Research Progress in Small Molecules as Anti-vitiligo Agents

Page: [995 - 1035] Pages: 41

  • * (Excluding Mailing and Handling)

Abstract

Vitiligo is a disease characterized by skin discoloration, and no safe and effective drugs have been developed until now. New drug research and development are imminent. This article reviews the research on small-molecule drugs for vitiligo from 1990 to 2021 at home and abroad. They are classified according to their structures and mechanisms of action, including natural products and derivatives, anti-oxidative stress drugs, immunosuppressants, prostaglandins, etc. The research on their anti-vitiligo activity, structural modification, new dosage forms, clinical trials, and the development trend in new anti-vitiligo drugs are reviewed, which provides important references for the development of new drugs.

[1]
Ezzedine, K.; Lim, H.W.; Suzuki, T.; Katayama, I.; Hamzavi, I.; Lan, C.C.E.; Goh, B.K.; Anbar, T.; Silva de Castro, C.; Lee, A.Y.; Parsad, D.; van Geel, N.; Le Poole, I.C.; Oiso, N.; Benzekri, L.; Spritz, R.; Gauthier, Y.; Hann, S.K.; Picardo, M.; Taieb, A. Revised classification/nomenclature of vitiligo and related issues: The Vitiligo Global Issues Consensus Conference. Pigment Cell Melanoma Res., 2012, 25(3), E1-E13.
[http://dx.doi.org/10.1111/j.1755-148X.2012.00997.x] [PMID: 22417114]
[2]
Castanedo-Cazares, J.P.; Lepe, V.; Moncada, B. Repigmentation of chronic vitiligo lesions by following tacrolimus plus ultraviolet-B-narrow-band. Photodermatol. Photoimmunol. Photomed., 2003, 19(1), 35-36.
[http://dx.doi.org/10.1034/j.1600-0781.2003.00005.x] [PMID: 12713553]
[3]
Cheng, A.H.; Han, M.H.; Han, X. Research Progress on the pathogenesis of vitiligo. World Latest Med. Info., 2017, 17(46), 33-34.
[4]
Ebanks, J.; Wickett, R.; Boissy, R. Mechanisms regulating skin pigmentation: the rise and fall of complexion coloration. Int. J. Mol. Sci., 2009, 10(9), 4066-4087.
[http://dx.doi.org/10.3390/ijms10094066] [PMID: 19865532]
[5]
Wang, L.; Liu, J. Research progress on molecular mechanism in the formation of melanin. J. Xinjiang Univ., 2019, 36(4), 468-474+499.
[6]
Pillaiyar, T.; Manickam, M.; Jung, S.H. Recent development of signaling pathways inhibitors of melanogenesis. Cell. Signal., 2017, 40, 99-115.
[http://dx.doi.org/10.1016/j.cellsig.2017.09.004] [PMID: 28911859]
[7]
Gianfaldoni, S.; Tchernev, G.; Lotti, J.; Wollina, U.; Satolli, F.; Rovesti, M.; França, K.; Lotti, T. Unconventional treatments for vitiligo: Are they (un) satisfactory? Open Access Maced. J. Med. Sci., 2018, 6(1), 170-175.
[http://dx.doi.org/10.3889/oamjms.2018.038] [PMID: 29484020]
[8]
Annamalai, R.; Subhan, S.A.; Vasantha, M.; Lal, M.B.S. Trimethoxypsoralen in vitiligo. Int. J. Dermatol., 1976, 15(9), 690-693.
[http://dx.doi.org/10.1111/j.1365-4362.1976.tb01830.x] [PMID: 977211]
[9]
Chodurek, E.; Orchel, A.; Orchel, J.; Kurkiewicz, S.; Gawlik, N. Dzierżewicz, Z.; Stępień, K. Evaluation of melanogenesis in A-375 melanoma cells treated with 5,7-dimethoxycoumarin and valproic acid. Cell. Mol. Biol. Lett., 2012, 17(4), 616-632.
[http://dx.doi.org/10.2478/s11658-012-0033-4] [PMID: 23001511]
[10]
Pang, G.X.; Niu, C.; Mamat, N.; Aisa, H.A. Synthesis and in vitro biological evaluation of novel coumarin derivatives containing isoxazole moieties on melanin synthesis in B16 cells and inhibition on bacteria. Bioorg. Med. Chem. Lett., 2017, 27(12), 2674-2677.
[http://dx.doi.org/10.1016/j.bmcl.2017.04.039] [PMID: 28476568]
[11]
Kim, D.S.; Cha, S.B.; Park, M.C.; Park, S.A.; Kim, H.S.; Woo, W.H.; Mun, Y.J. Scopoletin stimulates melanogenesis via cAMP/PKA pathway and partially p38 activation. Biol. Pharm. Bull., 2017, 40(12), 2068-2074.
[http://dx.doi.org/10.1248/bpb.b16-00690] [PMID: 28943528]
[12]
Matsuda, H.; Hirata, N.; Kawaguchi, Y.; Yamazaki, M.; Naruto, S.; Shibano, M.; Taniguchi, M.; Baba, K.; Kubo, M. Melanogenesis stimulation in murine b16 melanoma cells by umberiferae plant extracts and their coumarin constituents. Biol. Pharm. Bull., 2005, 28(7), 1229-1233.
[http://dx.doi.org/10.1248/bpb.28.1229] [PMID: 15997104]
[13]
Yang, X.Y.; Liu, R.; Dou, T.; Wang, J.; He, H.Z.; Lu, W. Furocoumarin from radix angelica dahurica and synthetic analogue as potential agent for treatment of vitiligo. Int. J. Pharmacol., 2018, 14(4), 595-600.
[http://dx.doi.org/10.3923/ijp.2018.595.600]
[14]
Niu, C.; Lu, X.; Aisa, H.A. Preparation of novel 1,2,3-triazole furocoumarin derivatives via click chemistry and their anti-vitiligo activity. RSC Advances, 2019, 9(3), 1671-1678.
[http://dx.doi.org/10.1039/C8RA09755K] [PMID: 35518056]
[15]
Niu, C.; Zang, D.; Aisa, H.A. Design, synthesis and biological activity of novel furocoumarin derivatives as stimulators of melanogenesis and tyrosinase in b16 cells. Chem. Res. Chin. Univ., 2018, 34(3), 408-414.
[http://dx.doi.org/10.1007/s40242-018-7338-4]
[16]
Niu, C.; Pang, G.X.; Li, G.; Dou, J.; Nie, L.F.; Himit, H.; Kabas, M.; Aisa, H.A. Synthesis and biological evaluation of furocoumarin derivatives on melanin synthesis in murine B16 cells for the treatment of vitiligo. Bioorg. Med. Chem., 2016, 24(22), 5960-5968.
[http://dx.doi.org/10.1016/j.bmc.2016.09.056] [PMID: 27713014]
[17]
Xie, H.; Niu, C.; Chao, Z.; Mamat, N.; Akber, A.H. Synthesis and activity of new schiff bases of furocoumarin. Heterocycl. Commun., 2020, 26(1), 176-184.
[http://dx.doi.org/10.1515/hc-2020-0115]
[18]
Yang, S.Q.; He, W. Study of melanogenesis and MDA on the anmial models of leukodermia induced by psoralen liposome gel. Zhongguo Yiyuan Yaoxue Zazhi, 2005, (12), 1111-1113.
[19]
Xu, J.G.; Shang, J. Activation of tyrosinase by psoralen. Chin. Tradit. Herbal Drugs, 1991, 22(4), 168-169.
[20]
Liu, Z.l.; Li, Y.L.; Liu, L.; Shi, Y.J. The study on the effects of ethanol extracts from six traditional Chinese herb prescr iptions on the activity of tyrosinase and melanogenesis in vivo and in vitro. Chin. J. Dermtol., 2005, (10), 18-21.
