancy Childbirth 2021; 21(1): 63.
[http://dx.doi.org/10.1186/s12884-020-03463-0] [PMID: 33468082]
[7]
Bhutani VK, Zipursky A, Blencowe H, et al. Neonatal hyperbilirubinemia and Rhesus disease of the newborn: Incidence and impairment estimates for 2010 at regional and global levels. Pediatr Res 2013; 74(S1): 86-100.
[http://dx.doi.org/10.1038/pr.2013.208] [PMID: 24366465]
[8]
Kalakonda A, Jenkins BA, John S. Physiology, Bilirubin. StatPearls - NCBI Bookshelf 2021; pp. 10-3.
[9]
Narwal V, Batra B, Kalra V, et al. Bilirubin detection by different methods with special emphasis on biosensing: A review. Sens Biosensing Res 2021; 33(6)100436
[http://dx.doi.org/10.1016/j.sbsr.2021.100436]
[10]
Zhou Z, Xu MJ, Gao B. Hepatocytes: A key cell type for innate immunity. Cell Mol Immunol 2016; 13(3): 301-15.
[http://dx.doi.org/10.1038/cmi.2015.97] [PMID: 26685902]
[11]
Louis S, Lopez J. Tietz Textbook of clinical chemistry and molecular diagnosis Ind J Clin Biochem. St. Louis, USA: Elsevier 2013.
[http://dx.doi.org/10.1007/s12291-012-0287-7]
[12]
Kirk JM. Neonatal jaundice: A critical review of the role and practice of bilirubin analysis. Ann Clin Biochem 2008; 45(5): 452-62.
[http://dx.doi.org/10.1258/acb.2008.008076] [PMID: 18753416]
[13]
Yazigi N, Balistreri WF. Bilirubin.Inborn metabolic diseases: Diagnosis and treatment. Berlin, Heidelberg: Springer 1995; pp. 349-57.
[http://dx.doi.org/10.1007/978-3-662-03147-6_32]
[14]
Gazzin S, Strazielle N, Tiribelli C, Ghersi-Egea JF. Transport and metabolism at blood-brain interfaces and in neural cells: Relevance to bilirubin-induced encephalopathy. Front Pharmacol 2012; 3(5): 89.
[http://dx.doi.org/10.3389/fphar.2012.00089] [PMID: 22629246]
[15]
McDonagh AF. Controversies in bilirubin biochemistry and their clinical relevance. Semin Fetal Neonatal Med 2010; 15(3): 141-7.
[http://dx.doi.org/10.1016/j.siny.2009.10.005] [PMID: 19932645]
[16]
Ouzzine M, Gulberti S, Ramalanjaona N, Magdalou J, Fournel-Gigleux S. The UDP-glucuronosyltransferases of the blood-brain barrier: Their role in drug metabolism and detoxication. Front Cell Neurosci 2014; 8(10): 349.
[http://dx.doi.org/10.3389/fncel.2014.00349] [PMID: 25389387]
[17]
Puppalwar DPV, Goswami K, Dhok A. Review on “Evolution of Methods of Bilirubin Estimation”. IOSR J Dent Med Sci 2012; 1(3): 17-28.
[http://dx.doi.org/10.9790/0853-0131728]
[18]
Sprinz H, Nelson RS. Persistent non-hemolytic hyperbilirubinemia associated with lipochrome-like pigment in liver cells: Report of four cases. Ann Intern Med 1954; 41(5): 952-62.
[http://dx.doi.org/10.7326/0003-4819-41-5-952] [PMID: 13208040]
[19]
Dubin IN, Johnson FB. Chronic idiopathic jaundice with unidentified pigment in liver cells; a new clinicopathologic entity with a report of 12 cases. Medicine 1954; 33(3): 155-98.
[http://dx.doi.org/10.1097/00005792-195409000-00001] [PMID: 13193360]
[20]
Rotor A, Manahan L, Florentin A. Familial nonhemolytic jaundice with direct van den Bergh reaction. Acta Med Philipp 1948; 5: 37-49.
[21]
Memon N, Weinberger BI, Hegyi T, Aleksunes LM. Inherited disorders of bilirubin clearance. Pediatr Res 2016; 79(3): 378-86.
[http://dx.doi.org/10.1038/pr.2015.247] [PMID: 26595536]
[22]
Fauci AS. Harrison’s Principles of internal medicine: Companion handbook Health professions division. McGraw-Hill 1998.
[23]
Schuppan D, Afdhal NH. Liver cirrhosis. Lancet 2008; 371(9615): 838-51.
