Role of Circulating Exosomes in Cerebrovascular Diseases: A Comprehensive Review

Page: [1575 - 1593] Pages: 19

  • * (Excluding Mailing and Handling)

Abstract

Exosomes are lipid bilayer vesicles that contain multiple macromolecules secreted by the parent cells and play a vital role in intercellular communication. In recent years, the function of exosomes in cerebrovascular diseases (CVDs) has been intensively studied. Herein, we briefly review the current understanding of exosomes in CVDs. We discuss their role in the pathophysiology of the diseases and the value of the exosomes for clinical applications as biomarkers and potential therapies.

Graphical Abstract

[1]
Vos, T.; Lim, S.S.; Abbafati, C.; Abbas, K.M.; Abbasi, M.; Abbasifard, M.; Abbasi-Kangevari, M.; Abbastabar, H.; Abd-Allah, F.; Abdelalim, A.; Abdollahi, M.; Abdollahpour, I.; Abolhassani, H.; Aboyans, V.; Abrams, E.M.; Abreu, L.G.; Abrigo, M.R.M.; Abu-Raddad, L.J.; Abushouk, A.I.; Acebedo, A.; Ackerman, I.N.; Adabi, M.; Adamu, A.A.; Adebayo, O.M.; Adekanmbi, V.; Adelson, J.D.; Adetokunboh, O.O.; Adham, D.; Afshari, M.; Afshin, A.; Agardh, E.E.; Agarwal, G.; Agesa, K.M.; Aghaali, M.; Aghamir, S.M.K.; Agrawal, A.; Ahmad, T.; Ahmadi, A.; Ahmadi, M.; Ahmadieh, H.; Ahmadpour, E.; Akalu, T.Y.; Akinyemi, R.O.; Akinyemiju, T.; Akombi, B.; Al-Aly, Z.; Alam, K.; Alam, N.; Alam, S.; Alam, T.; Alanzi, T.M.; Albertson, S.B.; Alcalde-Rabanal, J.E.; Alema, N.M.; Ali, M.; Ali, S.; Alicandro, G.; Alijanzadeh, M.; Alinia, C.; Alipour, V.; Aljunid, S.M.; Alla, F.; Allebeck, P.; Almasi-Hashiani, A.; Alonso, J.; Al-Raddadi, R.M.; Altirkawi, K.A.; Alvis-Guzman, N.; Alvis-Zakzuk, N.J.; Amini, S.; Amini-Rarani, M.; Aminorroaya, A.; Amiri, F.; Amit, A.M.L.; Amugsi, D.A.; Amul, G.G.H.; Anderlini, D.; Andrei, C.L.; Andrei, T.; Anjomshoa, M.; Ansari, F.; Ansari, I.; Ansari-Moghaddam, A.; Antonio, C.A.T.; Antony, C.M.; Antriyandarti, E.; Anvari, D.; Anwer, R.; Arabloo, J.; Arab-Zozani, M.; Aravkin, A.Y.; Ariani, F.; Ärnlöv, J.; Aryal, K.K.; Arzani, A.; Asadi-Aliabadi, M.; Asadi-Pooya, A.A.; Asghari, B.; Ashbaugh, C.; Atnafu, D.D.; Atre, S.R.; Ausloos, F.; Ausloos, M.; Ayala Quintanilla, B.P.; Ayano, G.; Ayanore, M.A.; Aynalem, Y.A.; Azari, S.; Azarian, G.; Azene, Z.N.; Babaee, E.; Badawi, A.; Bagherzadeh, M.; Bakhshaei, M.H.; Bakhtiari, A.; Balakrishnan, S.; Balalla, S.; Balassyano, S.; Banach, M.; Banik, P.C.; Bannick, M.S.; Bante, A.B.; Baraki, A.G.; Barboza, M.A.; Barker-Collo, S.L.; Barthelemy, C.M.; Barua, L.; Barzegar, A.; Basu, S.; Baune, B.T.; Bayati, M.; Bazmandegan, G.; Bedi, N.; Beghi, E.; Béjot, Y.; Bello, A.K.; Bender, R.G.; Bennett, D.A.; Bennitt, F.B.; Bensenor, I.M.; Benziger, C.P.; Berhe, K.; Bernabe, E.; Bertolacci, G.J.; Bhageerathy, R.; Bhala, N.; Bhandari, D.; Bhardwaj, P.; Bhattacharyya, K.; Bhutta, Z.A.; Bibi, S.; Biehl, M.H.; Bikbov, B.; Bin Sayeed, M.S.; Biondi, A.; Birihane, B.M.; Bisanzio, D.; Bisignano, C.; Biswas, R.K.; Bohlouli, S.; Bohluli, M.; Bolla, S.R.R.; Boloor, A.; Boon-Dooley, A.S.; Borges, G.; Borzì, A.M.; Bourne, R.; Brady, O.J.; Brauer, M.; Brayne, C.; Breitborde, N.J.K.; Brenner, H.; Briant, P.S.; Briggs, A.M.; Briko, N.I.; Britton, G.B.; Bryazka, D.; Buchbinder, R.; Bumgarner, B.R.; Busse, R.; Butt, Z.A.; Caetano dos Santos, F.L.; Cámera, L.L.A.A.; Campos-Nonato, I.R.; Car, J.; Cárdenas, R.; Carreras, G.; Carrero, J.J.; Carvalho, F.; Castaldelli-Maia, J.M.; Castañeda-Orjuela, C.A.; Castelpietra, G.; Castle, C.D.; Castro, F.; Catalá-López, F.; Causey, K.; Cederroth, C.R.; Cercy, K.M.; Cerin, E.; Chandan, J.S.; Chang, A.R.; Charlson, F.J.; Chattu, V.K.; Chaturvedi, S.; Chimed-Ochir, O.; Chin, K.L.; Cho, D.Y.; Christensen, H.; Chu, D-T.; Chung, M.T.; Cicuttini, F.M.; Ciobanu, L.G.; Cirillo, M.; Collins, E.L.; Compton, K.; Conti, S.; Cortesi, P.A.; Costa, V.M.; Cousin, E.; Cowden, R.G.; Cowie, B.C.; Cromwell, E.A.; Cross, D.H.; Crowe, C.S.; Cruz, J.A.; Cunningham, M.; Dahlawi, S.M.A.; Damiani, G.; Dandona, L.; Dandona, R.; Darwesh, A.M.; Daryani, A.; Das, J.K.; Das Gupta, R.; das Neves, J.; Dávila-Cervantes, C.A.; Davletov, K.; De Leo, D.; Dean, F.E.; DeCleene, N.K.; Deen, A.; Degenhardt, L.; Dellavalle, R.P.; Demeke, F.M.; Demsie, D.G.; Denova-Gutiérrez, E.; Dereje, N.D.; Dervenis, N.; Desai, R.; Desalew, A.; Dessie, G.A.; Dharmaratne, S.D.; Dhungana, G.P.; Dianatinasab, M.; Diaz, D.; Dibaji, F.Z.S.; Dingels, Z.V.; Dirac, M.A.; Djalalinia, S.; Do, H.T.; Dokova, K.; Dorostkar, F.; Doshi, C.P.; Doshmangir, L.; Douiri, A.; Doxey, M.C.; Driscoll, T.R.; Dunachie, S.J.; Duncan, B.B.; Duraes, A.R.; Eagan, A.W.; Ebrahimi Kalan, M.; Edvardsson, D.; Ehrlich, J.R.; El Nahas, N.; El Sayed, I.; El Tantawi, M.; Elbarazi, I.; Elgendy, I.Y.; Elhabashy, H.R.; El-Jaafary, S.I.; Elyazar, I.R.F.; Emamian, M.H.; Emmons-Bell, S.; Erskine, H.E.; Eshrati, B.; Eskandarieh, S.; Esmaeilnejad, S.; Esmaeilzadeh, F.; Esteghamati, A.; Estep, K.; Etemadi, A.; Etisso, A.E.; Farahmand, M.; Faraj, A.; Fareed, M.; Faridnia, R.; Farinha, C.S.S.; Farioli, A.; Faro, A.; Faruque, M.; Farzadfar, F.; Fattahi, N.; Fazlzadeh, M.; Feigin, V.L.; Feldman, R.; Fereshtehnejad, S-M.; Fernandes, E.; Ferrari, A.J.; Ferreira, M.L.; Filip, I.; Fischer, F.; Fisher, J.L.; Fitzgerald, R.; Flohr, C.; Flor, L.S.; Foigt, N.A.; Folayan, M.O.; Force, L.M.; Fornari, C.; Foroutan, M.; Fox, J.T.; Freitas, M.; Fu, W.; Fukumoto, T.; Furtado, J.M.; Gad, M.M.; Gakidou, E.; Galles, N.C.; Gallus, S.; Gamkrelidze, A.; Garcia-Basteiro, A.L.; Gardner, W.M.; Geberemariyam, B.S.; Gebrehiwot, A.M.; Gebremedhin, K.B.; Gebreslassie, A.A.A.A.; Gershberg Hayoon, A.; Gething, P.W.; Ghadimi, M.; Ghadiri, K.; Ghafourifard, M.; Ghajar, A.; Ghamari, F.; Ghashghaee, A.; Ghiasvand, H.; Ghith, N.; Gholamian, A.; Gilani, S.A.; Gill, P.S.; Gitimoghaddam, M.; Giussani, G.; Goli, S.; Gomez, R.S.; Gopalani, S.V.; Gorini, G.; Gorman, T.M.; Gottlich, H.C.; Goudarzi, H.; Goulart, A.C.; Goulart, B.N.G.; Grada, A.; Grivna, M.; Grosso, G.; Gubari, M.I.M.; Gugnani, H.C.; Guimaraes, A.L.S.; Guimarães, R.A.; Guled, R.A.; Guo, G.; Guo, Y.; Gupta, R.; Haagsma, J.A.; Haddock, B.; Hafezi-Nejad, N.; Hafiz, A.; Hagins, H.; Haile, L.M.; Hall, B.J.; Halvaei, I.; Hamadeh, R.R.; Hamagharib Abdullah, K.; Hamilton, E.B.; Han, C.; Han, H.; Hankey, G.J.; Haro, J.M.; Harvey, J.D.; Hasaballah, A.I.; Hasanzadeh, A.; Hashemian, M.; Hassanipour, S.; Hassankhani, H.; Havmoeller, R.J.; Hay, R.J.; Hay, S.I.; Hayat, K.; Heidari, B.; Heidari, G.; Heidari-Soureshjani, R.; Hendrie, D.; Henrikson, H.J.; Henry, N.J.; Herteliu, C.; Heydarpour, F.; Hird, T.R.; Hoek, H.W.; Hole, M.K.; Holla, R.; Hoogar, P.; Hosgood, H.D.; Hosseinzadeh, M.; Hostiuc, M.; Hostiuc, S.; Househ, M.; Hoy, D.G.; Hsairi, M.; Hsieh, V.C.; Hu, G.; Huda, T.M.; Hugo, F.N.; Huynh, C.K.; Hwang, B-F.; Iannucci, V.C.; Ibitoye, S.E.; Ikuta, K.S.; Ilesanmi, O.S.; Ilic, I.M.; Ilic, M.D.; Inbaraj, L.R.; Ippolito, H.; Irvani, S.S.N.; Islam, M.M.; Islam, M.M.; Islam, S.M.S.; Islami, F.; Iso, H.; Ivers, R.Q.; Iwu, C.C.D.; Iyamu, I.O.; Jaafari, J.; Jacobsen, K.H.; Jadidi-Niaragh, F.; Jafari, H.; Jafarinia, M.; Jahagirdar, D.; Jahani, M.A.; Jahanmehr, N.; Jakovljevic, M.; Jalali, A.; Jalilian, F.; James, S.L.; Janjani, H.; Janodia, M.D.; Jayatilleke, A.U.; Jeemon, P.; Jenabi, E.; Jha, R.P.; Jha, V.; Ji, J.S.; Jia, P.; John, O.; John-Akinola, Y.O.; Johnson, C.O.; Johnson, S.C.; Jonas, J.B.; Joo, T.; Joshi, A.; Jozwiak, J.J.; Jürisson, M.; Kabir, A.; Kabir, Z.; Kalani, H.; Kalani, R.; Kalankesh, L.R.; Kalhor, R.; Kamiab, Z.; Kanchan, T.; Karami