[21]
Sun, X.K.; Xu, A.E. Effects of alcoholic extracts of seven traditional Chinese medicines and psoralen on tyrosinase in human YUGEN8 melanoma cell. Chin. J. Dermtol., 2006, 06, 328-330.
[22]
Wu, K.K.; Xu, Q.; Chen, L.F.; Tu, C.X.; Liu, J.F.; Wang, K. Activation analysis for water and ethanolic extracts of eight traditional Chinese medicine on tyrusinase. J. Dalian Inst. Lt. Ind., 2000, 01, 21-24.
[23]
Xu, A.E.; Wang, S.Q.; Zhou, W.H. Activation of tyrosinase by traditional Chinese medicine. Chin. J. Dermtol., 1998, (01), 46.
[24]
Yin, L.; Pang, G.; Niu, C.; Habasi, M.; Dou, J.; Aisa, H. A novel psoralen derivative-MPFC enhances melanogenesis via activation of p38 MAPK and PKA signaling pathways in B16 cells. Int. J. Mol. Med., 2018, 41(6), 3727-3735.
[http://dx.doi.org/10.3892/ijmm.2018.3529] [PMID: 29512683]
[25]
Zang, D.; Niu, C.; Aisa, H.A. Amine derivatives of furocoumarin induce melanogenesis by activating Akt/GSK-3β/β-catenin signal pathway. Drug Des. Devel. Ther., 2019, 13, 623-632.
[http://dx.doi.org/10.2147/DDDT.S180960] [PMID: 30858693]
[26]
Serrano-Pérez, J.J.; González-Luque, R.; Merchán, M.; Serrano-Andrés, L. The family of furocoumarins: Looking for the best photosensitizer for phototherapy. J. Photochem. Photobiol. Chem., 2008, 199(1), 34-41.
[http://dx.doi.org/10.1016/j.jphotochem.2008.04.013]
[27]
Ye, Y.; Chou, G.X.; Wang, H.; Chu, J.H.; Yu, Z.L. Flavonoids, apigenin and icariin exert potent melanogenic activities in murine B16 melanoma cells. Phytomedicine, 2010, 18(1), 32-35.
[http://dx.doi.org/10.1016/j.phymed.2010.06.004] [PMID: 20638260]
[28]
Takekoshi, S.; Nagata, H.; Kitatani, K. Flavonoids enhance melanogenesis in human melanoma cells. Tokai J. Exp. Clin. Med., 2014, 39(3), 116-121.
[PMID: 25248426]
[29]
Tuerxuntayi, A.; Liu, Y-q.; Tulake, A.; Kabas, M.; Eblimit, A.; Aisa, H.A. Kaliziri extract upregulates tyrosinase, TRP-1, TRP-2 and MITF expression in murine B16 melanoma cells. BMC Complement. Altern. Med., 2014, 2014, 14.
[30]
Wang, J.Y.; Chen, H.; Wang, Y.Y.; Wang, X.Q.; Chen, H.Y.; Zhang, M.; Tang, Y.; Zhang, B. Network pharmacological mechanisms of Vernonia anthelmintica (L.) in the treatment of vitiligo: Isorhamnetin induction of melanogenesis via up-regulation of melanin-biosynthetic genes. BMC Syst. Biol., 2017, 11(1), 103.
[http://dx.doi.org/10.1186/s12918-017-0486-1] [PMID: 29145845]
[31]
Wang, J.Y.; Wang, X.Q.; Tang, Y.; Zhang, B. The network pharmacological mechanisms of four anti-vitiligo Uyghur medicines based on Phlegmatic temperament theory. Zhongguo Zhongyao Zazhi, 2018, 43(9), 1780-1788.
[http://dx.doi.org/10.19540/j.cnki.cjcmm.2018.0061] [PMID: 29902886]
[32]
Yu, L.; Tang, H. H, Y.; C; Wang, X.Q.; Zhang, B. Pharmacodynamic evaluation and mechanism of methoxyflavone to promote melanin production in zebrafish. Chin. Tradit. Herbal Drugs, 2020, 51(23), 6023-6034.
[33]
Cai, L.M.; Huo, S.X.; Lin, J.; Wu, P.P.; Yan, M.; Abudoukeremu, K. Chemical constituents of Vernonia anthelmintica (L.). Willd. Chin. Trad. Patent Med., 2012, 34(11), 2159-2161.
[34]
Liu, Y.; Wang, W.; Chen, T.; Xuan, L. New flavonoid glycosides from seeds of Baccharoides anthelmintica. Nat. Prod. Res., 2020, 34(2), 284-289.
[http://dx.doi.org/10.1080/14786419.2018.1530230] [PMID: 30580615]
[35]
Heriniaina, R.M.; Dong, J.; Kalavagunta, P.K.; Wu, H.L.; Yan, D.S.; Shang, J. Effects of six compounds with different chemical structures on melanogenesis. Chin. J. Nat. Med., 2018, 16(10), 766-773.
[http://dx.doi.org/10.1016/S1875-5364(18)30116-X] [PMID: 30322610]
[36]
Lin, M.; Lu, S.; Wang, A.; Qi, X.; Zhao, D.; Wang, Z.; Man, M.Q.; Tu, C. Apigenin attenuates dopamine-induced apoptosis in melanocytes via oxidative stress-related p38, c-Jun NH2-terminal kinase and Akt signaling. J. Dermatol. Sci., 2011, 63(1), 10-16.
[http://dx.doi.org/10.1016/j.jdermsci.2011.03.007] [PMID: 21514118]
[37]
HOEJI. Y. Role of K+ -Cl - -cotransporter in the apigenin-induced stimulation of melanogenesis in b16 melanoma cells. Yakhak Hoeji, 2008, 52(6), 500-506.
[38]
Debowska, R.; Pasikowska, M.; Bazela, K.; Szczepanowska, J.; Ciescinska, C.; Vincent, C.; Napierala, M.; Szewczyk, A.; Lewandowska, M.; Eris, I. 526 Plant flavonoid activating potassium channels – naringenin for vitiligo skin care. J. Invest. Dermatol., 2016, 136(9), S250.
[http://dx.doi.org/10.1016/j.jid.2016.06.549]
[39]
Crocenzi, F.A.; Basiglio, C.L.; Pérez, L.M.; Portesio, M.S.; Pozzi, E.J.S.; Roma, M.G. Silibinin prevents cholestasis-associated retrieval of the bile salt export pump, Bsep, in isolated rat hepatocyte couplets: Possible involvement of cAMP. Biochem. Pharmacol., 2005, 69(7), 1113-1120.
[http://dx.doi.org/10.1016/j.bcp.2005.01.009] [PMID: 15763547]
[40]
Feily, A.; Namazi, M.R. Silymarin as a potential novel addition to the limited anti-vitiligo weaponry: An untested hypothesis. Int. J. Clin. Pharmacol. Ther., 2011, 49(7), 467-468.
[http://dx.doi.org/10.5414/CP201557] [PMID: 21726498]
[41]
Feily, A.; Saboktakin, M. Caffeine as a novel addition to the antivitiligo ammunition. G. Ital. Dermatol. Venereol., 2010, 145(1), 139-139.
[PMID: 20197754]
[42]
Huo, S.X.; Liu, X.M.; Ge, C.H.; Gao, L.; Peng, X.M.; Zhao, P.P.; Yan, M. The effects of galangin on a mouse model of vitiligo induced by hydroquinone. Phytother. Res., 2014, 28(10), 1533-1538.
[http://dx.doi.org/10.1002/ptr.5161] [PMID: 24820380]
[43]
Sun, X.C.; Guan, C.P.; Hong, W.S.; Lin, F.Q.; Xu, A.E. Quereetin7s protective effect against oxidative stress in and impact On biological activity of BIOBR,all immortal mouse melanocyte cell line. Chin. J. Dermtol., 2010, (03), 178-180.
[44]
Takeyama, R.; Takekoshi, S.; Nagata, H.; Yoshiyuki Osamura, R.; Kawana, S. Quercetin-induced melanogenesis in a reconstituted three-dimensional human epidermal model. J. Mol. Histol., 2003, 35(2), 157-165.