[http://dx.doi.org/10.1016/S0140-6736(08)60383-9] [PMID: 18328931]
[24]
Gartner LM, Herschel M. Jaundice and breastfeeding. Pediatr Clin North Am 2001; 48(2): 389-400.
[http://dx.doi.org/10.1016/S0031-3955(08)70032-4] [PMID: 11339159]
[25]
Leung AKC, Sauve RS. Breastfeeding and breast milk jaundice. J R Soc Health 1989; 109(6): 213-7.
[http://dx.doi.org/10.1177/146642408910900615] [PMID: 2513410]
[26]
Brito MA, Palmela I, Cardoso FL, Sá-Pereira I, Brites D. Blood-brain barrier and bilirubin: clinical aspects and experimental data. Arch Med Res 2014; 45(8): 660-76.
[http://dx.doi.org/10.1016/j.arcmed.2014.11.015] [PMID: 25475697]
[27]
Wennberg RP. The blood-brain barrier and bilirubin encephalopathy. Cell Mol Neurobiol 2000; 20(1): 97-109.
[http://dx.doi.org/10.1023/A:1006900111744] [PMID: 10690504]
[28]
Campistol J, Galvez H, Cazorla AG, Málaga I, Iriondo M, Cusí V. Neurological dysfunction induced by bilirrubin. Neurologia 2012; 27(4): 202-11.
[http://dx.doi.org/10.1016/j.nrl.2010.03.013] [PMID: 21163242]
[29]
Watchko JF, Tiribelli C. Bilirubin-induced neurologic damage--mechanisms and management approaches. N Engl J Med 2013; 369(21): 2021-30.
[http://dx.doi.org/10.1056/NEJMra1308124] [PMID: 24256380]
[30]
Clemons RM. Issues in newborn care. Prim Care 2000; 27(1): 251-67.
[http://dx.doi.org/10.1016/S0095-4543(05)70159-7] [PMID: 10739468]
[31]
Yamana K, Morioka I, Kurokawa D, et al. Evaluation of BiliCare™ transcutaneous bilirubin device in Japanese newborns. Pediatr Int 2017; 59(10): 1058-63.
[http://dx.doi.org/10.1111/ped.13364] [PMID: 28703875]
[32]
Kliegman RM, Bonita F. Nelson Textbook of Pediatrics. Elsevier Saunders 2011.
[33]
Keahey PA, Simeral ML, Schroder KJ, Bond MM, Mtenthaonnga PJ. Point-of-care device to diagnose and monitor neonatal jaundice in low-resource settings. Proc Natl Acad Sci USA 2017; 114(51): E10965-71.
[http://dx.doi.org/10.1073/pnas.1714020114]
[34]
Ngashangva L, Bachu V, Goswami P. Development of new methods for determination of bilirubin. J Pharm Biomed Anal 2019; 162: 272-85.
[http://dx.doi.org/10.1016/j.jpba.2018.09.034] [PMID: 30273817]
[35]
Kazmierczak SC, Robertson AF, Catrou PG, Briley KP, Kreamer BL, Gourley GR. Direct spectrophotometric method for measurement of bilirubin in newborns: comparison with HPLC and an automated diazo method. Clin Chem 2002; 48(7): 1096-7.
[http://dx.doi.org/10.1093/clinchem/48.7.1096] [PMID: 12089180]
[36]
Malloy HT, Evelyn KA. The determination of bilirubin with the photoelectric colorimeter. J Biol Chem 1937; 119(2): 481-90.
[http://dx.doi.org/10.1016/S0021-9258(18)74392-5]
[37]
Vichapong J, Burakham R, Teshima N, Srijaranai S, Sakai T. Alternative spectrophotometric method for determination of bilirubin and urobilinogen in urine samples using simultaneous injection effective mixing flow analysis. Anal Methods 2013; 5(9): 2419-26.
[http://dx.doi.org/10.1039/c3ay40192h]
[38]
Stevens LA, Coresh J, Greene T, Levey AS. Assessing kidney function measured and estimated glomerular filtration rate. N Engl J Med 2006; 354(23): 2473-83.
[http://dx.doi.org/10.1056/NEJMra054415] [PMID: 16760447]
[39]
Ponhong K, Teshima N, Grudpan K, Vichapong J, Motomizu S, Sakai T. Successive determination of urinary bilirubin and creatinine employing simultaneous injection effective mixing flow analysis. Talanta 2015; 133: 71-6.
[http://dx.doi.org/10.1016/j.talanta.2014.05.065] [PMID: 25435229]
[40]
Laterza OF, Smith CH, Wilhite TR, Landt M. Accurate direct spectrophotometric bilirubin measurement combined with blood gas analysis. Clin Chim Acta 2002; 323(1-2): 115-20.