Matin, B.; Karch, A.; Karim, M.A.; Karimi, S.E.; Kassa, G.M.; Kassebaum, N.J.; Katikireddi, S.V.; Kawakami, N.; Kayode, G.A.; Keddie, S.H.; Keller, C.; Kereselidze, M.; Khafaie, M.A.; Khalid, N.; Khan, M.; Khatab, K.; Khater, M.M.; Khatib, M.N.; Khayamzadeh, M.; Khodayari, M.T.; Khundkar, R.; Kianipour, N.; Kieling, C.; Kim, D.; Kim, Y-E.; Kim, Y.J.; Kimokoti, R.W.; Kisa, A.; Kisa, S.; Kissimova-Skarbek, K.; Kivimäki, M.; Kneib, C.J.; Knudsen, A.K.S.; Kocarnik, J.M.; Kolola, T.; Kopec, J.A.; Kosen, S.; Koul, P.A.; Koyanagi, A.; Kravchenko, M.A.; Krishan, K.; Krohn, K.J.; Kuate Defo, B.; Kucuk Bicer, B.; Kumar, G.A.; Kumar, M.; Kumar, P.; Kumar, V.; Kumaresh, G.; Kurmi, O.P.; Kusuma, D.; Kyu, H.H.; La Vecchia, C.; Lacey, B.; Lal, D.K.; Lalloo, R.; Lam, J.O.; Lami, F.H.; Landires, I.; Lang, J.J.; Lansingh, V.C.; Larson, S.L.; Larsson, A.O.; Lasrado, S.; Lassi, Z.S.; Lau, K.M-M.; Lavados, P.M.; Lazarus, J.V.; Ledesma, J.R.; Lee, P.H.; Lee, S.W.H.; LeGrand, K.E.; Leigh, J.; Leonardi, M.; Lescinsky, H.; Leung, J.; Levi, M.; Lewington, S.; Li, S.; Lim, L-L.; Lin, C.; Lin, R-T.; Linehan, C.; Linn, S.; Liu, H-C.; Liu, S.; Liu, Z.; Looker, K.J.; Lopez, A.D.; Lopukhov, P.D.; Lorkowski, S.; Lotufo, P.A.; Lucas, T.C.D.; Lugo, A.; Lunevicius, R.; Lyons, R.A.; Ma, J.; MacLachlan, J.H.; Maddison, E.R.; Maddison, R.; Madotto, F.; Mahasha, P.W.; Mai, H.T.; Majeed, A.; Maled, V.; Maleki, S.; Malekzadeh, R.; Malta, D.C.; Mamun, A.A.; Manafi, A.; Manafi, N.; Manguerra, H.; Mansouri, B.; Mansournia, M.A.; Mantilla Herrera, A.M.; Maravilla, J.C.; Marks, A.; Martins-Melo, F.R.; Martopullo, I.; Masoumi, S.Z.; Massano, J.; Massenburg, B.B.; Mathur, M.R.; Maulik, P.K.; McAlinden, C.; McGrath, J.J.; McKee, M.; Mehndiratta, M.M.; Mehri, F.; Mehta, K.M.; Meitei, W.B.; Memiah, P.T.N.; Mendoza, W.; Menezes, R.G.; Mengesha, E.W.; Mengesha, M.B.; Mereke, A.; Meretoja, A.; Meretoja, T.J.; Mestrovic, T.; Miazgowski, B.; Miazgowski, T.; Michalek, I.M.; Mihretie, K.M.; Miller, T.R.; Mills, E.J.; Mirica, A.; Mirrakhimov, E.M.; Mirzaei, H.; Mirzaei, M.; Mirzaei-Alavijeh, M.; Misganaw, A.T.; Mithra, P.; Moazen, B.; Moghadaszadeh, M.; Mohamadi, E.; Mohammad, D.K.; Mohammad, Y.; Mohammad Gholi Mezerji, N.; Mohammadian-Hafshejani, A.; Mohammadifard, N.; Mohammadpourhodki, R.; Mohammed, S.; Mokdad, A.H.; Molokhia, M.; Momen, N.C.; Monasta, L.; Mondello, S.; Mooney, M.D.; Moosazadeh, M.; Moradi, G.; Moradi, M.; Moradi-Lakeh, M.; Moradzadeh, R.; Moraga, P.; Morales, L.; Morawska, L.; Moreno Velásquez, I.; Morgado-da-Costa, J.; Morrison, S.D.; Mosser, J.F.; Mouodi, S.; Mousavi, S.M.; Mousavi Khaneghah, A.; Mueller, U.O.; Munro, S.B.; Muriithi, M.K.; Musa, K.I.; Muthupandian, S.; Naderi, M.; Nagarajan, A.J.; Nagel, G.; Naghshtabrizi, B.; Nair, S.; Nandi, A.K.; Nangia, V.; Nansseu, J.R.; Nayak, V.C.; Nazari, J.; Negoi, I.; Negoi, R.I.; Netsere, H.B.N.; Ngunjiri, J.W.; Nguyen, C.T.; Nguyen, J.; Nguyen, M.; Nguyen, M.; Nichols, E.; Nigatu, D.; Nigatu, Y.T.; Nikbakhsh, R.; Nixon, M.R.; Nnaji, C.A.; Nomura, S.; Norrving, B.; Noubiap, J.J.; Nowak, C.; Nunez-Samudio, V.; Oţoiu, A.; Oancea, B.; Odell, C.M.; Ogbo, F.A.; Oh, I-H.; Okunga, E.W.; Oladnabi, M.; Olagunju, A.T.; Olusanya, B.O.; Olusanya, J.O.; Oluwasanu, M.M.; Omar Bali, A.; Omer, M.O.; Ong, K.L.; Onwujekwe, O.E.; Orji, A.U.; Orpana, H.M.; Ortiz, A.; Ostroff, S.M.; Otstavnov, N.; Otstavnov, S.S.; Øverland, S.; Owolabi, M.O.; P A, M.; Padubidri, J.R.; Pakhare, A.P.; Palladino, R.; Pana, A.; Panda-Jonas, S.; Pandey, A.; Park, E-K.; Parmar, P.G.K.; Pasupula, D.K.; Patel, S.K.; Paternina-Caicedo, A.J.; Pathak, A.; Pathak, M.; Patten, S.B.; Patton, G.C.; Paudel, D.; Pazoki Toroudi, H.; Peden, A.E.; Pennini, A.; Pepito, V.C.F.; Peprah, E.K.; Pereira, A.; Pereira, D.M.; Perico, N.; Pham, H.Q.; Phillips, M.R.; Pigott, D.M.; Pilgrim, T.; Pilz, T.M.; Pirsaheb, M.; Plana-Ripoll, O.; Plass, D.; Pokhrel, K.N.; Polibin, R.V.; Polinder, S.; Polkinghorne, K.R.; Postma, M.J.; Pourjafar, H.; Pourmalek, F.; Pourmirza Kalhori, R.; Pourshams, A.; Poznańska, A.; Prada, S.I.; Prakash, V.; Pribadi, D.R.A.; Pupillo, E.; Quazi Syed, Z.; Rabiee, M.; Rabiee, N.; Radfar, A.; Rafiee, A.; Rafiei, A.; Raggi, A.; Rahimi-Movaghar, A.; Rahman, M.A.; Rajabpour-Sanati, A.; Rajati, F.; Ramezanzadeh, K.; Ranabhat, C.L.; Rao, P.C.; Rao, S.J.; Rasella, D.; Rastogi, P.; Rathi, P.; Rawaf, D.L.; Rawaf, S.; Rawal, L.; Razo, C.; Redford, S.B.; Reiner, R.C., Jr; Reinig, N.; Reitsma, M.B.; Remuzzi, G.; Renjith, V.; Renzaho, A.M.N.; Resnikoff, S.; Rezaei, N.; Rezai, M.; Rezapour, A.; Rhinehart, P-A.; Riahi, S.M.; Ribeiro, A.L.P.; Ribeiro, D.C.; Ribeiro, D.; Rickard, J.; Roberts, N.L.S.; Roberts, S.; Robinson, S.R.; Roever, L.; Rolfe, S.; Ronfani, L.; Roshandel, G.; Roth, G.A.; Rubagotti, E.; Rumisha, S.F.; Sabour, S.; Sachdev, P.S.; Saddik, B.; Sadeghi, E.; Sadeghi, M.; Saeidi, S.; Safi, S.; Safiri, S.; Sagar, R.; Sahebkar, A.; Sahraian, M.A.; Sajadi, S.M.; Salahshoor, M.R.; Salamati, P.; Salehi Zahabi, S.; Salem, H.; Salem, M.R.R.; Salimzadeh, H.; Salomon, J.A.; Salz, I.; Samad, Z.; Samy, A.M.; Sanabria, J.; Santomauro, D.F.; Santos, I.S.; Santos, J.V.; Santric-Milicevic, M.M.; Saraswathy, S.Y.I.; Sarmiento-Suárez, R.; Sarrafzadegan, N.; Sartorius, B.; Sarveazad, A.; Sathian, B.; Sathish, T.; Sattin, D.; Sbarra, A.N.; Schaeffer, L.E.; Schiavolin, S.; Schmidt, M.I.; Schutte, A.E.; Schwebel, D.C.; Schwendicke, F.; Senbeta, A.M.; Senthilkumaran, S.; Sepanlou, S.G.; Shackelford, K.A.; Shadid, J.; Shahabi, S.; Shaheen, A.A.; Shaikh, M.A.; Shalash, A.S.; Shams-Beyranvand, M.; Shamsizadeh, M.; Shannawaz, M.; Sharafi, K.; Sharara, F.; Sheena, B.S.; Sheikhtaheri, A.; Shetty, R.S.; Shibuya, K.; Shiferaw, W.S.; Shigematsu, M.; Shin, J.I.; Shiri, R.; Shirkoohi, R.; Shrime, M.G.; Shuval, K.; Siabani, S.; Sigfusdottir, I.D.; Sigurvinsdottir, R.; Silva, J.P.; Simpson, K.E.; Singh, A.; Singh, J.A.; Skiadaresi, E.; Skou, S.T.; Skryabin, V.Y.; Sobngwi, E.; Sokhan, A.; Soltani, S.; Sorensen, R.J.D.; Soriano, J.B.; Sorrie, M.B.; Soyiri, I.N.; Sreeramareddy, C.T.; Stanaway, J.D.; Stark, B.A.; Ştefan, S.C.; Stein, C.; Steiner, C.; Steiner, T.J.; Stokes, M.A.; Stovner, L.J.; Stubbs, J.L.; Sudaryanto, A.; Sufiyan, M.B.; Sulo, G.; Sultan, I.; Sykes, B.L.; Sylte, D.O.; Szócska, M.; Tabarés-Seisdedos, R.; Tabb, K.M.; Tadakamadla, S.K.; Taherkhani, A.; Tajdini, M.; Takahashi, K.; Taveira, N.; Teagle, W.L.; Teame, H.; Tehrani-Banihashemi, A.; Teklehaimanot, B.F.; Terrason, S.; Tessema, Z.T.; Thankappan, K.R.; Thomson, A.M.; Tohidinik, H.R.; Tonelli, M.; Topor-Madry, R.; Torre, A.E.; Touvier, M.; Tovani-Palone, M.R.R.; Tran, B.X.; Travillian, R.; Troeger, C.E.; Truelsen, T.C.; Tsai, A.C.; Tsatsakis, A.; Tudor Car, L.; Tyrovolas, S.; Uddin, R.; Ullah, S.; Undurraga, E.A.; Unnikrishnan, B.; Vacante, M.; Vakilian, A.; Valdez, P.R.; Varughese, S.; Vasankari, T.J.; Vasseghian, Y.; Venketasubramanian, N.; Violante, F.S.; Vlassov, V.; Vollset, S.E.; Vongpradith, A.; Vukovic, A.; Vukovic, R.; Waheed, Y.; Walters, M.K.; Wang, J.; Wang, Y.; Wang, Y-P.; Ward, J.L.; Watson, A.; Wei, J.; Weintraub, R.G.; Weiss, D.J.; Weiss, J.; Westerman, R.; Whisnant, J.L.; Whiteford, H.A.; Wiangkham, T.; Wiens, K.E.; Wijeratne, T.; Wilner, L.B.; Wilson, S.; Wojtyniak, B.; Wolfe, C.D.A.; Wool, E.E.; Wu, A-M.; Wulf Hanson, S.; Wunrow, H.Y.; Xu, G.; Xu, R.; Yadgir, S.; Yahyazadeh Jabbari, S.H.; Yamagishi, K.; Yaminfirooz, M.; Yano, Y.; Yaya, S.; Yazdi-Feyzabadi, V.; Yearwood, J.A.; Yeheyis, T.Y.; Yeshitila, Y.G.; Yip, P.; Yonemoto, N.; Yoon, S-J.; Yoosefi Lebni, J.; Younis, M.Z.; Younker, T.P.; Yousefi, Z.; Yousefifard, M.; Yousefinezhadi, T.; Yousuf, A.Y.; Yu, C.; Yusefzadeh, H.; Zahirian Moghadam, T.; Zaki, L.; Zaman, S.B.; Zamani, M.; Zamanian, M.; Zandian, H.; Zangeneh, A.; Zastrozhin, M.S.; Zewdie, K.A.; Zhang, Y.; Zhang, Z-J.; Zhao, J.T.; Zhao, Y.; Zheng, P.; Zhou, M.; Ziapour, A.; Zimsen, S.R.M.; Naghavi, M.; Murray, C.J.L. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: A systematic analysis for the global burden of disease study 2019. Lancet, 2020, 396(10258), 1204-1222.