[http://dx.doi.org/10.1023/B:HIJO.0000023388.51625.6c] [PMID: 15328920]
[45]
Ma, J.; Li, S.; Zhu, L.; Guo, S.; Yi, X.; Cui, T.; He, Y.; Chang, Y.; Liu, B.; Li, C.; Jian, Z. Baicalein protects human vitiligo melanocytes from oxidative stress through activation of NF-E2-related factor2 (Nrf2) signaling pathway. Free Radic. Biol. Med., 2018, 129, 492-503.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.10.421] [PMID: 30342186]
[46]
Zhu, Y.; Zhong, L.; Peng, J.; Yuan, Q.; Xu, A. The therapeutic effects of baicalin on vitiligo mice. Biol. Pharm. Bull., 2019, 42(9), 1450-1455.
[http://dx.doi.org/10.1248/bpb.b19-00319] [PMID: 31217369]
[47]
Jung, E.; Kim, J.H.; Kim, M.O.; Lee, S.Y.; Lee, J. Melanocyte-protective effect of afzelin is mediated by the Nrf2-ARE signalling pathway via GSK-3β inactivation. Exp. Dermatol., 2017, 26(9), 764-770.
[http://dx.doi.org/10.1111/exd.13277] [PMID: 27992083]
[48]
Mir-Palomo, S.; Nácher, A.; Ofelia Vila Busó, M.A.; Caddeo, C.; Manca, M.L.; Manconi, M.; Díez-Sales, O. Baicalin and berberine ultradeformable vesicles as potential adjuvant in vitiligo therapy. Colloids Surf. B Biointerfaces, 2019, 175, 654-662.
[http://dx.doi.org/10.1016/j.colsurfb.2018.12.055] [PMID: 30590326]
[49]
Shivasaraun, U.V.; Sureshkumar, R.; Karthika, C.; Puttappa, N. Flavonoids as adjuvant in psoralen based photochemotherapy in the management of vitiligo/leucoderma. Med. Hypotheses, 2018, 121, 26-30.
[http://dx.doi.org/10.1016/j.mehy.2018.09.011] [PMID: 30396481]
[50]
Carlie, G.; Ntusi, N.B.A.; Hulley, P.A.; Kidson, S.H. KUVA (khellin plus ultraviolet A) stimulates proliferation and melanogenesis in normal human melanocytes and melanoma cells in vitro. Br. J. Dermatol., 2003, 149(4), 707-717.
[http://dx.doi.org/10.1046/j.1365-2133.2003.05577.x] [PMID: 14616361]
[51]
de Leeuw, J.; van der Beek, N.; Maierhofer, G.; Neugebauer, W.D. A case study to evaluate the treatment of vitiligo with khellin encapsulated in L-phenylalanin stabilized phosphatidylcholine liposomes in combination with ultraviolet light therapy. Eur. J. Dermatol., 2003, 13(5), 474-477.
[PMID: 14693493]
[52]
De Leeuw, J.; Assen, Y.J.; Van Der Beek, N.; Bjerring, P.; Martino Neumann, H.A. Treatment of vitiligo with khellin liposomes, ultraviolet light and blister roof transplantation. J. Eur. Acad. Dermatol. Venereol., 2011, 25(1), 74-81.
[http://dx.doi.org/10.1111/j.1468-3083.2010.03701.x] [PMID: 20477914]
[53]
Pereira, J.; Gonçalves, R.; Barreto, M.; Dias, C.; Carvalho, F.; Almeida, A.J.; Ribeiro, H.M.; Marto, J. Development of gel-in-oil emulsions for khellin topical delivery. Pharmaceutics, 2020, 12(5), 398.
[http://dx.doi.org/10.3390/pharmaceutics12050398] [PMID: 32357441]
[54]
Bagherani, N. The efficacy of 308 nm UV excimer light as monotherapy and combination therapy with topical khellin 4% and/or tacrolimus 0.1% in the treatment of vitiligo. Dermatol. Ther., 2016, 29(2), 137-138.
[http://dx.doi.org/10.1111/dth.12274] [PMID: 26279072]
[55]
Fenniche, S.; Zaouak, A.; Tanfous, A.B.; Jrad, M.; Hammami, H. Successful treatment of refractory vitiligo with a combination of khellin and 308-nm excimer lamp: An open-label, 1-year prospective study. Dermatol. Ther., 2018, 8(1), 127-135.
[http://dx.doi.org/10.1007/s13555-017-0218-x] [PMID: 29282672]
[56]
Saraceno, R.; Nisticò, S.P.; Capriotti, E.; Chimenti, S. Monochromatic excimer light 308 nm in monotherapy and combined with topical khellin 4% in the treatment of vitiligo: a controlled study. Dermatol. Ther., 2009, 22(4), 391-394.
[http://dx.doi.org/10.1111/j.1529-8019.2009.01252.x] [PMID: 19580584]
[57]
Niu, C.; Li, G. Madina; Haji Akber, A.K. Synthesis and activity on tyrosinase of novel chalcone derivatives. Chem. J. Chin. Univ., 2014, 35(06), 1204-1211.
[http://dx.doi.org/10.7503/cjcu20131033]
[58]
Niu, C.; Li, G.; Tuerxuntayi, A.; Aisa, H.A. Synthesis and bioactivity of new chalcone derivatives as potential tyrosinase activator based on the click chemistry. Chin. J. Chem., 2015, 33(4), 486-494.
[http://dx.doi.org/10.1002/cjoc.201400820]
[59]
Niu, C.; Yin, L.; Nie, L.F.; Dou, J.; Zhao, J.Y.; Li, G.; Aisa, H.A. Synthesis and bioactivity of novel isoxazole chalcone derivatives on tyrosinase and melanin synthesis in murine B16 cells for the treatment of vitiligo. Bioorg. Med. Chem., 2016, 24(21), 5440-5448.
[http://dx.doi.org/10.1016/j.bmc.2016.08.066] [PMID: 27622747]
[60]
Niu, C.; Tuerxuntayi, A.; Li, G.; Kabas, M.; Dong, C.Z.; Aisa, H.A. Design, synthesis and bioactivity of chalcones and its analogues. Chin. Chem. Lett., 2017, 28(7), 1533-1538.
[http://dx.doi.org/10.1016/j.cclet.2017.03.018]
[61]
Yin, L.; Niu, C.; Liao, L.; Dou, J.; Habasi, M.; Aisa, H. An isoxazole chalcone derivative enhances melanogenesis in b16 melanoma cells via the akt/gsk3β/β-catenin signaling pathways. Molecules, 2017, 22(12), 2077.
[http://dx.doi.org/10.3390/molecules22122077] [PMID: 29182558]
[62]
Allam, A. Stimulation of melanogenesis by polyphenolic compounds from citharexyllum quadrangulare in b16f1 murine melanoma cells. Bull. Pharm. Sci., 2014, 37(2), 105-115.
[http://dx.doi.org/10.21608/bfsa.2014.65793]
[63]
Li, H.R.; Habasi, M.; Xie, L.Z.; Aisa, H. Effect of chlorogenic acid on melanogenesis of B16 melanoma cells. Molecules, 2014, 19(9), 12940-12948.
[http://dx.doi.org/10.3390/molecules190912940] [PMID: 25157464]
[64]
Mamat, N.; Dou, J.; Lu, X.; Eblimit, A.; Haji Akber, A. Isochlorogenic acid A promotes melanin synthesis in B16 cell through the β-catenin signal pathway. Acta Biochim. Biophys. Sin., 2017, 49(9), 800-807.
[http://dx.doi.org/10.1093/abbs/gmx072] [PMID: 28910976]
[65]
Kim, H.J.; Kim, J.S.; Woo, J.T.; Lee, I.S.; Cha, B.Y. Hyperpigmentation mechanism of methyl 3,5-di-caffeoylquinate through activation of p38 and MITF induction of tyrosinase. Acta Biochim. Biophys. Sin., 2015, 47(7), 548-556.