[http://dx.doi.org/10.1016/S0009-8981(02)00178-X] [PMID: 12135812]
[41]
Attia AMM. A multi-component spectrophotometric method for simultaneous determination of total bilirubin, oxyhemoglobin, and methemalbumin in human sera. J Appl Biol Biotechnol 2020; 8(1): 38-46.
[http://dx.doi.org/10.7324/JABB.2020.80107]
[42]
Rand RN, Pasqua A. A new diazo method for the determination of bilirubin. Clin Chem 1962; 8(6): 570-8.
[http://dx.doi.org/10.1093/clinchem/8.6.570] [PMID: 13990737]
[43]
Doumas BT, Kwok-Cheung PP, Perry BW, et al. Candidate reference method for determination of total bilirubin in serum: Development and validation. Clin Chem 1985; 31(11): 1779-89.
[http://dx.doi.org/10.1093/clinchem/31.11.1779] [PMID: 4053346]
[44]
Dhungana N, Morris C, Krasowski MD. Operational impact of using a vanadate oxidase method for direct bilirubin measurements at an academic medical center clinical laboratory. Pract Lab Med 2017; 8: 77-85.
[http://dx.doi.org/10.1016/j.plabm.2017.05.004] [PMID: 28856232]
[45]
Ameri M, Schnaars H, Sibley J, Honor D. Comparison of the vanadate oxidase method with the diazo method for serum bilirubin determination in dog, monkey, and rat. J Vet Diagn Invest 2011; 23(1): 120-3.
[http://dx.doi.org/10.1177/104063871102300121] [PMID: 21217041]
[46]
Beppu F, Niwano Y, Tsukui T, Hosokawa M, Miyashita K. Single and repeated oral dose toxicity study of fucoxanthin (FX), a marine carotenoid, in mice. J Toxicol Sci 2009; 34(5): 501-10.
[http://dx.doi.org/10.2131/jts.34.501] [PMID: 19797858]
[47]
Devgun MS, Richardson C. Direct bilirubin in clinical practice - Interpretation and haemolysis interference guidance reassessed. Clin Biochem 2016; 49(18): 1351-3.
[http://dx.doi.org/10.1016/j.clinbiochem.2016.09.005]
[48]
Osawa S, Sugo S, Yoshida T, Yamaoka T, Nomura F. An assay for separating and quantifying four bilirubin fractions in untreated human serum using isocratic high-performance liquid chromatography. Clin Chim Acta 2006; 366(1-2): 146-55.
[http://dx.doi.org/10.1016/j.cca.2005.09.031] [PMID: 16426596]
[49]
Lauff JJ, Kasper ME, Ambrose RT. Separation of bilirubin species in serum and bile by high-performance reversed-phase liquid chromatography. J Chromatogr, Biomed Appl 1981; 226(2): 391-402.
[http://dx.doi.org/10.1016/S0378-4347(00)86073-9] [PMID: 7320168]
[50]
Andreu Y, Ostra M, Ubide C, Galbán J, de Marcos S, Castillo JR. Study of a fluorometric-enzymatic method for bilirubin based on chemically modified bilirubin-oxidase and multivariate calibration. Talanta 2002; 57(2): 343-53.
[http://dx.doi.org/10.1016/S0039-9140(02)00023-1] [PMID: 18968635]
[51]
Santhosh M, Chinnadayyala SR, Kakoti A, Goswami P. Selective and sensitive detection of free bilirubin in blood serum using human serum albumin stabilized gold nanoclusters as fluorometric and colorimetric probe. Biosens Bioelectron 2014; 59: 370-6.
[http://dx.doi.org/10.1016/j.bios.2014.04.003] [PMID: 24752148]
[52]
Du Y, Li X, Lv X, Jia Q. Highly sensitive and selective sensing of free bilirubin using metal–organic frameworks-based energy transfer process. ACS Appl Mater Interfaces 2017; 9(36): 30925-32.
[http://dx.doi.org/10.1021/acsami.7b09091] [PMID: 28831805]
[53]
Rathore S, Vk CK, Sharaschandra R. A critical review on neonatal hyperbilirubinemia-an Ayurvedic perspective. J Ayurveda Integr Med 2020; 11(2): 190-6.
[http://dx.doi.org/10.1016/j.jaim.2018.08.006] [PMID: 31628007]
[54]
Halder A, Pal SK, Banerjee M, et al. A novel whole spectrum-based non-invasive screening device for neonatal hyperbilirubinemia. IEEE J Biomed Health Inform 2019; 23(6): 2347-53.