[http://dx.doi.org/10.1016/S0140-6736(20)30925-9] [PMID: 33069326]
[2]
Feigin, V.L.; Nguyen, G.; Cercy, K.; Johnson, C.O.; Alam, T.; Parmar, P.G.; Abajobir, A.A.; Abate, K.H.; Abd-Allah, F.; Abejie, A.N.; Abyu, G.Y.; Ademi, Z.; Agarwal, G.; Ahmed, M.B.; Akinyemi, R.O.; Al-Raddadi, R.; Aminde, L.N.; Amlie-Lefond, C.; Ansari, H.; Asayesh, H.; Asgedom, S.W.; Atey, T.M.; Ayele, H.T.; Banach, M.; Banerjee, A.; Barac, A.; Barker-Collo, S.L.; Bärnighausen, T.; Barregard, L.; Basu, S.; Bedi, N.; Behzadifar, M.; Béjot, Y.; Bennett, D.A.; Bensenor, I.M.; Berhe, D.F.; Boneya, D.J.; Brainin, M.; Campos-Nonato, I.R.; Caso, V.; Castañeda-Orjuela, C.A.; Rivas, J.C.; Catalá-López, F.; Christensen, H.; Criqui, M.H.; Damasceno, A.; Dandona, L.; Dandona, R.; Davletov, K.; de Courten, B.; deVeber, G.; Dokova, K.; Edessa, D.; Endres, M.; Faraon, E.J.A.; Farvid, M.S.; Fischer, F.; Foreman, K.; Forouzanfar, M.H.; Gall, S.L.; Gebrehiwot, T.T.; Geleijnse, J.M.; Gillum, R.F.; Giroud, M.; Goulart, A.C.; Gupta, R.; Gupta, R.; Hachinski, V.; Hamadeh, R.R.; Hankey, G.J.; Hareri, H.A.; Havmoeller, R.; Hay, S.I.; Hegazy, M.I.; Hibstu, D.T.; James, S.L.; Jeemon, P.; John, D.; Jonas, J.B.; Jóźwiak, J.; Kalani, R.; Kandel, A.; Kasaeian, A.; Kengne, A.P.; Khader, Y.S.; Khan, A.R.; Khang, Y.H.; Khubchandani, J.; Kim, D.; Kim, Y.J.; Kivimaki, M.; Kokubo, Y.; Kolte, D.; Kopec, J.A.; Kosen, S.; Kravchenko, M.; Krishnamurthi, R.; Kumar, G.A.; Lafranconi, A.; Lavados, P.M.; Legesse, Y.; Li, Y.; Liang, X.; Lo, W.D.; Lorkowski, S.; Lotufo, P.A.; Loy, C.T.; Mackay, M.T.; Abd El Razek, H.M.; Mahdavi, M.; Majeed, A.; Malekzadeh, R.; Malta, D.C.; Mamun, A.A.; Mantovani, L.G.; Martins, S.C.O.; Mate, K.K.; Mazidi, M.; Mehata, S.; Meier, T.; Melaku, Y.A.; Mendoza, W.; Mensah, G.A.; Meretoja, A.; Mezgebe, H.B.; Miazgowski, T.; Miller, T.R.; Ibrahim, N.M.; Mohammed, S.; Mokdad, A.H.; Moosazadeh, M.; Moran, A.E.; Musa, K.I.; Negoi, R.I.; Nguyen, M.; Nguyen, Q.L.; Nguyen, T.H.; Tran, T.T.; Nguyen, T.T.; Anggraini, N.D.N.; Norrving, B.; Noubiap, J.J.; O’Donnell, M.J.; Olagunju, A.T.; Onuma, O.K.; Owolabi, M.O.; Parsaeian, M.; Patton, G.C.; Piradov, M.; Pletcher, M.A.; Pourmalek, F.; Prakash, V.; Qorbani, M.; Rahman, M.; Rahman, M.A.; Rai, R.K.; Ranta, A.; Rawaf, D.; Rawaf, S.; Renzaho, A.M.; Robinson, S.R.; Sahathevan, R.; Sahebkar, A.; Salomon, J.A.; Santalucia, P.; Santos, I.S.; Sartorius, B.; Schutte, A.E.; Sepanlou, S.G.; Shafieesabet, A.; Shaikh, M.A.; Shamsizadeh, M.; Sheth, K.N.; Sisay, M.; Shin, M.J.; Shiue, I.; Silva, D.A.S.; Sobngwi, E.; Soljak, M.; Sorensen, R.J.D.; Sposato, L.A.; Stranges, S.; Suliankatchi, R.A.; Tabarés-Seisdedos, R.; Tanne, D.; Nguyen, C.T.; Thakur, J.S.; Thrift, A.G.; Tirschwell, D.L.; Topor-Madry, R.; Tran, B.X.; Nguyen, L.T.; Truelsen, T.; Tsilimparis, N.; Tyrovolas, S.; Ukwaja, K.N.; Uthman, O.A.; Varakin, Y.; Vasankari, T.; Venketasubramanian, N.; Vlassov, V.V.; Wang, W.; Werdecker, A.; Wolfe, C.D.A.; Xu, G.; Yano, Y.; Yonemoto, N.; Yu, C.; Zaidi, Z.; El Sayed, Z.M.; Zhou, M.; Ziaeian, B.; Zipkin, B.; Vos, T.; Naghavi, M.; Murray, C.J.L.; Roth, G.A. Global, regional, and country-specific lifetime risks of stroke, 1990 and 2016. N. Engl. J. Med., 2018, 379(25), 2429-2437.
[http://dx.doi.org/10.1056/NEJMoa1804492] [PMID: 30575491]
[3]
Kalluri, R.; LeBleu, V.S. The biology, function, and biomedical applications of exosomes. Science, 2020, 367(6478), eaau6977.
[http://dx.doi.org/10.1126/science.aau6977] [PMID: 32029601]
[4]
Burkova, E.E.; Sedykh, S.E.; Nevinsky, G.A. Human placenta exosomes: Biogenesis, isolation, composition, and prospects for use in diagnostics. Int. J. Mol. Sci., 2021, 22(4), 2158.
[http://dx.doi.org/10.3390/ijms22042158] [PMID: 33671527]
[5]
Mathieu, M.; Martin-Jaular, L.; Lavieu, G.; Théry, C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat. Cell Biol., 2019, 21(1), 9-17.
[http://dx.doi.org/10.1038/s41556-018-0250-9] [PMID: 30602770]
[6]
van Niel, G.; D’Angelo, G.; Raposo, G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol., 2018, 19(4), 213-228.
[http://dx.doi.org/10.1038/nrm.2017.125] [PMID: 29339798]
[7]
Cocucci, E.; Meldolesi, J. Ectosomes and exosomes: Shedding the confusion between extracellular vesicles. Trends Cell Biol., 2015, 25(6), 364-372.
[http://dx.doi.org/10.1016/j.tcb.2015.01.004] [PMID: 25683921]
[8]
Théry, C.; Witwer, K.W.; Aikawa, E.; Alcaraz, M.J.; Anderson, J.D.; Andriantsitohaina, R.; Antoniou, A.; Arab, T.; Archer, F.; Atkin-Smith, G.K.; Ayre, D.C.; Bach, J.M.; Bachurski, D.; Baharvand, H.; Balaj, L.; Baldacchino, S.; Bauer, N.N.; Baxter, A.A.; Bebawy, M.; Beckham, C.; Bedina Zavec, A.; Benmoussa, A.; Berardi, A.C.; Bergese, P.; Bielska, E.; Blenkiron, C.; Bobis-Wozowicz, S.; Boilard, E.; Boireau, W.; Bongiovanni, A.; Borràs, F.E.; Bosch, S.; Boulanger, C.M.; Breakefield, X.; Breglio, A.M.; Brennan, M.Á.; Brigstock, D.R.; Brisson, A.; Broekman, M.L.D.; Bromberg, J.F.; Bryl-Górecka, P.; Buch, S.; Buck, A.H.; Burger, D.; Busatto, S.; Buschmann, D.; Bussolati, B.; Buzás, E.I.; Byrd, J.B.; Camussi, G.; Carter, D.R.F.; Caruso, S.; Chamley, L.W.; Chang, Y.T.; Chen, C.; Chen, S.; Cheng, L.; Chin, A.R.; Clayton, A.; Clerici, S.P.; Cocks, A.; Cocucci, E.; Coffey, R.J.; Cordeiro-da-Silva, A.; Couch, Y.; Coumans, F.A.W.; Coyle, B.; Crescitelli, R.; Criado, M.F.; D’Souza-Schorey, C.; Das, S.; Datta Chaudhuri, A.; de Candia, P.; De Santana, E.F.; De Wever, O.; del Portillo, H.A.; Demaret, T.; Deville, S.; Devitt, A.; Dhondt, B.; Di Vizio, D.; Dieterich, L.C.; Dolo, V.; Dominguez, R.A.P.; Dominici, M.; Dourado, M.R.; Driedonks, T.A.P.; Duarte, F.V.; Duncan, H.M.; Eichenberger, R.M.; Ekström, K.; EL Andaloussi, S.; Elie-Caille, C.; Erdbrügger, U.; Falcón-Pérez, J.M.; Fatima, F.; Fish, J.E.; Flores-Bellver, M.; Försönits, A.; Frelet-Barrand, A.; Fricke, F.; Fuhrmann, G.; Gabrielsson, S.; Gámez-Valero, A.; Gardiner, C.; Gärtner, K.; Gaudin, R.; Gho, Y.S.; Giebel, B.; Gilbert, C.; Gimona, M.; Giusti, I.; Goberdhan, D.C.I.; Görgens, A.; Gorski, S.M.; Greening, D.W.; Gross, J.C.; Gualerzi, A.; Gupta, G.N.; Gustafson, D.; Handberg, A.; Haraszti, R.A.; Harrison, P.; Hegyesi, H.; Hendrix, A.; Hill, A.F.; Hochberg, F.H.; Hoffmann, K.F.; Holder, B.; Holthofer, H.; Hosseinkhani, B.; Hu, G.; Huang, Y.; Huber, V.; Hunt, S.; Ibrahim, A.G.E.; Ikezu, T.; Inal, J.M.; Isin, M.; Ivanova, A.; Jackson, H.K.; Jacobsen, S.; Jay, S.M.; Jayachandran, M.; Jenster, G.; Jiang, L.; Johnson, S.M.; Jones, J.C.; Jong, A.; Jovanovic-Talisman, T.; Jung, S.; Kalluri, R.; Kano, S.; Kaur, S.; Kawamura, Y.; Keller, E.T.; Khamari, D.; Khomyakova, E.; Khvorova, A.; Kierulf, P.; Kim, K.P.; Kislinger, T.; Klingeborn, M.; Klinke, D.J., II; Kornek, M.; Kosanović, M.M.; Kovács, Á.F.; Krämer-Albers, E.M.; Krasemann, S.; Krause, M.; Kurochkin, I.V.; Kusuma, G.D.; Kuypers, S.; Laitinen, S.; Langevin, S.M.; Languino, L.R.; Lannigan, J.; Lässer, C.; Laurent, L.C.; Lavieu, G.; Lázaro-Ibáñez, E.; Le Lay, S.; Lee, M.S.; Lee, Y.X.F.; Lemos, D.S.; Lenassi, M.; Leszczynska, A.; Li, I.T.S.; Liao, K.; Libregts, S.F.; Ligeti, E.; Lim, R.; Lim, S.K.; Linē, A.; Linnemannstöns, K.; Llorente, A.; Lombard, C.A.; Lorenowicz, M.J.; Lörincz, Á.M.; Lötvall, J.; Lovett, J.; Lowry, M.C.; Loyer, X.; Lu, Q.; Lukomska, B.; Lunavat, T.R.; Maas, S.L.N.; Malhi, H.; Marcilla, A.; Mariani, J.; Mariscal, J.; Martens-Uzunova, E.S.; Martin-Jaular, L.; Martinez, M.C.; Martins, V.R.; Mathieu, M.; Mathivanan, S.; Maugeri, M.; McGinnis, L.K.; McVey, M.J.; Meckes, D.G., Jr; Meehan, K.L.; Mertens, I.; Minciacchi, V.R.; Möller, A.; Møller Jørgensen, M.; Morales-Kastresana, A.; Morhayim, J.; Mullier, F.; Muraca, M.; Musante, L.; Mussack, V.; Muth, D.C.; Myburgh, K.H.; Najrana, T.; Nawaz, M.; Nazarenko, I.; Nejsum, P.; Neri, C.; Neri, T.; Nieuwland, R.; Nimrichter, L.; Nolan, J.P.; Nolte-’t Hoen, E.N.M.; Noren Hooten, N.; O’Driscoll, L.; O’Grady, T.; O’Loghlen, A.; Ochiya, T.; Olivier, M.; Ortiz, A.; Ortiz, L.A.; Osteikoetxea, X.; Østergaard, O.; Ostrowski, M.; Park, J.; Pegtel, D.M.; Peinado, H.; Perut, F.; Pfaffl, M.W.; Phinney, D.G.; Pieters, B.C.H.; Pink, R.C.; Pisetsky, D.S.; Pogge von Strandmann, E.; Polakovicova, I.; Poon, I.K.H.; Powell, B.H.; Prada, I.; Pulliam, L.; Quesenberry, P.; Radeghieri, A.; Raffai, R.L.; Raimondo, S.; Rak, J.; Ramirez, M.I.; Raposo, G.; Rayyan, M.S.; Regev-Rudzki, N.; Ricklefs, F.L.; Robbins, P.D.; Roberts, D.D.; Rodrigues, S.C.; Rohde, E.; Rome, S.; Rouschop, K.M.A.; Rughetti, A.; Russell, A.E.; Saá, P.; Sahoo, S.; Salas-Huenuleo, E.; Sánchez, C.; Saugstad, J.A.; Saul, M.J.; Schiffelers, R.M.; Schneider, R.; Schøyen, T.H.; Scott, A.; Shahaj, E.; Sharma, S.; Shatnyeva, O.; Shekari, F.; Shelke, G.V.; Shetty, A.K.; Shiba, K.; Siljander, P.R.M.; Silva, A.M.; Skowronek, A.; Snyder, O.L., II; Soares, R.P.; Sódar, B.W.; Soekmadji, C.; Sotillo, J.; Stahl, P.D.; Stoorvogel, W.; Stott, S.L.; Strasser, E.F.; Swift, S.; Tahara, H.; Tewari, M.; Timms, K.; Tiwari, S.; Tixeira, R.; Tkach, M.; Toh, W.S.; Tomasini, R.; Torrecilhas, A.C.; Tosar, J.P.; Toxavidis, V.; Urbanelli, L.; Vader, P.; van Balkom, B.W.M.; van der Grein, S.G.; Van Deun, J.; van Herwijnen, M.J.C.; Van Keuren-Jensen, K.; van Niel, G.; van Royen, M.E.; van Wijnen, A.J.; Vasconcelos, M.H.; Vechetti, I.J., Jr; Veit, T.D.; Vella, L.J.; Velot, É.; Verweij, F.J.; Vestad, B.; Viñas, J.L.; Visnovitz, T.; Vukman, K.V.; Wahlgren, J.; Watson, D.C.; Wauben, M.H.M.; Weaver, A.; Webber, J.P.; Weber, V.; Wehman, A.M.; Weiss, D.J.; Welsh, J.A.; Wendt, S.; Wheelock, A.M.; Wiener, Z.; Witte, L.; Wolfram, J.; Xagorari, A.; Xander, P.; Xu, J.; Yan, X.; Yáñez-Mó, M.; Yin, H.; Yuana, Y.; Zappulli, V.; Zarubova, J.; Žėkas, V.; Zhang, J.; Zhao, Z.; Zheng, L.; Zheutlin, A.R.; Zickler, A.M.; Zimmermann, P.; Zivkovic, A.M.; Zocco, D.; Zuba-Surma, E.K. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the international society for extracellular vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles, 2018, 7(1), 1535750.