[http://dx.doi.org/10.1093/abbs/gmv040] [PMID: 26018825]
[66]
Lee, J.Y.; Choi, H.J.; Chung, T.W.; Kim, C.H.; Jeong, H.S.; Ha, K.T. Caffeic acid phenethyl ester inhibits alpha-melanocyte stimulating hormone-induced melanin synthesis through suppressing transactivation activity of microphthalmia-associated transcription factor. J. Nat. Prod., 2013, 76(8), 1399-1405.
[http://dx.doi.org/10.1021/np400129z] [PMID: 23876066]
[67]
Ning, W.; Wang, S.; Dong, X.; Liu, D.; Fu, L.; Jin, R.; Xu, A. Epigallocatechin-3-gallate (EGCG) suppresses the trafficking of lymphocytes to epidermal melanocytes via inhibition of JAK2: Its implication for vitiligo treatment. Biol. Pharm. Bull., 2015, 38(11), 1700-1706.
[http://dx.doi.org/10.1248/bpb.b15-00331] [PMID: 26345342]
[68]
Ning, W.; Wang, S.; Liu, D.; Fu, L.; Jin, R.; Xu, A. Potent effects of peracetylated (-)-epigallocatechin-3-gallate against hydrogen peroxide-induced damage in human epidermal melanocytes via attenuation of oxidative stress and apoptosis. Clin. Exp. Dermatol., 2016, 41(6), 616-624.
[http://dx.doi.org/10.1111/ced.12855] [PMID: 27339454]
[69]
Zhu, Y.; Wang, S.; Lin, F.; Li, Q.; Xu, A. The therapeutic effects of EGCG on vitiligo. Fitoterapia, 2014, 99, 243-251.
[http://dx.doi.org/10.1016/j.fitote.2014.08.007] [PMID: 25128425]
[70]
Ouyang, J.; Wu, J.L.; Zhou, M.N.; Fu, L.F.; Xu, A.E. Protective effects of tea polyphenols against the destruction of melanocytes by CD8+T cells from vitiligo patients. Zhonghua Pifuke Zazhi, 2013, 01, 20-23.
[71]
Li, Q.; Zhu, Y.P.; Xu, A.E. Comparison of topical application of tea polyphenol versus pimecrolimus versus tacrolimus for the treatment of monobenzone-induced vitiligo-like depigmentation in a mouse model. Zhonghua Pifuke Zazhi, 2015, 48(01), 41-44.
[72]
Becatti, M.; Fiorillo, C.; Barygina, V.; Cecchi, C.; Lotti, T.; Prignano, F.; Silvestro, A.; Nassi, P.; Taddei, N. SIRT 1 regulates MAPK pathways in vitiligo skin: Insight into the molecular pathways of cell survival. J. Cell. Mol. Med., 2014, 18(3), 514-529.
[http://dx.doi.org/10.1111/jcmm.12206] [PMID: 24410795]
[73]
Ito, S.; Fujiki, Y.; Matsui, N.; Ojika, M.; Wakamatsu, K. Tyrosinase-catalyzed oxidation of resveratrol produces a highly reactive ortho-quinone: Implications for melanocyte toxicity. Pigment Cell Melanoma Res., 2019, 32(6), 766-776.
[http://dx.doi.org/10.1111/pcmr.12808] [PMID: 31264351]
[74]
Moleephan, W.; Wittayalertpanya, S.; Ruangrungsi, N.; Limpanasithikul, W. Effect of xanthoxylin on melanin content and melanogenic protein expression in B16F10 melanoma. Asian Biomed., 2012, 6(3), 413-422.
[75]
Lee, J.; Kim, Y.S.; Park, D. Rosmarinic acid induces melanogenesis through protein kinase A activation signaling. Biochem. Pharmacol., 2007, 74(7), 960-968.
[http://dx.doi.org/10.1016/j.bcp.2007.06.007] [PMID: 17651699]
[76]
Jiang, W.; Li, S.; Chen, X.; Zhang, W.; Chang, Y.; He, Y.; Zhang, S.; Su, X.; Gao, T.; Li, C.; Jian, Z. Berberine protects immortalized line of human melanocytes from H2O2-induced oxidative stress via activation of Nrf2 and Mitf signaling pathway. J. Dermatol. Sci., 2019, 94(1), 236-243.
[http://dx.doi.org/10.1016/j.jdermsci.2019.03.007] [PMID: 30987854]
[77]
Lin, Z.; Hoult, J.R.S.; Bennett, D.C.; Raman, A. Stimulation of mouse melanocyte proliferation by Piper nigrum fruit extract and its main alkaloid, piperine. Planta Med., 1999, 65(7), 600-603.
[http://dx.doi.org/10.1055/s-1999-14031] [PMID: 10575373]
[78]
Mihăilă, B.; Dinică, R.M.; Tatu, A.L.; Buzia, O.D. New insights in vitiligo treatments using bioactive compounds from Piper nigrum. Exp. Ther. Med., 2019, 17(2), 1039-1044.
[PMID: 30679971]
[79]
Lin, Z.; Liao, Y.; Venkatasamy, R.; Hider, R.C.; Soumyanath, A. Amides from Piper nigrum L. with dissimilar effects on melanocyte proliferation in-vitro. J. Pharm. Pharmacol., 2010, 59(4), 529-536.
[http://dx.doi.org/10.1211/jpp.59.4.0007] [PMID: 17430636]
[80]
Venkatasamy, R.; Faas, L.; Young, A.R.; Raman, A.; Hider, R.C. Effects of piperine analogues on stimulation of melanocyte proliferation and melanocyte differentiation. Bioorg. Med. Chem., 2004, 12(8), 1905-1920.
[http://dx.doi.org/10.1016/j.bmc.2004.01.036] [PMID: 15051059]
[81]
Soumyanath, A.; Venkatasamy, R.; Joshi, M.; Faas, L.; Adejuyigbe, B.; Drake, A.F.; Hider, R.C.; Young, A.R. UV irradiation affects melanocyte stimulatory activity and protein binding of piperine. Photochem. Photobiol., 2006, 82(6), 1541-1548.
[PMID: 17387768]
[82]
Shafiee, A.; Hoormand, M.; Shahidi-Dadras, M.; Abadi, A. The effect of topical piperine combined with narrowband UVB on vitiligo treatment: A clinical trial study. Phytother. Res., 2018, 32(9), 1812-1817.
[http://dx.doi.org/10.1002/ptr.6116] [PMID: 29781089]
[83]
Alomrani, A.H.; Alhazza, F.I.; AlGhamdi, K.M.; El Maghraby, G.M. Effect of neat and binary vehicle systems on the solubility and cutaneous delivery of piperine. Saudi Pharm. J., 2018, 26(2), 162-168.
[http://dx.doi.org/10.1016/j.jsps.2017.12.015] [PMID: 30166912]
[84]
Badran, M.; Alhazza, F.I.; Alomrani, A.H. Development of piperine loaded deformable liposomes-a new vesicular carrier of piperine: Characterization and ex vivo skin penetration studies. Lat. Am. J. Pharm., 2015, 34(2), 244-252.
[85]
Li, D.; Liang, G.; Calderone, R.; Bellanti, J.A. Vitiligo and hashimoto’s thyroiditis: autoimmune diseases linked by clinical presentation, biochemical commonality, and autoimmune/oxidative stress-mediated toxicity pathogenesis. Med. Hypotheses, 2019, 128, 69-75.
[http://dx.doi.org/10.1016/j.mehy.2019.05.010] [PMID: 31203913]
[86]
Ali, S.A.; Meitei, K.V. Nigella sativa seed extract and its bioactive compound thymoquinone: the new melanogens causing hyperpigmentation in the wall lizard melanophores. J. Pharm. Pharmacol., 2011, 63(5), 741-746.