[http://dx.doi.org/10.1109/JBHI.2019.2892946] [PMID: 30640639]
[55]
Bosschaart N, Kok JH, Newsum AM, et al. Limitations and opportunities of transcutaneous bilirubin measurements. Pediatrics 2012; 129(4): 689-94.
[http://dx.doi.org/10.1542/peds.2011-2586] [PMID: 22430456]
[56]
Taylor JA, Burgos AE, Flaherman V, et al. Discrepancies between transcutaneous and serum bilirubin measurements. Pediatrics 2015; 135(2): 224-31.
[http://dx.doi.org/10.1542/peds.2014-1919] [PMID: 25601981]
[57]
Yamanouchi I, Yamauchi Y, Igarashi I. Transcutaneous bilirubinometry: Preliminary studies of noninvasive transcutaneous bilirubin meter in the Okayama National Hospital. Pediatrics 1980; 65(2): 195-202.
[http://dx.doi.org/10.1542/peds.65.2.195] [PMID: 7354964]
[58]
Chimhini GLT, Chimhuya S, Chikwasha V, Chikwasha V. Evaluation of transcutaneous bilirubinometer (DRAEGER JM 103) use in Zimbabwean newborn babies. Matern Health Neonatol Perinatol 2018; 4(1): 1-7.
[http://dx.doi.org/10.1186/s40748-017-0070-0] [PMID: 29375886]
[59]
Raimondi F, Lama S, Landolfo F, et al. Measuring transcutaneous bilirubin: A comparative analysis of three devices on a multiracial population. BMC Pediatr 2012; 12(1): 70.
[http://dx.doi.org/10.1186/1471-2431-12-70] [PMID: 22697173]
[60]
Polley N, Saha S, Singh S, et al. Development and optimization of a noncontact optical device for online monitoring of jaundice in human subjects. J Biomed Opt 2015; 20(6): 067001-6.
[http://dx.doi.org/10.1117/1.JBO.20.6.067001] [PMID: 26052974]
[61]
Robertson A, Kazmierczak S, Vos P. Improved transcutaneous bilirubinometry: Comparison of SpectR(X) BiliCheck and Minolta Jaundice Meter JM-102 for estimating total serum bilirubin in a normal newborn population. J Perinatol 2002; 22(1): 12-4.
[http://dx.doi.org/10.1038/sj.jp.7210592] [PMID: 11840236]
[62]
Bertini G, Pratesi S, Cosenza E, Dani C. Transcutaneous bilirubin measurement: Evaluation of Bilitest. Neonatology 2008; 93(2): 101-5.
[http://dx.doi.org/10.1159/000107351] [PMID: 17703104]
[63]
Draque CM, Sañudo A, de Araujo Peres C, de Almeida MFB. Transcutaneous bilirubin in exclusively breastfed healthy term newborns up to 12 days of life. Pediatrics 2011; 128(3): e565-71.
[http://dx.doi.org/10.1542/peds.2010-3878] [PMID: 21873703]
[64]
Grohmann K, Roser M, Rolinski B, et al. Bilirubin measurement for neonates: Comparison of 9 frequently used methods. Pediatrics 2006; 117(4): 1174-83.
[http://dx.doi.org/10.1542/peds.2005-0590] [PMID: 16585313]
[65]
Olusanya BO, Mabogunje CA, Imosemi DO, Emokpae AA. Transcutaneous bilirubin nomograms in African neonates. PLoS One 2017; 12(2)e0172058
[http://dx.doi.org/10.1371/journal.pone.0172058] [PMID: 28192492]
[66]
Rizvi MR, Alaskar FM, Albaradie RS, Rizvi NF, Al-Abdulwahab K. A novel non-invasive technique of measuring bilirubin levels using bilicapture. Oman Med J 2019; 34(1): 26-33.
[http://dx.doi.org/10.5001/omj.2019.05] [PMID: 30671181]
[67]
Costa-Posada U, Concheiro-Guisán A, Táboas- Ledo MF. Accuracy of transcutaneous bilirubin on covered skin in preterm and term newborns receiving phototherapy using a JM-105 bilirubinometer. J Perinatol 2020; 40(2): 226-31.
[http://dx.doi.org/10.1038/s41372-019-0557-9] [PMID: 31767979]
[68]
Halder A, Adhikari A, Ghosh R, et al. Large scale validation of a new non-invasive and non-contact bilirubinometer in neonates with risk factors. Sci Rep 2020; 10(1): 11149.
[http://dx.doi.org/10.1038/s41598-020-67981-9] [PMID: 32636410]