[http://dx.doi.org/10.1080/20013078.2018.1535750] [PMID: 30637094]
[9]
Morel, O.; Toti, F.; Hugel, B.; Freyssinet, J.M. Cellular microparticles: A disseminated storage pool of bioactive vascular effectors. Curr. Opin. Hematol., 2004, 11(3), 156-164.
[http://dx.doi.org/10.1097/01.moh.0000131441.10020.87] [PMID: 15257014]
[10]
Janowska-Wieczorek, A.; Majka, M.; Kijowski, J.; Baj-Krzyworzeka, M.; Reca, R.; Turner, A.R.; Ratajczak, J.; Emerson, S.G.; Kowalska, M.A.; Ratajczak, M.Z. Platelet-derived microparticles bind to hematopoietic stem/progenitor cells and enhance their engraftment. Blood, 2001, 98(10), 3143-3149.
[http://dx.doi.org/10.1182/blood.V98.10.3143] [PMID: 11698303]
[11]
Rozmyslowicz, T.; Majka, M.; Kijowski, J.; Murphy, S.L.; Conover, D.O.; Poncz, M.; Ratajczak, J.; Gaulton, G.N.; Ratajczak, M.Z. Platelet- and megakaryocyte-derived microparticles transfer CXCR4 receptor to CXCR4-null cells and make them susceptible to infection by X4-HIVE. AIDS, 2003, 17(1), 33-42.
[http://dx.doi.org/10.1097/00002030-200301030-00006] [PMID: 12478067]
[12]
Janowska-Wieczorek, A.; Wysoczynski, M.; Kijowski, J.; Marquez-Curtis, L.; Machalinski, B.; Ratajczak, J.; Ratajczak, M.Z. Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer. Int. J. Cancer, 2005, 113(5), 752-760.
[http://dx.doi.org/10.1002/ijc.20657] [PMID: 15499615]
[13]
Xu, R.; Rai, A.; Chen, M.; Suwakulsiri, W.; Greening, D.W.; Simpson, R.J. Extracellular vesicles in cancer — implications for future improvements in cancer care. Nat. Rev. Clin. Oncol., 2018, 15(10), 617-638.
[http://dx.doi.org/10.1038/s41571-018-0036-9] [PMID: 29795272]
[14]
Yang, J.; Cao, L.L.; Wang, X.P.; Guo, W.; Guo, R.B.; Sun, Y.Q.; Xue, T.F.; Cai, Z.Y.; Ji, J.; Cheng, H.; Sun, X.L. Neuronal extracellular vesicle derived miR-98 prevents salvageable neurons from microglial phagocytosis in acute ischemic stroke. Cell Death Dis., 2021, 12(1), 23.
[http://dx.doi.org/10.1038/s41419-020-03310-2] [PMID: 33414461]
[15]
Piffoux, M.; Nicolás-Boluda, A.; Mulens-Arias, V.; Richard, S.; Rahmi, G.; Gazeau, F.; Wilhelm, C.; Silva, A.K.A. Extracellular vesicles for personalized medicine: The input of physically triggered production, loading and theranostic properties. Adv. Drug Deliv. Rev., 2019, 138, 247-258.
[http://dx.doi.org/10.1016/j.addr.2018.12.009] [PMID: 30553953]
[16]
Chung, J.; Kim, K.H.; Yu, N.; An, S.H.; Lee, S.; Kwon, K. Fluid shear stress regulates the landscape of microRNAs in endothelial cell-derived small extracellular vesicles and modulates the function of endothelial cells. Int. J. Mol. Sci., 2022, 23(3), 1314.
[http://dx.doi.org/10.3390/ijms23031314] [PMID: 35163238]
[17]
Pan, W.; Liang, J.; Tang, H.; Fang, X.; Wang, F.; Ding, Y.; Huang, H.; Zhang, H. Differentially expressed microRNA profiles in exosomes from vascular smooth muscle cells associated with coronary artery calcification. Int. J. Biochem. Cell Biol., 2020, 118, 105645.
[http://dx.doi.org/10.1016/j.biocel.2019.105645] [PMID: 31733402]
[18]
Zhu, J.; Liu, B.; Wang, Z.; Wang, D.; Ni, H.; Zhang, L.; Wang, Y. Exosomes from nicotine-stimulated macrophages accelerate atherosclerosis through miR-21-3p/PTEN-mediated VSMC migration and proliferation. Theranostics, 2019, 9(23), 6901-6919.
[http://dx.doi.org/10.7150/thno.37357] [PMID: 31660076]
[19]
Yao, Y.; Sun, W.; Sun, Q.; Jing, B.; Liu, S.; Liu, X.; Shen, G.; Chen, R.; Wang, H. Platelet-derived exosomal MicroRNA-25-3p inhibits coronary vascular endothelial cell inflammation through adam10 via the NF-κB signaling pathway in ApoE−/− mice. Front. Immunol., 2019, 10, 2205.
[http://dx.doi.org/10.3389/fimmu.2019.02205] [PMID: 31632389]
[20]
Valadi, H.; Ekström, K.; Bossios, A.; Sjöstrand, M.; Lee, J.J.; Lötvall, J.O. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol., 2007, 9(6), 654-659.
[http://dx.doi.org/10.1038/ncb1596] [PMID: 17486113]
[21]
Nolte-’t Hoen, E.N.M.; Buermans, H.P.J.; Waasdorp, M.; Stoorvogel, W.; Wauben, M.H.M.; ’t Hoen, P.A.C. Deep sequencing of RNA from immune cell-derived vesicles uncovers the selective incorporation of small non-coding RNA biotypes with potential regulatory functions. Nucleic Acids Res., 2012, 40(18), 9272-9285.
[http://dx.doi.org/10.1093/nar/gks658] [PMID: 22821563]
[22]
Wei, Z.; Batagov, A.O.; Schinelli, S.; Wang, J.; Wang, Y.; El Fatimy, R.; Rabinovsky, R.; Balaj, L.; Chen, C.C.; Hochberg, F.; Carter, B.; Breakefield, X.O.; Krichevsky, A.M. Coding and noncoding landscape of extracellular RNA released by human glioma stem cells. Nat. Commun., 2017, 8(1), 1145.
[http://dx.doi.org/10.1038/s41467-017-01196-x] [PMID: 29074968]
[23]
Mao, Q.; Liang, X.L.; Zhang, C.L.; Pang, Y.H.; Lu, Y.X. LncRNA KLF3-AS1 in human mesenchymal stem cell-derived exosomes ameliorates pyroptosis of cardiomyocytes and myocardial infarction through miR-138-5p/Sirt1 axis. Stem Cell Res. Ther., 2019, 10(1), 393.
[http://dx.doi.org/10.1186/s13287-019-1522-4] [PMID: 31847890]
[24]
Li, Y.; Zheng, Q.; Bao, C.; Li, S.; Guo, W.; Zhao, J.; Chen, D.; Gu, J.; He, X.; Huang, S. Circular RNA is enriched and stable in exosomes: A promising biomarker for cancer diagnosis. Cell Res., 2015, 25(8), 981-984.
[http://dx.doi.org/10.1038/cr.2015.82] [PMID: 26138677]
[25]
Thakur, B.K.; Zhang, H.; Becker, A.; Matei, I.; Huang, Y.; Costa-Silva, B.; Zheng, Y.; Hoshino, A.; Brazier, H.; Xiang, J.; Williams, C.; Rodriguez-Barrueco, R.; Silva, J.M.; Zhang, W.; Hearn, S.; Elemento, O.; Paknejad, N.; Manova-Todorova, K.; Welte, K.; Bromberg, J.; Peinado, H.; Lyden, D. Double-stranded DNA in exosomes: A novel biomarker in cancer detection. Cell Res., 2014, 24(6), 766-769.
[http://dx.doi.org/10.1038/cr.2014.44] [PMID: 24710597]
[26]
Chen, X.; Jiang, M.; Li, H.; Wang, Y.; Shen, H.; Li, X.; Zhang, Y.; Wu, J.; Yu, Z.; Chen, G. CX3CL1/CX3CR1 axis attenuates early brain injury via promoting the delivery of exosomal microRNA-124 from neuron to microglia after subarachnoid hemorrhage. J. Neuroinflammation, 2020, 17(1), 209.
[http://dx.doi.org/10.1186/s12974-020-01882-6] [PMID: 32664984]
[27]
Zhou, S.; Gao, B.; Sun, C.; Bai, Y.; Cheng, D.; Zhang, Y.; Li, X.; Zhao, J.; Xu, D. Vascular endothelial cell-derived exosomes protect neural stem cells against ischemia/reperfusion injury. Neuroscience, 2020, 441, 184-196.
[http://dx.doi.org/10.1016/j.neuroscience.2020.05.046] [PMID: 32502570]
[28]
Cremer, S.; Michalik, K.M.; Fischer, A.; Pfisterer, L.; Jaé, N.; Winter, C.; Boon, R.A.; Muhly-Reinholz, M.; John, D.; Uchida, S.; Weber, C.; Poller, W.; Günther, S.; Braun, T.; Li, D.Y.; Maegdefessel, L.; Perisic Matic, L.; Hedin, U.; Soehnlein, O.; Zeiher, A.; Dimmeler, S. Hematopoietic deficiency of the long noncoding RNA MALAT1 promotes atherosclerosis and plaque inflammation. Circulation, 2019, 139(10), 1320-1334.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.117.029015] [PMID: 30586743]
[29]
Ji, Q.; Ji, Y.; Peng, J.; Zhou, X.; Chen, X.; Zhao, H.; Xu, T.; Chen, L.; Xu, Y. Increased brain-specific MiR-9 and MiR-124 in the serum exosomes of acute ischemic stroke patients. PLoS One, 2016, 11(9), e0163645.
[http://dx.doi.org/10.1371/journal.pone.0163645] [PMID: 27661079]
[30]
Liao, B.; Zhou, M.; Zhou, F.; Luo, X.; Zhong, S.; Zhou, Y.; Qin, Y.; Li, P.; Qin, C. Exosome-derived MiRNAs as biomarkers of the development and progression of intracranial aneurysms. J. Atheroscler. Thromb., 2020, 27(6), 545-610.
[http://dx.doi.org/10.5551/jat.51102] [PMID: 31597886]
[31]
Zhang, Y.; Tang, Y.; Dammer, E.; Liu, J.; Zhao, Y.; Zhu, L.; Ren, R.; Chen, H.; Wang, G.; Cheng, Q. Dysregulated urinary arginine metabolism in older adults with amnestic mild cognitive impairment. Front. Aging Neurosci., 2019, 11, 90.
[http://dx.doi.org/10.3389/fnagi.2019.00090] [PMID: 31105552]
[32]
Arroyo, J.D.; Chevillet, J.R.; Kroh, E.M.; Ruf, I.K.; Pritchard, C.C.; Gibson, D.F.; Mitchell, P.S.; Bennett, C.F.; Pogosova-Agadjanyan, E.L.; Stirewalt, D.L.; Tait, J.F.; Tewari, M. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc. Natl. Acad. Sci. USA, 2011, 108(12), 5003-5008.
[http://dx.doi.org/10.1073/pnas.1019055108] [PMID: 21383194]
[33]
Wang, K.; Zhang, S.; Weber, J.; Baxter, D.; Galas, D.J. Export of microRNAs and microRNA-protective protein by mammalian cells. Nucleic Acids Res., 2010, 38(20), 7248-7259.
[http://dx.doi.org/10.1093/nar/gkq601] [PMID: 20615901]
[34]
Vickers, K.C.; Palmisano, B.T.; Shoucri, B.M.; Shamburek, R.D.; Remaley, A.T. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat. Cell Biol., 2011, 13(4), 423-433.
[http://dx.doi.org/10.1038/ncb2210] [PMID: 21423178]
[35]
Kim, S.H.; Lim, K.H.; Yang, S.; Joo, J.Y. Long non-coding RNAs in brain tumors: Roles and potential as therapeutic targets. J. Hematol. Oncol., 2021, 14(1), 77.
[http://dx.doi.org/10.1186/s13045-021-01088-0] [PMID: 33980320]
[36]
He, X.; Wang, S.; Li, M.; Zhong, L.; Zheng, H.; Sun, Y.; Lai, Y.; Chen, X.; Wei, G.; Si, X.; Han, Y.; Huang, S.; Li, X.; Liao, W.; Liao, Y.; Bin, J. Long noncoding RNA GAS5 induces abdominal aortic aneurysm formation by promoting smooth muscle apoptosis. Theranostics, 2019, 9(19), 5558-5576.