[http://dx.doi.org/10.1111/j.2042-7158.2011.01271.x] [PMID: 21492177]
[87]
Zaidi, K.U.; Khan, F.N.; Ali, S.A.; Khan, K.P. Insight into mechanistic action of thymoquinone induced melanogenesis in cultured melanocytes. Protein Pept. Lett., 2019, 26(12), 910-918.
[http://dx.doi.org/10.2174/0929866526666190506114604] [PMID: 31057097]
[88]
Xing, Y.L. Review of vitamin d3 derivatives in the treatment of vitiligo. Heilongjiang Med. J., 2019, 43(06), 695- 696+699.
[89]
Chiavérini, C.; Passeron, T.; Ortonne, J.P. Treatment of vitiligo by topical calcipotriol. J. Eur. Acad. Dermatol. Venereol., 2002, 16(2), 137-138.
[http://dx.doi.org/10.1046/j.1468-3083.2002.00407.x] [PMID: 12046816]
[90]
Khullar, G.; Kanwar, A.J.; Singh, S.; Parsad, D. Comparison of efficacy and safety profile of topical calcipotriol ointment in combination with NB-UVB vs. NB-UVB alone in the treatment of vitiligo: a 24-week prospective right-left comparative clinical trial. J. Eur. Acad. Dermatol. Venereol., 2015, 29(5), 925-932.
[http://dx.doi.org/10.1111/jdv.12726] [PMID: 25220387]
[91]
Ada, S.; Sahin, S.; Boztepe, G.; Karaduman, A.; Kölemen, F. No additional effect of topical calcipotriol on narrow-band UVB phototherapy in patients with generalized vitiligo. Photodermatol. Photoimmunol. Photomed., 2005, 21(2), 79-83.
[http://dx.doi.org/10.1111/j.1600-0781.2005.00139.x] [PMID: 15752125]
[92]
Parsad, D.; Saini, R.; Verma, N. Combination of PUVAsol and topical calcipotriol in vitiligo. Dermatology, 1998, 197(2), 167-170.
[http://dx.doi.org/10.1159/000017991] [PMID: 9732168]
[93]
Kumaran, M.S.; Kaur, I.; Kumar, B. Effect of topical calcipotriol, betamethasone dipropionate and their combination in the treatment of localized vitiligo. J. Eur. Acad. Dermatol. Venereol., 2006, 20(3), 269-273.
[http://dx.doi.org/10.1111/j.1468-3083.2006.01420.x] [PMID: 16503885]
[94]
Zhang, Q.L.; Chang, J.M. Update of the relationship between vitiligo and vitamin B12, folic and trace element. Chn. J. Lepr. Skin Dise., 2015, 31(03), 164-166.
[95]
Jung, E.; Lee, J.; Huh, S.; Lee, J.; Kim, Y.S.; Kim, G.; Park, D. Phloridzin-induced melanogenesis is mediated by the cAMP signaling pathway. Food Chem. Toxicol., 2009, 47(10), 2436-2440.
[http://dx.doi.org/10.1016/j.fct.2009.06.039] [PMID: 19576939]
[96]
Lee, J.; Jung, E.; Park, J.; Jung, K.; Park, E.; Kim, J.; Hong, S.; Park, J.; Park, S.; Lee, S.; Park, D. Glycyrrhizin induces melanogenesis by elevating a cAMP level in b16 melanoma cells. J. Invest. Dermatol., 2005, 124(2), 405-411.
[http://dx.doi.org/10.1111/j.0022-202X.2004.23606.x] [PMID: 15675961]
[97]
Turak, A.; Maimaiti, Z.; Ma, H.; Aisa, H.A. Pseudo-disesquiterpenoids from seeds of Vernonia anthelmintica and their biological activities. Phytochem. Lett., 2017, 21, 163-168.
[http://dx.doi.org/10.1016/j.phytol.2017.06.017]
[98]
Bytyqi-Damoni, A.; Genç, H.; Zengin, M.; Demir, D.; Gençer, N.; Arslan, O. Novel β-lactam compounds as activators for polyphenoloxidase. ChemistrySelect, 2020, 5(25), 7671-7674.
[http://dx.doi.org/10.1002/slct.202001120]
[99]
Li, H.; Zheng, H.Y.; Li, Q.L. Advances in the application of antioxidants in the treatment of vitiligo. J. Diag. Ther., 2020, 27(05), 362-365.
[100]
Zhao, X.F.; Liu, G.Y. Update of the oxidative stress in the pathogenesis of vitiligo. Chn. J. Lepr. Skin Dise., 2016, 32(03), 189-191.
[101]
Mohamadin, A.M.; Elberry, A.A.; Abdel Gawad, H.S.; Morsy, G.M.; Al-Abbasi, F.A. Protective effects of simvastatin, a lipid lowering agent, against oxidative damage in experimental diabetic rats. J. Lipids, 2011, 2011, 1-13.
[http://dx.doi.org/10.1155/2011/167958] [PMID: 22191036]
[102]
Maeda, T.; Horiuchi, N. Simvastatin suppresses leptin expression in 3T3-L1 adipocytes via activation of the cyclic AMP-PKA pathway induced by inhibition of protein prenylation. J. Biochem., 2009, 145(6), 771-781.
[http://dx.doi.org/10.1093/jb/mvp035] [PMID: 19254925]
[103]
Chang, Y.; Li, S.; Guo, W.; Yang, Y.; Zhang, W.; Zhang, Q.; He, Y.; Yi, X.; Cui, T.; An, Y.; Song, P.; Jian, Z.; Liu, L.; Li, K.; Wang, G.; Gao, T.; Wang, L.; Li, C. Simvastatin protects human melanocytes from H2O2-induced oxidative stress by activating Nrf2. J. Invest. Dermatol., 2017, 137(6), 1286-1296.
[http://dx.doi.org/10.1016/j.jid.2017.01.020] [PMID: 28174051]
[104]
Park, E.S.; Kim, S.Y.; Na, J.I.; Ryu, H.S.; Youn, S.W.; Kim, D.S.; Yun, H.Y.; Park, K.C. Glutathione prevented dopamine-induced apoptosis of melanocytes and its signaling. J. Dermatol. Sci., 2007, 47(2), 141-149.
[http://dx.doi.org/10.1016/j.jdermsci.2007.03.009] [PMID: 17481858]
[105]
Ding, S.H.; Shi, J.Q.; Zhao, W.E.; Hou, X.Y.; Xiu, Y.Y.; Li, X.; Lu, Y. Alpha-lipoic acid protects human melanocytes against oxidative stress by inhibiting autophagy. J. Clin. Dermatol., 2019, 48(06), 346-351.
[106]
Schallreuter, K.U.; Moore, J.; Behrens-Williams, S.; Panske, A.; Harari, M. Rapid initiation of repigmentation in vitiligo with Dead Sea climatotherapy in combination with pseudocatalase (PC-KUS). Int. J. Dermatol., 2002, 41(8), 482-487.
[http://dx.doi.org/10.1046/j.1365-4362.2002.01463.x] [PMID: 12207762]
[107]
Dell’Anna, M.L.; Mastrofrancesco, A.; Sala, R.; Venturini, M.; Ottaviani, M.; Vidolin, A.P.; Leone, G.; Calzavara, P.G.; Westerhof, W.; Picardo, M. Antioxidants and narrow band-UVB in the treatment of vitiligo: A double-blind placebo controlled trial. Clin. Exp. Dermatol., 2007, 32(6), 631-636.
[http://dx.doi.org/10.1111/j.1365-2230.2007.02514.x] [PMID: 17953631]
[108]
Boissy, R.E.; Moellmann, G.; Trainer, A.T. Smyth, Lerner, A.B. Delayed-amelanotic (dam smyth) chicken - melanocyte function in vivo and in vitro. J. Invest. atol., 1986, 86(2), 149-156.
[http://dx.doi.org/10.1111/1523-1747.ep12284190]
[109]
Plettenberg, H.; Assmann, T.; Ruzicka, T. Childhood vitiligo and tacrolimus: Immunomodulating treatment for an autoimmune disease. Arch. Dermatol., 2003, 139(5), 651-654.