[http://dx.doi.org/10.7150/thno.34463] [PMID: 31534503]
[37]
Hu, Y.W.; Guo, F.X.; Xu, Y.J.; Li, P.; Lu, Z.F.; McVey, D.G.; Zheng, L.; Wang, Q.; Ye, J.H.; Kang, C.M.; Wu, S.G.; Zhao, J.J.; Ma, X.; Yang, Z.; Fang, F.C.; Qiu, Y.R.; Xu, B.M.; Xiao, L.; Wu, Q.; Wu, L.M.; Ding, L.; Webb, T.R.; Samani, N.J.; Ye, S. Long noncoding RNA NEXN-AS1 mitigates atherosclerosis by regulating the actin-binding protein NEXN. J. Clin. Invest., 2019, 129(3), 1115-1128.
[http://dx.doi.org/10.1172/JCI98230] [PMID: 30589415]
[38]
Li, Z.; Huang, C.; Bao, C.; Chen, L.; Lin, M.; Wang, X.; Zhong, G.; Yu, B.; Hu, W.; Dai, L.; Zhu, P.; Chang, Z.; Wu, Q.; Zhao, Y.; Jia, Y.; Xu, P.; Liu, H.; Shan, G. Exon-intron circular RNAs regulate transcription in the nucleus. Nat. Struct. Mol. Biol., 2015, 22(3), 256-264.
[http://dx.doi.org/10.1038/nsmb.2959] [PMID: 25664725]
[39]
Conn, V.M.; Hugouvieux, V.; Nayak, A.; Conos, S.A.; Capovilla, G.; Cildir, G.; Jourdain, A.; Tergaonkar, V.; Schmid, M.; Zubieta, C.; Conn, S.J. A circRNA from SEPALLATA3 regulates splicing of its cognate mRNA through R-loop formation. Nat. Plants, 2017, 3(5), 17053.
[http://dx.doi.org/10.1038/nplants.2017.53] [PMID: 28418376]
[40]
Salmena, L.; Poliseno, L.; Tay, Y.; Kats, L.; Pandolfi, P.P. A ceRNA hypothesis: The rosetta stone of a hidden RNA language? Cell, 2011, 146(3), 353-358.
[http://dx.doi.org/10.1016/j.cell.2011.07.014] [PMID: 21802130]
[41]
Wen, Y.; Chun, Y.; Lian, Z.; Yong, Z.; Lan, Y.; Huan, L.; Xi, C.; Juan, L.; Qing, Z.; Jia, C.; Ji, Z. circRNA-0006896-miR1264-DNMT1 axis plays an important role in carotid plaque destabilization by regulating the behavior of endothelial cells in atherosclerosis. Mol. Med. Rep., 2021, 23(5), 311.
[http://dx.doi.org/10.3892/mmr.2021.11950] [PMID: 33649864]
[42]
Holdt, L.M.; Stahringer, A.; Sass, K.; Pichler, G.; Kulak, N.A.; Wilfert, W.; Kohlmaier, A.; Herbst, A.; Northoff, B.H.; Nicolaou, A.; Gäbel, G.; Beutner, F.; Scholz, M.; Thiery, J.; Musunuru, K.; Krohn, K.; Mann, M.; Teupser, D. Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans. Nat. Commun., 2016, 7(1), 12429.
[http://dx.doi.org/10.1038/ncomms12429] [PMID: 27539542]
[43]
Legnini, I.; Di Timoteo, G.; Rossi, F.; Morlando, M.; Briganti, F.; Sthandier, O.; Fatica, A.; Santini, T.; Andronache, A.; Wade, M.; Laneve, P.; Rajewsky, N.; Bozzoni, I. Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol. Cell, 2017, 66(1), 22-37.e9.
[http://dx.doi.org/10.1016/j.molcel.2017.02.017] [PMID: 28344082]
[44]
Kalani, M.Y.S.; Alsop, E.; Meechoovet, B.; Beecroft, T.; Agrawal, K.; Whitsett, T.G.; Huentelman, M.J.; Spetzler, R.F.; Nakaji, P.; Kim, S.; Van Keuren-Jensen, K. Extracellular microRNAs in blood differentiate between ischaemic and haemorrhagic stroke subtypes. J. Extracell. Vesicles, 2020, 9(1), 1713540.
[http://dx.doi.org/10.1080/20013078.2020.1713540] [PMID: 32128071]
[45]
Kim, T.; Oh, C.W.; Bang, J.S.; Kim, J.E.; Cho, W.S. Moyamoya disease: Treatment and outcomes. J. Stroke, 2016, 18(1), 21-30.
[http://dx.doi.org/10.5853/jos.2015.01739] [PMID: 26846757]
[46]
Wang, G.; Wen, Y.; Faleti, O.D.; Zhao, Q.; Liu, J.; Zhang, G.; Li, M.; Qi, S.; Feng, W.; Lyu, X. A panel of exosome-derived miRNAs of cerebrospinal fluid for the diagnosis of moyamoya disease. Front. Neurosci., 2020, 14, 548278.
[http://dx.doi.org/10.3389/fnins.2020.548278] [PMID: 33100957]
[47]
Li, X.; Gui, Z.; Han, Y.; Yang, X.; Wang, Z.; Zheng, L.; Zhang, L.; Wang, D.; Fan, X.; Su, L. Comprehensive analysis of dysregulated exosomal long non-coding RNA networks associated with arteriovenous malformations. Gene, 2020, 738, 144482.
[http://dx.doi.org/10.1016/j.gene.2020.144482] [PMID: 32087271]
[48]
Luo, X.; Wang, W.; Li, D.; Xu, C.; Liao, B.; Li, F.; Zhou, X.; Qin, W.; Liu, J. Plasma exosomal miR-450b-5p as a possible biomarker and therapeutic target for transient ischaemic attacks in rats. J. Mol. Neurosci., 2019, 69(4), 516-526.
[http://dx.doi.org/10.1007/s12031-019-01341-9] [PMID: 31368061]
[49]
Li, D.B.; Liu, J.L.; Wang, W.; Luo, X.M.; Zhou, X.; Li, J.P.; Cao, X.L.; Long, X.H.; Chen, J.G.; Qin, C. Plasma exosomal miRNA-122-5p and miR-300-3p as potential markers for transient ischaemic attack in rats. Front. Aging Neurosci., 2018, 10, 24.
[http://dx.doi.org/10.3389/fnagi.2018.00024] [PMID: 29467645]
[50]
Xu, X.; Zhuang, C.; Chen, L. Exosomal long non-coding RNA expression from serum of patients with acute minor stroke. Neuropsychiatr. Dis. Treat., 2020, 16, 153-160.
[http://dx.doi.org/10.2147/NDT.S230332] [PMID: 32021207]
[51]
Burrello, J.; Bianco, G.; Burrello, A.; Manno, C.; Maulucci, F.; Pileggi, M.; Nannoni, S.; Michel, P.; Bolis, S.; Melli, G.; Vassalli, G.; Albers, G.W.; Cianfoni, A.; Barile, L.; Cereda, C.W. Extracellular vesicle surface markers as a diagnostic tool in transient ischemic attacks. Stroke, 2021, 52(10), 3335-3347.
[http://dx.doi.org/10.1161/STROKEAHA.120.033170] [PMID: 34344167]
[52]
Wang, W.; Li, D.B.; Li, R.Y.; Zhou, X.; Yu, D.J.; Lan, X.Y.; Li, J.P.; Liu, J.L. Diagnosis of hyperacute and acute ischaemic stroke: The potential utility of exosomal microRNA-21-5p and microRNA-30a-5p. Cerebrovasc. Dis., 2018, 45(5-6), 204-212.
[http://dx.doi.org/10.1159/000488365] [PMID: 29627835]
[53]
Liu, Y.; Li, Y.; Zang, J.; Zhang, T.; Li, Y.; Tan, Z.; Ma, D.; Zhang, T.; Wang, S.; Zhang, Y.; Huang, L.; Wu, Y.; Su, X.; Weng, Z.; Deng, D.; Tsang, C.K.; Xu, A.; Lu, D. CircOGDH is a penumbra biomarker and therapeutic target in acute ischemic stroke. Circ. Res., 2022, 130(6), 907-924.
[http://dx.doi.org/10.1161/CIRCRESAHA.121.319412] [PMID: 35189704]
[54]
Zhang, S.; Wang, X.; Yin, R.; Xiao, Q.; Ding, Y.; Zhu, X.; Pan, X. Circulating exosomal lncRNAs as predictors of risk and unfavorable prognosis for large artery atherosclerotic stroke. Clin. Transl. Med., 2021, 11(12), e555.
[http://dx.doi.org/10.1002/ctm2.555] [PMID: 34923752]
[55]
Song, P.; Sun, H.; Chen, H.; Wang, Y.; Zhang, Q. Decreased serum exosomal miR-152-3p contributes to the progression of acute ischemic stroke. Clin. Lab., 2020, 66(08/2020)
[http://dx.doi.org/10.7754/Clin.Lab.2020.200106] [PMID: 32776748]
[56]
Zhang, S.; Wang, J.; Qu, M.J.; Wang, K.; Ma, A.J.; Pan, X.D.; Zhu, X.Y. Novel insights into the potential diagnostic value of circulating exosomal IncRNA-related networks in large artery atherosclerotic stroke. Front. Mol. Biosci., 2021, 8, 682769.
[http://dx.doi.org/10.3389/fmolb.2021.682769] [PMID: 34095232]
[57]
Niu, M.; Li, H.; Li, X.; Yan, X.; Ma, A.; Pan, X.; Zhu, X. Circulating exosomal miRNAs as novel biomarkers perform superior diagnostic efficiency compared with plasma miRNAs for large-artery atherosclerosis stroke. Front. Pharmacol., 2021, 12, 791644.
[http://dx.doi.org/10.3389/fphar.2021.791644] [PMID: 34899352]
[58]
van Kralingen, J.C.; McFall, A.; Ord, E.N.J.; Coyle, T.F.; Bissett, M.; McClure, J.D.; McCabe, C.; Macrae, I.M.; Dawson, J.; Work, L.M. Altered extracellular vesicle MicroRNA expression in ischemic stroke and small vessel disease. Transl. Stroke Res., 2019, 10(5), 495-508.
[http://dx.doi.org/10.1007/s12975-018-0682-3] [PMID: 30617992]
[59]
Zhou, J.; Chen, L.; Chen, B.; Huang, S.; Zeng, C.; Wu, H.; Chen, C.; Long, F. Increased serum exosomal miR-134 expression in the acute ischemic stroke patients. BMC Neurol., 2018, 18(1), 198.
[http://dx.doi.org/10.1186/s12883-018-1196-z] [PMID: 30514242]
[60]
Wang, S.; Jun, J.; Cong, L.; Du, L.; Wang, C. miR-328-3p, a predictor of stroke, aggravates the cerebral ischemia-reperfusion injury. Int. J. Gen. Med., 2021, 14, 2367-2376.
[http://dx.doi.org/10.2147/IJGM.S307392] [PMID: 34135620]
[61]
Chen, Y.; Song, Y.; Huang, J.; Qu, M.; Zhang, Y.; Geng, J.; Zhang, Z.; Liu, J.; Yang, G.Y. Increased circulating exosomal miRNA-223 is associated with acute ischemic stroke. Front. Neurol., 2017, 8, 57.
[http://dx.doi.org/10.3389/fneur.2017.00057] [PMID: 28289400]
[62]
Chen, F.; Du, Y.; Esposito, E.; Liu, Y.; Guo, S.; Wang, X.; Lo, E.H.; Xing, C.; Ji, X. Effects of focal cerebral ischemia on exosomal versus serum miR126. Transl. Stroke Res., 2015, 6(6), 478-484.
[http://dx.doi.org/10.1007/s12975-015-0429-3] [PMID: 26449616]
[63]
Wang, C.; Li, Z.; Liu, Y.; Yuan, L. Exosomes in atherosclerosis: Performers, bystanders, biomarkers, and therapeutic targets. Theranostics, 2021, 11(8), 3996-4010.
[http://dx.doi.org/10.7150/thno.56035] [PMID: 33664877]
[64]
Liu, Y.; Li, Q.; Hosen, M.R.; Zietzer, A.; Flender, A.; Levermann, P.; Schmitz, T.; Frühwald, D.; Goody, P.; Nickenig, G.; Werner, N.; Jansen, F. Atherosclerotic conditions promote the packaging of functional MicroRNA-92a-3p into endothelial microvesicles. Circ. Res., 2019, 124(4), 575-587.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.314010] [PMID: 30582459]
[65]
Goetzl, E.J.; Schwartz, J.B.; Mustapic, M.; Lobach, I.V.; Daneman, R.; Abner, E.L.; Jicha, G.A. Altered cargo proteins of human plasma endothelial cell-derived exosomes in atherosclerotic cerebrovascular disease. FASEB J., 2017, 31(8), 3689-3694.
[http://dx.doi.org/10.1096/fj.201700149] [PMID: 28476896]
[66]
Jiang, H.; Toscano, J.F.; Song, S.S.; Schlick, K.H.; Dumitrascu, O.M.; Pan, J.; Lyden, P.D.; Saver, J.L.; Gonzalez, N.R. Differential expression of circulating exosomal microRNAs in refractory intracranial atherosclerosis associated with antiangiogenesis. Sci. Rep., 2019, 9(1), 19429.
[http://dx.doi.org/10.1038/s41598-019-54542-y] [PMID: 31857618]
[67]
Dolz, S.; Górriz, D.; Tembl, J.I.; Sánchez, D.; Fortea, G.; Parkhutik, V.; Lago, A. Circulating MicroRNAs as novel biomarkers of stenosis progression in asymptomatic carotid stenosis. Stroke, 2017, 48(1), 10-16.
[http://dx.doi.org/10.1161/STROKEAHA.116.013650] [PMID: 27899750]
[68]
Li, D.B.; Liu, J.L.; Wang, W.; Li, R.Y.; Yu, D.J.; Lan, X.Y.; Li, J.P. Plasma exosomal miR-422a and miR-125b-2-3p serve as biomarkers for ischemic stroke. Curr. Neurovasc. Res., 2018, 14(4), 330-337.
[http://dx.doi.org/10.2174/1567202614666171005153434] [PMID: 28982331]
[69]
Kerr, N.; García-Contreras, M.; Abbassi, S.; Mejias, N.H.; Desousa, B.R.; Ricordi, C.; Dietrich, W.D.; Keane, R.W.; de Rivero Vaccari, J.P. Inflammasome proteins in serum and serum-derived extracellular vesicles as biomarkers of stroke. Front. Mol. Neurosci., 2018, 11, 309.
[http://dx.doi.org/10.3389/fnmol.2018.00309] [PMID: 30233311]
[70]
Goetzl, L.; Merabova, N.; Darbinian, N.; Martirosyan, D.; Poletto, E.; Fugarolas, K.; Menkiti, O. Diagnostic potential of neural exosome cargo as biomarkers for acute brain injury. Ann. Clin. Transl. Neurol., 2018, 5(1), 4-10.
[http://dx.doi.org/10.1002/acn3.499] [PMID: 29376087]
[71]
Sun, L.; Zhang, W.; Li, Z.; Li, M.; Guo, J.; Wang, H.; Wang, X. The expression of cerebrospinal fluid exosomal miR-630 plays an important role in the dysfunction of endothelial cells after subarachnoid hemorrhage. Sci. Rep., 2019, 9(1), 11510.
[http://dx.doi.org/10.1038/s41598-019-48049-9] [PMID: 31395931]
[72]
Starke, R.M.; Chalouhi, N.; Ding, D.; Raper, D.M.S.; Mckisic, M.S.; Owens, G.K.; Hasan, D.M.; Medel, R.; Dumont, A.S. Vascular smooth muscle cells in cerebral aneurysm pathogenesis. Transl. Stroke Res., 2014, 5(3), 338-346.
[http://dx.doi.org/10.1007/s12975-013-0290-1] [PMID: 24323713]
[73]
Wang, Y.; Jia, L.; Xie, Y.; Cai, Z.; Liu, Z.; Shen, J.; Lu, Y.; Wang, Y.; Su, S.; Ma, Y.; Xiang, M. Involvement of macrophage-derived exosomes in abdominal aortic aneurysms development. Atherosclerosis, 2019, 289, 64-72.
[http://dx.doi.org/10.1016/j.atherosclerosis.2019.08.016] [PMID: 31479773]
[74]
Feng, Z.; Zhang, X.; Li, L.; Wang, C.; Feng, M.; Zhao, K.; Zhao, R.; Liu, J.; Fang, Y. Tumor-associated macrophage-derived exosomal microRNA-155-5p stimulates intracranial aneurysm formation and macrophage infiltration. Clin. Sci. (Lond.), 2019, 133(22), 2265-2282.
[http://dx.doi.org/10.1042/CS20190680] [PMID: 31657855]
[75]
Boyer, M.J.; Kimura, Y.; Akiyama, T.; Baggett, A.Y.; Preston, K.J.; Scalia, R.; Eguchi, S.; Rizzo, V. Endothelial cell‐derived extracellular vesicles alter vascular smooth muscle cell phenotype through high‐mobility group box proteins. J. Extracell. Vesicles, 2020, 9(1), 1781427.
[http://dx.doi.org/10.1080/20013078.2020.1781427] [PMID: 32944170]
[76]
Li, B.; Zang, G.; Zhong, W.; Chen, R.; Zhang, Y.; Yang, P.; Yan, J. Activation of CD137 signaling promotes neointimal formation by attenuating TET2 and transferrring from endothelial cell-derived exosomes to vascular smooth muscle cells. Biomed. Pharmacother., 2020, 121, 109593.
[http://dx.doi.org/10.1016/j.biopha.2019.109593] [PMID: 31766102]
[77]
Wang, J.; Li, J.; Cheng, C.; Liu, S. Angiotensin-converting enzyme 2 augments the effects of endothelial progenitor cells-exosomes on vascular smooth muscle cell phenotype transition. Cell Tissue Res., 2020, 382(3), 509-518.
[http://dx.doi.org/10.1007/s00441-020-03259-w] [PMID: 32852610]
[78]
Kuwabara, A.; Liu, J.; Kamio, Y.; Liu, A.; Lawton, M.T.; Lee, J.W.; Hashimoto, T. Protective effect of mesenchymal stem cells against the development of intracranial aneurysm rupture in mice. Neurosurgery, 2017, 81(6), 1021-1028.
[http://dx.doi.org/10.1093/neuros/nyx172] [PMID: 28431181]
[79]
Yang, G.; Qin, H.; Liu, B.; Zhao, X.; Yin, H. Mesenchymal stem cells-derived exosomes modulate vascular endothelial injury via miR-144-5p/PTEN in intracranial aneurysm. Hum. Cell, 2021, 34(5), 1346-1359.
[http://dx.doi.org/10.1007/s13577-021-00571-7] [PMID: 34240392]
[80]
Spinosa, M.; Lu, G.; Su, G.; Bontha, S.V.; Gehrau, R.; Salmon, M.D.; Smith, J.R.; Weiss, M.L.; Mas, V.R.; Upchurch, G.R., Jr; Sharma, A.K. Human mesenchymal stromal cell-derived extracellular vesicles attenuate aortic aneurysm formation and macrophage activation via microRNA-147. Faseb J., 2018, 32, fj201701138RR.
[http://dx.doi.org/10.1096/fj.201701138RR]
[81]
Liu, J.; Kuwabara, A.; Kamio, Y.; Hu, S.; Park, J.; Hashimoto, T.; Lee, J.W. Human mesenchymal stem cell-derived microvesicles prevent the rupture of intracranial aneurysm in part by suppression of mast cell activation via a PGE2-dependent mechanism. Stem Cells, 2016, 34(12), 2943-2955.
[http://dx.doi.org/10.1002/stem.2448] [PMID: 27350036]
[82]
Sun, X.; Zheng, X.; Zhang, X.; Zhang, Y.; Luo, G. Exosomal microRNA-23b-3p from bone marrow mesenchymal stem cells maintains T helper/Treg balance by downregulating the PI3k/Akt/NF-κB signaling pathway in intracranial aneurysm. Brain Res. Bull., 2020, 165, 305-315.
[http://dx.doi.org/10.1016/j.brainresbull.2020.09.003] [PMID: 32956770]
[83]
Libby, P.; Buring, J.E.; Badimon, L.; Hansson, G.K.; Deanfield, J.; Bittencourt, M.S.; Tokgözoğlu, L.; Lewis, E.F. Atherosclerosis. Nat. Rev. Dis. Primers, 2019, 5(1), 56.
[http://dx.doi.org/10.1038/s41572-019-0106-z] [PMID: 31420554]
[84]
Patel, N.; Chin, D.D.; Chung, E.J. Exosomes in atherosclerosis, a double-edged sword: Their role in disease pathogenesis and their potential as novel therapeutics. AAPS J., 2021, 23(5), 95.
[http://dx.doi.org/10.1208/s12248-021-00621-w] [PMID: 34312734]
[85]
Bai, S.; Yin, Q.; Dong, T.; Dai, F.; Qin, Y.; Ye, L.; Du, J.; Zhang, Q.; Chen, H.; Shen, B. Endothelial progenitor cell-derived exosomes ameliorate endothelial dysfunction in a mouse model of diabetes. Biomed. Pharmacother., 2020, 131, 110756.
[http://dx.doi.org/10.1016/j.biopha.2020.110756] [PMID: 33152921]
[86]
Li, J.; Tan, M.; Xiang, Q.; Zhou, Z.; Yan, H. Thrombin-activated platelet-derived exosomes regulate endothelial cell expression of ICAM-1 via microRNA-223 during the thrombosis-inflammation response. Thromb. Res., 2017, 154, 96-105.
[http://dx.doi.org/10.1016/j.thromres.2017.04.016] [PMID: 28460288]
[87]
Zheng, B.; Yin, W.; Suzuki, T.; Zhang, X.; Zhang, Y.; Song, L.; Jin, L.; Zhan, H.; Zhang, H.; Li, J.; Wen, J. Exosome-Mediated miR-155 transfer from smooth muscle cells to endothelial cells induces endothelial injury and promotes atherosclerosis. Mol. Ther., 2017, 25(6), 1279-1294.
[http://dx.doi.org/10.1016/j.ymthe.2017.03.031] [PMID: 28408180]
[88]
Ke, X.; Liao, Z.; Luo, X.; Chen, J.; Deng, M.; Huang, Y.; Wang, Z.; Wei, M. Endothelial colony-forming cell-derived exosomal miR-21-5p regulates autophagic flux to promote vascular endothelial repair by inhibiting SIPL1A2 in atherosclerosis. Cell Commun. Signal., 2022, 20(1), 30.
[http://dx.doi.org/10.1186/s12964-022-00828-0] [PMID: 35279183]
[89]
Zhang, Z.G.; Chopp, M. Exosomes in stroke pathogenesis and therapy. J. Clin. Invest., 2016, 126(4), 1190-1197.
[http://dx.doi.org/10.1172/JCI81133] [PMID: 27035810]
[90]
Leroyer, A.S.; Rautou, P.E.; Silvestre, J.S.; Castier, Y.; Lesèche, G.; Devue, C.; Duriez, M.; Brandes, R.P.; Lutgens, E.; Tedgui, A.; Boulanger, C.M. CD40 ligand+ microparticles from human atherosclerotic plaques stimulate endothelial proliferation and angiogenesis a potential mechanism for intraplaque neovascularization. J. Am. Coll. Cardiol., 2008, 52(16), 1302-1311.
[http://dx.doi.org/10.1016/j.jacc.2008.07.032] [PMID: 18929241]
[91]
Virmani, R.; Kolodgie, F.D.; Burke, A.P.; Finn, A.V.; Gold, H.K.; Tulenko, T.N.; Wrenn, S.P.; Narula, J. Atherosclerotic plaque progression and vulnerability to rupture: angiogenesis as a source of intraplaque hemorrhage. Arterioscler. Thromb. Vasc. Biol., 2005, 25(10), 2054-2061.
[http://dx.doi.org/10.1161/01.ATV.0000178991.71605.18] [PMID: 16037567]
[92]
Li, S.; Yuan, L.; Su, L.; Lian, Z.; Liu, C.; Zhang, F.; Cui, Y.; Wu, M.; Chen, H. Decreased miR-92a-3p expression potentially mediates the pro-angiogenic effects of oxidative stress-activated endothelial cell-derived exosomes by targeting tissue factor. Int. J. Mol. Med., 2020, 46(5), 1886-1898.
[http://dx.doi.org/10.3892/ijmm.2020.4713] [PMID: 32901851]
[93]
Sun, Y.; Liu, X.; Zhang, D.; Liu, F.; Cheng, Y.; Ma, Y.; Zhou, Y.; Zhao, Y. Platelet-derived exosomes affect the proliferation and migration of human umbilical vein endothelial cells via miR-126. Curr. Vasc. Pharmacol., 2019, 17(4), 379-387.
[http://dx.doi.org/10.2174/1570161116666180313142139] [PMID: 29532758]
[94]
Basatemur, G.L.; Jørgensen, H.F.; Clarke, M.C.H.; Bennett, M.R.; Mallat, Z. Vascular smooth muscle cells in atherosclerosis. Nat. Rev. Cardiol., 2019, 16(12), 727-744.
[http://dx.doi.org/10.1038/s41569-019-0227-9] [PMID: 31243391]
[95]
Niu, C.; Wang, X.; Zhao, M.; Cai, T.; Liu, P.; Li, J.; Willard, B.; Zu, L.; Zhou, E.; Li, Y.; Pan, B.; Yang, F.; Zheng, L. Macrophage foam cell-derived extracellular vesicles promote vascular smooth muscle cell migration and adhesion. J. Am. Heart Assoc., 2016, 5(10), e004099.
[http://dx.doi.org/10.1161/JAHA.116.004099] [PMID: 27792649]
[96]
Lin, C.M.; Wang, B.W.; Pan, C.M.; Fang, W.J.; Chua, S.K.; Cheng, W.P.; Shyu, K.G. Chrysin boosts KLF2 expression through suppression of endothelial cell-derived exosomal microRNA-92a in the model of atheroprotection. Eur. J. Nutr., 2021, 60(8), 4345-4355.
[http://dx.doi.org/10.1007/s00394-021-02593-1] [PMID: 34041583]
[97]
Hergenreider, E.; Heydt, S.; Tréguer, K.; Boettger, T.; Horrevoets, A.J.G.; Zeiher, A.M.; Scheffer, M.P.; Frangakis, A.S.; Yin, X.; Mayr, M.; Braun, T.; Urbich, C.; Boon, R.A.; Dimmeler, S. Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nat. Cell Biol., 2012, 14(3), 249-256.