[http://dx.doi.org/10.1001/archderm.139.5.651] [PMID: 12756103]
[110]
Lo, Y.H.; Cheng, G.S.; Huang, C.C.; Chang, W.Y.; Wu, C.S. Efficacy and safety of topical tacrolimus for the treatment of face and neck vitiligo. J. Dermatol., 2010, 37(2), 125-129.
[http://dx.doi.org/10.1111/j.1346-8138.2009.00774.x] [PMID: 20175845]
[111]
Grimes, P.E.; Morris, R.; Avaniss-Aghajani, E.; Soriano, T.; Meraz, M.; Metzger, A. Topical tacrolimus therapy for vitiligo: therapeutic responses and skin messenger RNA expression of proinflammatory cytokines. J. Am. Acad. Dermatol., 2004, 51(1), 52-61.
[http://dx.doi.org/10.1016/j.jaad.2003.12.031] [PMID: 15243524]
[112]
Taher, Z.A.; Lauzon, G.; Maguiness, S.; Dytoc, M.T. Analysis of interleukin-10 levels in lesions of vitiligo following treatment with topical tacrolimus. Br. J. Dermatol., 2009, 161(3), 654-659.
[http://dx.doi.org/10.1111/j.1365-2133.2009.09217.x] [PMID: 19438859]
[113]
Jung, H.; Oh, E.S. FK506 positively regulates the migratory potential of melanocyte-derived cells by enhancing syndecan-2 expression. Pigment Cell Melanoma Res., 2016, 29(4), 434-443.
[http://dx.doi.org/10.1111/pcmr.12480] [PMID: 27060922]
[114]
Lee, K.Y.; Jeon, S.Y.; Hong, J.W.; Choi, K.W.; Lee, C.Y.; Choi, S.J.; Kim, J.H.; Song, K.H.; Kim, K.H. Endothelin-1 enhances the proliferation of normal human melanocytes in a paradoxical manner from the TNF-α-inhibited condition, but tacrolimus promotes exclusively the cellular migration without proliferation: a proposed action mechanism for combination t. J. Eur. Acad. Dermatol. Venereol., 2013, 27(5), 609-616.
[http://dx.doi.org/10.1111/j.1468-3083.2012.04498.x] [PMID: 22404745]
[115]
Lan, C.C.E.; Wu, C.S.; Chen, G.S.; Yu, H.S. FK506 (tacrolimus) and endothelin combined treatment induces mobility of melanoblasts: New insights into follicular vitiligo repigmentation induced by topical tacrolimus on sun-exposed skin. Br. J. Dermatol., 2011, 164(3), 10113.
[http://dx.doi.org/10.1111/j.1365-2133.2010.10113.x] [PMID: 21039414]
[116]
Khaitan, B.K.; Sharma, V.K.; Kathuria, S.; Ramam, M. Segmental vitiligo: A randomized controlled trial to evaluate efficacy and safety of 0.1% tacrolimus ointment vs. 0.05% fluticasone propionate cream. Indian J. Dermatol. Venereol. Leprol., 2012, 78(1), 68-73.
[http://dx.doi.org/10.4103/0378-6323.90949] [PMID: 22199063]
[117]
Leite, S.R.M.; Craveiro, L.A.A. Two herapeutic challenges: Periocular and genital vitiligo n children successfully treated with pimecrolimus cream. Int. J. Dermatol., 2007, 46(9), 986-989.
[http://dx.doi.org/10.1111/j.1365-4632.2007.03282.x] [PMID: 17822508]
[118]
Vano-Galvan, S.; Fernandez-Guarino, M.; Beà-Ardebol, S.; Perez, B.; Harto, A.; Jaen, P. Successful treatment of erosive vulvar lichen sclerosus with methylaminolaevulinic acid and laser-mediated photodynamic therapy. J. Eur. Acad. Dermatol. Venereol., 2009, 23(1), 71-72.
[http://dx.doi.org/10.1111/j.1468-3083.2008.02667.x] [PMID: 18355206]
[119]
Farajzadeh, S.; Daraei, Z.; Esfandiarpour, I.; Hosseini, S.H. The efficacy of pimecrolimus 1% cream combined with microdermabrasion in the treatment of nonsegmental childhood vitiligo: A randomized placebo-controlled study. Pediatr. Dermatol., 2009, 26(3), 286-291.
[http://dx.doi.org/10.1111/j.1525-1470.2009.00926.x] [PMID: 19706089]
[120]
Oiso, N.; Kawada, A. Idiopathic eruptive macular pigmentation following a Christmas tree pattern. J. Dermatol., 2013, 40(11), 934-935.
[http://dx.doi.org/10.1111/1346-8138.12270] [PMID: 24127666]
[121]
Boone, B.; Ongenae, K.; Van Geel, N.; Vernijns, S.; De Keyser, S.; Naeyaert, J.M. Topical pimecrolimus in the treatment of vitiligo. Eur. J. Dermatol., 2007, 17(1), 55-61.
[PMID: 17324829]
[122]
Cavalié, M.; Ezzedine, K.; Fontas, E.; Montaudié, H.; Castela, E.; Bahadoran, P.; Taïeb, A.; Lacour, J.P.; Passeron, T. Maintenance therapy of adult vitiligo with 0.1% tacrolimus ointment: a randomized, double blind, placebo-controlled study. J. Invest. Dermatol., 2015, 135(4), 970-974.
[http://dx.doi.org/10.1038/jid.2014.527] [PMID: 25521460]
[123]
Hartmann, A.; Bröcker, E.; Hamm, H. Occlusive treatment enhances efficacy of tacrolimus 0.1% ointment in adult patients with vitiligo: Results of a placebo-controlled 12-month prospective study. Acta Derm. Venereol., 2008, 88(5), 474-479.
[http://dx.doi.org/10.2340/00015555-0464] [PMID: 18779885]
[124]
Hartmann, A.; Bröcker, E.B.; Hamm, H. Repigmentation of pretibial vitiligo with calcineurin inhibitors under occlusion. J. Dtsch. Dermatol. Ges., 2008, 6(5), 383-385.
[http://dx.doi.org/10.1111/j.1610-0387.2007.06455.x] [PMID: 18042249]
[125]
Silverberg, N.B.; Lin, P.; Travis, L.; Farley-Li, J.; Mancini, A.J.; Wagner, A.M.; Chamlin, S.L.; Paller, A.S. Tacrolimus ointment promotes repigmentation of vitiligo in children: A review of 57 cases. J. Am. Acad. Dermatol., 2004, 51(5), 760-766.
[http://dx.doi.org/10.1016/j.jaad.2004.05.036] [PMID: 15523355]
[126]
Hu, W.; Xu, Y.; Ma, Y.; Lei, J.; Lin, F.; Xu, A.E. Efficacy of the topical calcineurin inhibitors tacrolimus and pimecrolimus in the treatment of vitiligo in infants under 2 years of age: A randomized, open-label pilot study. Clin. Drug Investig., 2019, 39(12), 1233-1238.
[http://dx.doi.org/10.1007/s40261-019-00845-x] [PMID: 31522334]
[127]
Nisticò, S.; Chiricozzi, A.; Saraceno, R.; Schipani, C.; Chimenti, S. Vitiligo treatment with monochromatic excimer light and tacrolimus: Results of an open randomized controlled study. Photomed. Laser Surg., 2012, 30(1), 26-30.
[http://dx.doi.org/10.1089/pho.2011.3029] [PMID: 22054204]
[128]
Zhang, S. Zdravković, T.P.; Wang, T.; Liu, Y.; Jin, H. Efficacy and safety of oral simvastatin in the treatment of patients with vitiligo. J. Investig. Med., 2021, 69(2), 393-396.