[http://dx.doi.org/10.1038/ncb2441] [PMID: 22327366]
[98]
Fang, Y.; Shi, C.; Manduchi, E.; Civelek, M.; Davies, P.F. MicroRNA-10a regulation of proinflammatory phenotype in athero-susceptible endothelium in vivo and in vitro. Proc. Natl. Acad. Sci. USA, 2010, 107(30), 13450-13455.
[http://dx.doi.org/10.1073/pnas.1002120107] [PMID: 20624982]
[99]
Njock, M.S.; Cheng, H.S.; Dang, L.T.; Nazari-Jahantigh, M.; Lau, A.C.; Boudreau, E.; Roufaiel, M.; Cybulsky, M.I.; Schober, A.; Fish, J.E. Endothelial cells suppress monocyte activation through secretion of extracellular vesicles containing antiinflammatory microRNAs. Blood, 2015, 125(20), 3202-3212.
[http://dx.doi.org/10.1182/blood-2014-11-611046] [PMID: 25838349]
[100]
Goetzl, E.J.; Goetzl, L.; Karliner, J.S.; Tang, N.; Pulliam, L. Human plasma platelet‐derived exosomes: Effects of aspirin. FASEB J., 2016, 30(5), 2058-2063.
[http://dx.doi.org/10.1096/fj.201500150R] [PMID: 26873936]
[101]
Nguyen, M.A.; Karunakaran, D.; Geoffrion, M.; Cheng, H.S.; Tandoc, K.; Perisic Matic, L.; Hedin, U.; Maegdefessel, L.; Fish, J.E.; Rayner, K.J. Extracellular vesicles secreted by atherogenic macrophages transfer MicroRNA to inhibit cell migration. Arterioscler. Thromb. Vasc. Biol., 2018, 38(1), 49-63.
[http://dx.doi.org/10.1161/ATVBAHA.117.309795] [PMID: 28882869]
[102]
Ouimet, M.; Barrett, T.J.; Fisher, E.A. HDL and reverse cholesterol transport. Circ. Res., 2019, 124(10), 1505-1518.
[http://dx.doi.org/10.1161/CIRCRESAHA.119.312617] [PMID: 31071007]
[103]
Liu, Y.; Sun, Y.; Lin, X.; Zhang, D.; Hu, C.; Liu, J.; Zhu, Y.; Gao, A.; Han, H.; Chai, M.; Zhang, J.; Zhao, Y.; Zhou, Y. Perivascular adipose-derived exosomes reduce macrophage foam cell formation through miR-382-5p and the BMP4-PPARγ-ABCA1/ABCG1 pathways. Vascul. Pharmacol., 2022, 143, 106968.
[http://dx.doi.org/10.1016/j.vph.2022.106968] [PMID: 35123060]
[104]
Xu, B.; Zhang, Y.; Du, X.F.; Li, J.; Zi, H.X.; Bu, J.W.; Yan, Y.; Han, H.; Du, J.L. Neurons secrete miR-132-containing exosomes to regulate brain vascular integrity. Cell Res., 2017, 27(7), 882-897.
[http://dx.doi.org/10.1038/cr.2017.62] [PMID: 28429770]
[105]
Wang, X.; Han, C.; Jia, Y.; Wang, J.; Ge, W.; Duan, L. Proteomic profiling of exosomes from hemorrhagic moyamoya disease and dysfunction of mitochondria in endothelial cells. Stroke, 2021, 52(10), 3351-3361.
[http://dx.doi.org/10.1161/STROKEAHA.120.032297] [PMID: 34334053]
[106]
Hu, D.; Wang, Y.; You, Z.; Lu, Y.; Liang, C. lnc-MRGPRF-6:1 Promotes m1 polarization of macrophage and inflammatory response through the TLR4-MyD88-MAPK pathway. Mediators Inflamm., 2022, 2022, 1-18.
[http://dx.doi.org/10.1155/2022/6979117] [PMID: 35125964]
[107]
Bouchareychas, L.; Duong, P.; Covarrubias, S.; Alsop, E.; Phu, T.A.; Chung, A.; Gomes, M.; Wong, D.; Meechoovet, B.; Capili, A.; Yamamoto, R.; Nakauchi, H.; McManus, M.T.; Carpenter, S.; Van Keuren-Jensen, K.; Raffai, R.L. Macrophage exosomes resolve atherosclerosis by regulating hematopoiesis and inflammation via MicroRNA cargo. Cell Rep., 2020, 32(2), 107881.
[http://dx.doi.org/10.1016/j.celrep.2020.107881] [PMID: 32668250]
[108]
Ma, X.; Wang, J.; Li, J.; Ma, C.; Chen, S.; Lei, W.; Yang, Y.; Liu, S.; Bihl, J.; Chen, C. Loading MiR-210 in endothelial progenitor cells derived exosomes boosts their beneficial effects on hypoxia/] reoxygeneation-injured human endothelial cells via protecting mitochondrial function. Cell. Physiol. Biochem., 2018, 46(2), 664-675.
[http://dx.doi.org/10.1159/000488635] [PMID: 29621777]
[109]
Bäck, M.; Yurdagul, A., Jr; Tabas, I.; Öörni, K.; Kovanen, P.T. Inflammation and its resolution in atherosclerosis: mediators and therapeutic opportunities. Nat. Rev. Cardiol., 2019, 16(7), 389-406.
[http://dx.doi.org/10.1038/s41569-019-0169-2] [PMID: 30846875]
[110]
Italiani, P.; Boraschi, D. From Monocytes to M1/M2 macrophages: Phenotypical vs. functional differentiation. Front. Immunol., 2014, 5, 514.
[http://dx.doi.org/10.3389/fimmu.2014.00514] [PMID: 25368618]
[111]
Gasior, P.; Cheng, Y.; Valencia, A.F.; McGregor, J.; Conditt, G.B.; Kaluza, G.L.; Granada, J.F. Impact of fluoropolymer-based paclitaxel delivery on neointimal proliferation and vascular healing. Circ. Cardiovasc. Interv., 2017, 10(5), e004450.
[http://dx.doi.org/10.1161/CIRCINTERVENTIONS.116.004450] [PMID: 28487355]
[112]
Yan, W.; Li, T.; Yin, T.; Hou, Z.; Qu, K.; Wang, N.; Durkan, C.; Dong, L.; Qiu, J.; Gregersen, H.; Wang, G. M2 macrophage-derived exosomes promote the c-KIT phenotype of vascular smooth muscle cells during vascular tissue repair after intravascular stent implantation. Theranostics, 2020, 10(23), 10712-10728.
[http://dx.doi.org/10.7150/thno.46143] [PMID: 32929376]
[113]
Wang, Z.; Zhu, H.; Shi, H.; Zhao, H.; Gao, R.; Weng, X.; Liu, R.; Li, X.; Zou, Y.; Hu, K.; Sun, A.; Ge, J. Exosomes derived from M1 macrophages aggravate neointimal hyperplasia following carotid artery injuries in mice through miR-222/CDKN1B/CDKN1C pathway. Cell Death Dis., 2019, 10(6), 422.
[http://dx.doi.org/10.1038/s41419-019-1667-1] [PMID: 31142732]
[114]
Endres, M.; Moro, M.A.; Nolte, C.H.; Dames, C.; Buckwalter, M.S.; Meisel, A. Immune pathways in etiology, acute phase, and chronic sequelae of ischemic stroke. Circ. Res., 2022, 130(8), 1167-1186.
[http://dx.doi.org/10.1161/CIRCRESAHA.121.319994] [PMID: 35420915]
[115]
Rosenberg, G.A. Neurological diseases in relation to the blood-brain barrier. J. Cereb. Blood Flow Metab., 2012, 32(7), 1139-1151.
[http://dx.doi.org/10.1038/jcbfm.2011.197] [PMID: 22252235]
[116]
Candelario-Jalil, E.; Dijkhuizen, R.M.; Magnus, T. Neuroinflammation, stroke, blood-brain barrier dysfunction, and imaging modalities. Stroke, 2022, 53(5), 1473-1486.
[http://dx.doi.org/10.1161/STROKEAHA.122.036946] [PMID: 35387495]
[117]
Nudo, R.J. Postinfarct cortical plasticity and behavioral recovery. Stroke, 2007, 38(2)(Suppl.), 840-845.
[http://dx.doi.org/10.1161/01.STR.0000247943.12887.d2] [PMID: 17261749]
[118]
Kanazawa, M.; Takahashi, T.; Ishikawa, M.; Onodera, O.; Shimohata, T.; del Zoppo, G.J. Angiogenesis in the ischemic core: A potential treatment target? J. Cereb. Blood Flow Metab., 2019, 39(5), 753-769.
[http://dx.doi.org/10.1177/0271678X19834158] [PMID: 30841779]
[119]
Marques, B.L.; Carvalho, G.A.; Freitas, E.M.M.; Chiareli, R.A.; Barbosa, T.G.; Di Araújo, A.G.P.; Nogueira, Y.L.; Ribeiro, R.I.; Parreira, R.C.; Vieira, M.S.; Resende, R.R.; Gomez, R.S.; Oliveira-Lima, O.C.; Pinto, M.C.X. The role of neurogenesis in neurorepair after ischemic stroke. Semin. Cell Dev. Biol., 2019, 95, 98-110.
[http://dx.doi.org/10.1016/j.semcdb.2018.12.003] [PMID: 30550812]
[120]
Jiang, L.; Shen, F.; Degos, V.; Schonemann, M.; Pleasure, S.J.; Mellon, S.H.; Young, W.L.; Su, H. Oligogenesis and oligodendrocyte progenitor maturation vary in different brain regions and partially correlate with local angiogenesis after ischemic stroke. Transl. Stroke Res., 2011, 2(3), 366-375.
[http://dx.doi.org/10.1007/s12975-011-0078-0] [PMID: 22022343]
[121]
Martinez, M.C.; Tual-Chalot, S.; Leonetti, D.; Andriantsitohaina, R. Microparticles: targets and tools in cardiovascular disease. Trends Pharmacol. Sci., 2011, 32(11), 659-665.
[http://dx.doi.org/10.1016/j.tips.2011.06.005] [PMID: 21794929]
[122]
EL Andaloussi, S.; Mäger, I.; Breakefield, X.O.; Wood, M.J.A. Extracellular vesicles: Biology and emerging therapeutic opportunities. Nat. Rev. Drug Discov., 2013, 12(5), 347-357.
[http://dx.doi.org/10.1038/nrd3978] [PMID: 23584393]
[123]
Tian, T.; Zhang, H.X.; He, C.P.; Fan, S.; Zhu, Y.L.; Qi, C.; Huang, N.P.; Xiao, Z.D.; Lu, Z.H.; Tannous, B.A.; Gao, J. Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy. Biomaterials, 2018, 150, 137-149.
[http://dx.doi.org/10.1016/j.biomaterials.2017.10.012] [PMID: 29040874]
[124]
Chen, C.C.; Liu, L.; Ma, F.; Wong, C.W.; Guo, X.E.; Chacko, J.V.; Farhoodi, H.P.; Zhang, S.X.; Zimak, J.; Ségaliny, A.; Riazifar, M.; Pham, V.; Digman, M.A.; Pone, E.J.; Zhao, W. Elucidation of exosome migration across the blood-brain barrier model in vitro. Cell. Mol. Bioeng., 2016, 9(4), 509-529.
[http://dx.doi.org/10.1007/s12195-016-0458-3] [PMID: 28392840]
[125]
Muhammad, S.A.; Abbas, A.Y.; Imam, M.U.; Saidu, Y.; Bilbis, L.S. Efficacy of stem cell secretome in the treatment of traumatic brain injury: A systematic review and meta-analysis of preclinical studies. Mol. Neurobiol., 2022, 59(5), 2894-2909.
[http://dx.doi.org/10.1007/s12035-022-02759-w] [PMID: 35230664]
[126]
Huang, L.; Hua, L.; Zhang, X. The exosomal microrna profile is responsible for the mesenchymal stromal cell transplantation-induced improvement of functional recovery after stroke in rats. Neuroimmunomodulation, 2022, 29(2), 151-160.
[http://dx.doi.org/10.1159/000518637] [PMID: 34569545]
[127]
Xiao, Y.; Geng, F.; Wang, G.; Li, X.; Zhu, J.; Zhu, W. Bone marrow-derived mesenchymal stem cells-derived exosomes prevent oligodendrocyte apoptosis through exosomal miR-134 by targeting caspase-8. J. Cell. Biochem., 2018.
[http://dx.doi.org/10.1002/jcb.27519] [PMID: 30191592]
[128]
Xin, H.; Li, Y.; Cui, Y.; Yang, J.J.; Zhang, Z.G.; Chopp, M. Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats. J. Cereb. Blood Flow Metab., 2013, 33(11), 1711-1715.
[http://dx.doi.org/10.1038/jcbfm.2013.152] [PMID: 23963371]
[129]
Xin, H.; Li, Y.; Buller, B.; Katakowski, M.; Zhang, Y.; Wang, X.; Shang, X.; Zhang, Z.G.; Chopp, M. Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth. Stem Cells, 2012, 30(7), 1556-1564.
[http://dx.doi.org/10.1002/stem.1129] [PMID: 22605481]
[130]
Liu, B.; Zheng, W.; Dai, L.; Fu, S.; Shi, E. Bone marrow mesenchymal stem cell derived exosomal miR-455-5p protects against spinal cord ischemia reperfusion injury. Tissue Cell, 2022, 74, 101678.
[http://dx.doi.org/10.1016/j.tice.2021.101678] [PMID: 34823099]
[131]
Xin, H.; Li, Y.; Liu, Z.; Wang, X.; Shang, X.; Cui, Y.; Zhang, Z.G.; Chopp, M. MiR-133b promotes neural plasticity and functional recovery after treatment of stroke with multipotent mesenchymal stromal cells in rats via transfer of exosome-enriched extracellular particles. Stem Cells, 2013, 31(12), 2737-2746.