[http://dx.doi.org/10.1136/jim-2020-001390] [PMID: 33093072]
[129]
Sisti, A.; Sisti, G.; Oranges, C.M. Effectiveness and safety of topical tacrolimus monotherapy for repigmentation in vitiligo: a comprehensive literature review. An. Bras. Dermatol., 2016, 91(2), 187-195.
[http://dx.doi.org/10.1590/abd1806-4841.20164012] [PMID: 27192518]
[130]
Balestri, R.; Sechi, A.; Tengattini, V.; Magnano, M.; Bardazzi, F. Focus on pemphigoid associated with malignancies. G. Ital. Dermatol. Venereol., 2017, 152(4), 402.
[PMID: 28621123]
[131]
Dayal, S.; Sahu, P.; Gupta, N. Treatment of childhood vitiligo using tacrolimus ointment with narrowband ultraviolet b phototherapy. Pediatr. Dermatol., 2016, 33(6), 646-651.
[http://dx.doi.org/10.1111/pde.12991] [PMID: 27699846]
[132]
Sehgal, V.N. Role of tacrolimus (FK506) 0.1% ointment WW in vitiligo in children and imperatives of combine therapy with Trioxsalen and Silymarin suspension in progressive vitiligo. J. Eur. Acad. Dermatol. Venereol., 2009, 23(10), 1218-1219.
[http://dx.doi.org/10.1111/j.1468-3083.2009.03128.x] [PMID: 19192018]
[133]
Park, O.J.; Park, G.H.; Choi, J.R.; Jung, H.J.; Oh, E.S.; Choi, J.H.; Lee, M.W.; Chang, S.E. A combination of excimer laser treatment and topical tacrolimus is more effective in treating vitiligo than either therapy alone for the initial 6 months, but not thereafter. Clin. Exp. Dermatol., 2016, 41(3), 236-241.
[http://dx.doi.org/10.1111/ced.12742] [PMID: 26299799]
[134]
Hartmann, A.; Löhberg, L.; Keikavoussi, P.; Eichner, S.; Schuler, G. Treatment of generalised vitiligo with tacrolimus 0.1% ointment vs. UVB intense pulsed light phototherapy: A pilot study. Acta Derm. Venereol., 2014, 94(5), 585-587.
[http://dx.doi.org/10.2340/00015555-1740] [PMID: 24473666]
[135]
Ebrahim, H.M.; Albalate, W. Efficacy of microneedling combined with tacrolimus versus either one alone for vitiligo treatment. J. Cosmet. Dermatol., 2020, 19(4), 855-862.
[http://dx.doi.org/10.1111/jocd.13304] [PMID: 32030880]
[136]
Mina, M.; Elgarhy, L.; Al-saeid, H.; Ibrahim, Z. Comparison between the efficacy of microneedling combined with 5-fluorouracil vs. microneedling with tacrolimus in the treatment of vitiligo. J. Cosmet. Dermatol., 2018, 17(5), 744-751.
[http://dx.doi.org/10.1111/jocd.12440] [PMID: 29532621]
[137]
Abd-Elazim, N.E.; Yassa, H.A.; Mahran, A.M. Microdermabrasion and topical tacrolimus: A novel combination therapy of vitiligo. J. Cosmet. Dermatol., 2020, 19(6), 1447-1455.
[http://dx.doi.org/10.1111/jocd.13193] [PMID: 31668003]
[138]
Sharma, C.K.; Sharma, M.; Aggarwal, B.; Sharma, V. Different advanced therapeutic approaches to treat vitiligo. J. Environ. Pathol. Toxicol. Oncol., 2015, 34(4), 321-334.
[http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.2015014168] [PMID: 26756425]
[139]
Lepe, V.; Moncada, B.; Castanedo-Cazares, J.P.; Torres-Alvarez, M.B.; Ortiz, C.A.; Torres-Rubalcava, A.B. A double-blind randomized trial of 0.1% tacrolimus vs. 0.05% clobetasol for the treatment of childhood vitiligo. Arch. Dermatol., 2003, 139(5), 581-585.
[http://dx.doi.org/10.1001/archderm.139.5.581] [PMID: 12756094]
[140]
Banerjee, K.; Barbhuiya, J.N.; Ghosh, A.P.; Dey, S.K.; Karmakar, P.R. The efficacy of low-dose oral corticosteroids in the treatment of vitiligo patient. Indian J. Dermatol. Venereol. Leprol., 2003, 69(2), 135-137.
[PMID: 17642858]
[141]
Lee, Y.; Seo, Y.J.; Lee, J.H.; Park, J.K. High-dose prednisolone and psoralen ultraviolet A combination therapy in 36 patients with vitiligo. Clin. Exp. Dermatol., 2007, 32(5), 499-501.
[http://dx.doi.org/10.1111/j.1365-2230.2007.02387.x] [PMID: 17608760]
[142]
Mokhtari, F.; Bostakian, A.; Shahmoradi, Z.; Jafari-Koshki, T.; Iraji, F.; Faghihi, G.; Hosseini, S.M.; Bafandeh, B. Potential emerging treatment in vitiligo using Er:YAG in combination with 5FU and clobetasol. J. Cosmet. Dermatol., 2018, 17(2), 165-170.
[http://dx.doi.org/10.1111/jocd.12373] [PMID: 28722334]
[143]
Lotti, T.; Buggiani, G.; Troiano, M.; Assad, G.B.; Delescluse, J.; De Giorgi, V.; Hercogova, J. Targeted and combination treatments for vitiligo Comparative evaluation of different current modalities in 458 subjects. Dermatol. Ther., 2008, 21(S1), S20-S26.
[http://dx.doi.org/10.1111/j.1529-8019.2008.00198.x] [PMID: 18727812]
[144]
Menchini, G.; Tsoureli-Nikita, E.; Hercogova, J. Narrow-band UV-B micro-phototherapy: A new treatment for vitiligo. J. Eur. Acad. Dermatol. Venereol., 2003, 17(2), 171-177.
[http://dx.doi.org/10.1046/j.1468-3083.2003.00743.x] [PMID: 12705746]
[145]
Seiter, S.; Ugurel, S.; Pföhler, C.; Tilgen, W.; Reinhold, U. Successful treatment of progressive vitiligo with high-dose intravenous methylprednisolone ‘pulse’ therapy. Dermatology, 1999, 199(3), 261-262.
[http://dx.doi.org/10.1159/000018260] [PMID: 10592410]
[146]
Wada-Irimada, M.; Tsuchiyama, K.; Sasaki, R.; Hatchome, N.; Watabe, A.; Kimura, Y.; Yamasaki, K.; Aiba, S. Efficacy and safety of i.v. methylprednisolone pulse therapy for vitiligo: A retrospective study of 58 therapy experiences for 33 vitiligo patients. J. Dermatol., 2021, 48(7), 1090-1093.
[http://dx.doi.org/10.1111/1346-8138.15858] [PMID: 33768620]
[147]
Shrestha, S.; Jha, A.K.; Thapa, D.P.; Bhattarai, C.K.; Ghimire, A. An open label study to compare the efficacy of topical mometasone furoate with topical placental extract versus topical mometasone furoate with topical tacrolimus in patients with vitiligo involving less than 10% body surface area. Nepal Med. Coll. J., 2014, 16(1), 1-4.
[PMID: 25799800]
[148]
Karagaiah, P.; Valle, Y.; Sigova, J.; Zerbinati, N.; Vojvodic, P.; Parsad, D.; Schwartz, R.A.; Grabbe, S.; Goldust, M.; Lotti, T. Emerging drugs for the treatment of vitiligo. Expert Opin. Emerg. Drugs, 2020, 25(1), 7-24.
[http://dx.doi.org/10.1080/14728214.2020.1712358] [PMID: 31958256]
[149]
Abdel Motaleb, A.A.; Tawfik, Y.M.; El-Mokhtar, M.A.; Elkady, S.; El-Gazzar, A.F.; ElSayed, S.K.; Awad, S.M. Cutaneous JAK expression in vitiligo. J. Cutan. Med. Surg., 2021, 25(2), 157-162.