[http://dx.doi.org/10.1002/stem.1409] [PMID: 23630198]
[132]
Dumbrava, D.A.; Surugiu, R.; Börger, V.; Ruscu, M.; Tertel, T.; Giebel, B.; Hermann, D.M.; Popa-Wagner, A. Mesenchymal stromal cell-derived small extracellular vesicles promote neurological recovery and brain remodeling after distal middle cerebral artery occlusion in aged rats. Geroscience, 2022, 44(1), 293-310.
[http://dx.doi.org/10.1007/s11357-021-00483-2] [PMID: 34757568]
[133]
Wei, R.; Zhang, L.; Hu, W.; Shang, X.; He, Y.; Zhang, W. Zeb2/Axin2-enriched BMSC-derived exosomes promote post-stroke functional recovery by enhancing neurogenesis and neural plasticity. J. Mol. Neurosci., 2022, 72(1), 69-81.
[http://dx.doi.org/10.1007/s12031-021-01887-7] [PMID: 34401997]
[134]
Nalamolu, K.R.; Venkatesh, I.; Mohandass, A.; Klopfenstein, J.D.; Pinson, D.M.; Wang, D.Z.; Kunamneni, A.; Veeravalli, K.K. Exosomes secreted by the cocultures of normal and oxygen-glucose-deprived stem cells improve post-stroke outcome. Neuromol. Med., 2019, 21(4), 529-539.
[http://dx.doi.org/10.1007/s12017-019-08540-y] [PMID: 31077035]
[135]
Zhang, Z.; Zou, X.; Zhang, R.; Xie, Y.; Feng, Z.; Li, F.; Han, J.; Sun, H.; Ouyang, Q.; Hua, S.; Lv, B.; Hua, T.; Liu, Z.; Cai, Y.; Zou, Y.; Tang, Y.; Jiang, X. Human umbilical cord mesenchymal stem cell-derived exosomal miR-146a-5p reduces microglial-mediated neuroinflammation via suppression of the IRAK1/TRAF6 signaling pathway after ischemic stroke. Aging (Albany NY), 2021, 13(2), 3060-3079.
[http://dx.doi.org/10.18632/aging.202466] [PMID: 33479185]
[136]
Castelli, V.; Antonucci, I.; d’Angelo, M.; Tessitore, A.; Zelli, V.; Benedetti, E.; Ferri, C.; Desideri, G.; Borlongan, C.; Stuppia, L.; Cimini, A. Neuroprotective effects of human amniotic fluid stem cells-derived secretome in an ischemia/reperfusion model. Stem Cells Transl. Med., 2021, 10(2), 251-266.
[http://dx.doi.org/10.1002/sctm.20-0268] [PMID: 33027557]
[137]
Sun, X.; Jung, J.H.; Arvola, O.; Santoso, M.R.; Giffard, R.G.; Yang, P.C.; Stary, C.M. Stem cell-derived exosomes protect astrocyte cultures from in vitro Ischemia and Decrease Injury as Post-stroke Intravenous Therapy. Front. Cell. Neurosci., 2019, 13, 394.
[http://dx.doi.org/10.3389/fncel.2019.00394] [PMID: 31551712]
[138]
Yang, H.; Tu, Z.; Yang, D.; Hu, M.; Zhou, L.; Li, Q.; Yu, B.; Hou, S. Exosomes from hypoxic pre-treated ADSCs attenuate acute ischemic stroke-induced brain injury via delivery of circ-Rps5 and promote M2 microglia/macrophage polarization. Neurosci. Lett., 2022, 769, 136389.
[http://dx.doi.org/10.1016/j.neulet.2021.136389] [PMID: 34896256]
[139]
Jiang, M.; Wang, H.; Jin, M.; Yang, X.; Ji, H.; Jiang, Y.; Zhang, H.; Wu, F.; Wu, G.; Lai, X.; Cai, L.; Hu, R.; Xu, L.; Li, L. Exosomes from MiR-30d-5p-ADSCs reverse acute ischemic stroke-induced, autophagy-mediated brain injury by promoting M2 microglial/macrophage polarization. Cell. Physiol. Biochem., 2018, 47(2), 864-878.
[http://dx.doi.org/10.1159/000490078] [PMID: 29807362]
[140]
Chen, K.H.; Chen, C.H.; Wallace, C.G.; Yuen, C.M.; Kao, G.S.; Chen, Y.L.; Shao, P.L.; Chen, Y.L.; Chai, H.T.; Lin, K.C.; Liu, C.F.; Chang, H.W.; Lee, M.S.; Yip, H.K. Intravenous administration of xenogenic adipose-derived mesenchymal stem cells (ADMSC) and ADMSC-derived exosomes markedly reduced brain infarct volume and preserved neurological function in rat after acute ischemic stroke. Oncotarget, 2016, 7(46), 74537-74556.
[http://dx.doi.org/10.18632/oncotarget.12902] [PMID: 27793019]
[141]
Ling, X.; Zhang, G.; Xia, Y.; Zhu, Q.; Zhang, J.; Li, Q.; Niu, X.; Hu, G.; Yang, Y.; Wang, Y.; Deng, Z. Exosomes from human urine‐derived stem cells enhanced neurogenesis via miR‐26a/HDAC6 axis after ischaemic stroke. J. Cell. Mol. Med., 2020, 24(1), 640-654.
[http://dx.doi.org/10.1111/jcmm.14774] [PMID: 31667951]
[142]
Zhong, Y.; Luo, L. Exosomes from human umbilical vein endothelial cells ameliorate ischemic injuries by suppressing the RNA component of mitochondrial RNA-processing endoribonuclease via the induction of miR-206/miR-1-3p levels. Neuroscience, 2021, 476, 34-44.
[http://dx.doi.org/10.1016/j.neuroscience.2021.08.026] [PMID: 34481913]
[143]
Yu, Y.; Zhou, H.; Xiong, Y.; Liu, J. Exosomal miR-199a-5p derived from endothelial cells attenuates apoptosis and inflammation in neural cells by inhibiting endoplasmic reticulum stress. Brain Res., 2020, 1726, 146515.
[http://dx.doi.org/10.1016/j.brainres.2019.146515] [PMID: 31634452]
[144]
Zang, J.; Wu, Y.; Su, X.; Zhang, T.; Tang, X.; Ma, D.; Li, Y.; Liu, Y.; Weng, Z.; Liu, X.; Tsang, C.K.; Xu, A.; Lu, D. Inhibition of PDE1-B by vinpocetine regulates microglial exosomes and polarization through enhancing autophagic flux for neuroprotection against ischemic stroke. Front. Cell Dev. Biol., 2021, 8, 616590.
[http://dx.doi.org/10.3389/fcell.2020.616590] [PMID: 33614626]
[145]
Song, Y.; Li, Z.; He, T.; Qu, M.; Jiang, L.; Li, W.; Shi, X.; Pan, J.; Zhang, L.; Wang, Y.; Zhang, Z.; Tang, Y.; Yang, G.Y. M2 microglia-derived exosomes protect the mouse brain from ischemia-reperfusion injury via exosomal miR-124. Theranostics, 2019, 9(10), 2910-2923.
[http://dx.doi.org/10.7150/thno.30879] [PMID: 31244932]
[146]
Chen, W.; Wang, H.; Zhu, Z.; Feng, J.; Chen, L. Exosome-shuttled circSHOC2 from IPASs regulates neuronal autophagy and ameliorates ischemic brain injury via the miR-7670-3p/SIRT1 axis. Mol. Ther. Nucleic Acids, 2020, 22, 657-672.
[http://dx.doi.org/10.1016/j.omtn.2020.09.027] [PMID: 33230464]
[147]
Pei, X.; Li, Y.; Zhu, L.; Zhou, Z. Astrocyte-derived exosomes transfer miR-190b to inhibit oxygen and glucose deprivation-induced autophagy and neuronal apoptosis. Cell Cycle, 2020, 19(8), 906-917.
[http://dx.doi.org/10.1080/15384101.2020.1731649] [PMID: 32150490]
[148]
Kim, M.; Lee, Y.; Lee, M. Hypoxia-specific anti-RAGE exosomes for nose-to-brain delivery of anti-miR-181a oligonucleotide in an ischemic stroke model. Nanoscale, 2021, 13(33), 14166-14178.
[http://dx.doi.org/10.1039/D0NR07516G] [PMID: 34477698]
[149]
Kim, H.Y.; Kim, T.J.; Kang, L.; Kim, Y.J.; Kang, M.K.; Kim, J.; Ryu, J.H.; Hyeon, T.; Yoon, B.W.; Ko, S.B.; Kim, B.S. Mesenchymal stem cell-derived magnetic extracellular nanovesicles for targeting and treatment of ischemic stroke. Biomaterials, 2020, 243, 119942.
[http://dx.doi.org/10.1016/j.biomaterials.2020.119942] [PMID: 32179302]
[150]
Guo, L.; Huang, Z.; Huang, L.; Liang, J.; Wang, P.; Zhao, L.; Shi, Y. Surface-modified engineered exosomes attenuated cerebral ischemia/reperfusion injury by targeting the delivery of quercetin towards impaired neurons. J. Nanobiotechnol., 2021, 19(1), 141.
[http://dx.doi.org/10.1186/s12951-021-00879-4] [PMID: 34001136]
[151]
Zhang, H.; Wu, J.; Wu, J.; Fan, Q.; Zhou, J.; Wu, J.; Liu, S.; Zang, J.; Ye, J.; Xiao, M.; Tian, T.; Gao, J. Exosome-mediated targeted delivery of miR-210 for angiogenic therapy after cerebral ischemia in mice. J. Nanobiotechnol., 2019, 17(1), 29.
[http://dx.doi.org/10.1186/s12951-019-0461-7] [PMID: 30782171]
[152]
Kim, M.; Kim, G.; Hwang, D.W.; Lee, M. Delivery of high mobility group box-1 siRNA using brain-targeting exosomes for ischemic stroke therapy. J. Biomed. Nanotechnol., 2019, 15(12), 2401-2412.
[http://dx.doi.org/10.1166/jbn.2019.2866] [PMID: 31748020]
[153]
Raya, A.K.; Diringer, M.N. Treatment of subarachnoid hemorrhage. Crit. Care Clin., 2014, 30(4), 719-733.
[http://dx.doi.org/10.1016/j.ccc.2014.06.004] [PMID: 25257737]
[154]
Vivancos, J.; Gilo, F.; Frutos, R.; Maestre, J.; García-Pastor, A.; Quintana, F.; Roda, J.M.; Ximénez-Carrillo, A.; Díez Tejedor, E.; Fuentes, B.; Alonso de Leciñana, M.; Alvarez-Sabin, J.; Arenillas, J.; Calleja, S.; Casado, I.; Castellanos, M.; Castillo, J.; Dávalos, A.; Díaz-Otero, F.; Egido, J.A.; Fernández, J.C.; Freijo, M.; Gállego, J.; Gil-Núñez, A.; Irimia, P.; Lago, A.; Masjuan, J.; Martí-Fábregas, J.; Martínez-Sánchez, P.; Martínez-Vila, E.; Molina, C.; Morales, A.; Nombela, F.; Purroy, F.; Ribó, M.; Rodríguez-Yañez, M.; Roquer, J.; Rubio, F.; Segura, T.; Serena, J.; Simal, P.; Tejada, J. Clinical management guidelines for subarachnoid haemorrhage. Diagnosis and treatment. Neurologia, 2014, 29(6), 353-370.
[http://dx.doi.org/10.1016/j.nrl.2012.07.009] [PMID: 23044408]
[155]
Helbok, R.; Schiefecker, A.J.; Beer, R.; Dietmann, A.; Antunes, A.P.; Sohm, F.; Fischer, M.; Hackl, W.O.; Rhomberg, P.; Lackner, P.; Pfausler, B.; Thomé, C.; Humpel, C.; Schmutzhard, E. Early brain injury after aneurysmal subarachnoid hemorrhage: a multimodal neuromonitoring study. Crit. Care, 2015, 19(1), 75.
[http://dx.doi.org/10.1186/s13054-015-0809-9] [PMID: 25887441]
[156]
Xiong, L.; Sun, L.; Zhang, Y.; Peng, J.; Yan, J.; Liu, X. Exosomes from bone marrow mesenchymal stem cells can alleviate early brain injury after subarachnoid hemorrhage through miRNA129-5p-HMGB1 pathway. Stem Cells Dev., 2020, 29(4), 212-221.
[http://dx.doi.org/10.1089/scd.2019.0206] [PMID: 31801411]
[157]
Liu, Z.; Wang, B.; Guo, Q. MiR-26b-5p-modified hUB-MSCs derived exosomes attenuate early brain injury during subarachnoid hemorrhage via MAT2A-mediated the p38 MAPK/STAT3 signaling pathway. Brain Res. Bull., 2021, 175, 107-115.
[http://dx.doi.org/10.1016/j.brainresbull.2021.07.014] [PMID: 34284075]
[158]
Lai, N.; Wu, D.; Liang, T.; Pan, P.; Yuan, G.; Li, X.; Li, H.; Shen, H.; Wang, Z.; Chen, G. Systemic exosomal miR-193b-3p delivery attenuates neuroinflammation in early brain injury after subarachnoid hemorrhage in mice. J. Neuroinflammation, 2020, 17(1), 74.
[http://dx.doi.org/10.1186/s12974-020-01745-0] [PMID: 32098619]