[http://dx.doi.org/10.1177/1203475420972340] [PMID: 33174479]
[150]
Samaka, R.M.; Basha, M.A.; Menesy, D. Role of Janus kinase 1 and signal transducer and activator of transcription 3 in vitiligo. Clin. Cosmet. Investig. Dermatol., 2019, 12, 469-480.
[http://dx.doi.org/10.2147/CCID.S210106] [PMID: 31303777]
[151]
Schwartz, D.M.; Kanno, Y.; Villarino, A.; Ward, M.; Gadina, M.; O’Shea, J.J. JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat. Rev. Drug Discov., 2017, 16(12), 843-862.
[http://dx.doi.org/10.1038/nrd.2017.201] [PMID: 29104284]
[152]
Nguyen, J.K.; Schlichte, M.J.; Jogi, R.; Alikhan, M.; Patel, A.B. A case of new-onset vitiligo in a patient on tofacitinib and brief review of paradoxical presentations with other novel targeted therapies. Dermatol. Online J., 2020, 26(3), 13030.
[PMID: 32609446]
[153]
Phan, K.; Phan, S.; Shumack, S.; Gupta, M. Repigmentation in vitiligo using janus kinase (JAK) nhibitors with phototherapy: Systematic review and Meta-analysis. J. Dermatolog. Treat., 2020, 2020(1735615)
[http://dx.doi.org/10.1080/09546634.2020.1735615] [PMID: 32096671]
[154]
Joshipura, D.; Plotnikova, N.; Goldminz, A.; Deverapalli, S.; Turkowski, Y.; Gottlieb, A.; Rosmarin, D. Importance of light in the treatment of vitiligo with JAK-inhibitors. J. Dermatolog. Treat., 2018, 29(1), 98-99.
[http://dx.doi.org/10.1080/09546634.2017.1339013] [PMID: 28581823]
[155]
Urso, B. Jak-inhibitors and UV-B: Potential combined therapy for vitiligo. Dermatol. Ther., 2017, 30(5), e12531.
[http://dx.doi.org/10.1111/dth.12531] [PMID: 28833974]
[156]
Nada, H.R.; El Sharkawy, D.A.; Elmasry, M.F.; Rashed, L.A.; Mamdouh, S. Expression of janus kinase 1 in vitiligo & psoriasis before and after narrow band uvb: A case–control study. Arch. Dermatol. Res., 2018, 310(1), 39-46.
[http://dx.doi.org/10.1007/s00403-017-1792-6] [PMID: 29127481]
[157]
Rothstein, B.; Joshipura, D.; Saraiya, A.; Abdat, R.; Ashkar, H.; Turkowski, Y.; Sheth, V.; Huang, V.; Au, S.C.; Kachuk, C.; Dumont, N.; Gottlieb, A.B.; Rosmarin, D. Treatment of vitiligo with the topical Janus kinase inhibitor ruxolitinib. J. Am. Acad. Dermatol., 2017, 76(6), 1054-1060.e1.
[http://dx.doi.org/10.1016/j.jaad.2017.02.049] [PMID: 28390737]
[158]
Rosmarin, D.; Pandya, A.G.; Lebwohl, M.; Grimes, P.; Hamzavi, I.; Gottlieb, A.B.; Butler, K.; Kuo, F.; Sun, K.; Ji, T.; Howell, M.D.; Harris, J.E. Ruxolitinib cream for treatment of vitiligo: A randomised, controlled, phase 2 trial. Lancet, 2020, 396(10244), 110-120.
[http://dx.doi.org/10.1016/S0140-6736(20)30609-7] [PMID: 32653055]
[159]
David, R.A.P.; Mark, L.; Pearl, G.; Iltefat, H.; Alice, B.G.; Kathleen, B.; Fiona, K.; Michael, D.H.; Kang, S.; Harris, O.E. Efficacy and safety of ruxolitinib cream for the treatment of vitiligo: results of a 24-week randomized, doubleblind, dose-ranging, vehicle-controlled study. 24th World Congress of Dermatology, June 10-15Milan, Italy2019.
[160]
Harris, J.E.; Rashighi, M.; Nguyen, N.; Jabbari, A.; Ulerio, G.; Clynes, R.; Christiano, A.M.; Mackay-Wiggan, J. Rapid skin repigmentation on oral ruxolitinib in a patient with coexistent vitiligo and alopecia areata (AA). J. Am. Acad. Dermatol., 2016, 74(2), 370-371.
[http://dx.doi.org/10.1016/j.jaad.2015.09.073] [PMID: 26685721]
[161]
Joshipura, D.; Alomran, A.; Zancanaro, P.; Rosmarin, D. Treatment of vitiligo with the topical Janus kinase inhibitor ruxolitinib: A 32-week open-label extension study with optional narrow-band ultraviolet B. J. Am. Acad. Dermatol., 2018, 78(6), 1205-1207.e1.
[http://dx.doi.org/10.1016/j.jaad.2018.02.023] [PMID: 29438765]
[162]
Mobasher, P.; Guerra, R.; Li, S.J.; Frangos, J.; Ganesan, A.K.; Huang, V. Open-label pilot study of tofacitinib 2% for the treatment of refractory vitiligo. Br. J. Dermatol., 2020, 182(4), 1047-1049.
[http://dx.doi.org/10.1111/bjd.18606] [PMID: 31605536]
[163]
Azzolino, V.; Zapata, L., Jr; Garg, M.; Gjoni, M.; Riding, R.L.; Strassner, J.P.; Richmond, J.M.; Harris, J.E. Jak inhibitors reverse vitiligo in mice but do not deplete skin resident memory t cells. J. Invest. Dermatol., 2021, 141(1), 182-184.e1.
[http://dx.doi.org/10.1016/j.jid.2020.04.027] [PMID: 32464150]
[164]
Liu, L.Y.; Strassner, J.P.; Refat, M.A.; Harris, J.E.; King, B.A. Repigmentation in vitiligo using the Janus kinase inhibitor tofacitinib may require concomitant light exposure. J. Am. Acad. Dermatol., 2017, 77(4), 675-682.e1.
[http://dx.doi.org/10.1016/j.jaad.2017.05.043] [PMID: 28823882]
[165]
Kim, S.R.; Heaton, H.; Liu, L.Y.; King, B.A. Rapid repigmentation of vitiligo using tofacitinib plus low-dose, narrowband uv-b phototherapy. JAMA Dermatol., 2018, 154(3), 370-371.
[http://dx.doi.org/10.1001/jamadermatol.2017.5778] [PMID: 29387870]
[166]
Craiglow, B.G.; King, B.A. Tofacitinib citrate for the treatment of vitiligo. JAMA Dermatol., 2015, 151(10), 1110-1112.
[http://dx.doi.org/10.1001/jamadermatol.2015.1520] [PMID: 26107994]
[167]
Vu, M.; Heyes, C.; Robertson, S.J.; Varigos, G.A.; Ross, G. Oral tofacitinib: A promising treatment in atopic dermatitis, alopecia areata and vitiligo. Clin. Exp. Dermatol., 2017, 42(8), 942-944.
[http://dx.doi.org/10.1111/ced.13290] [PMID: 29034491]
[168]
Gianfaldoni, S.; Tchernev, G.; Wollina, U.; Roccia, M.G.; Fioranelli, M.; Lotti, J.; Rovesti, M.; Satolli, F.; Valle, Y.; Goren, A.; Tirant, M.; Situm, M.; Kovacevic, M.; França, K.; Lotti, T. Micro - focused phototherapy associated to janus kinase inhibitor: A promising valid therapeutic option for patients with localized vitiligo. Open Access Maced. J. Med. Sci., 2018, 6(1), 46-48.
[http://dx.doi.org/10.3889/oamjms.2018.042] [PMID: 29483979]
[169]
Kim, K.I.; Jo, J.W.; Lee, J.H.; Kim, C.D.; Yoon, T.J. Induction of pigmentation by a small molecule tyrosine kinase inhibitor nilotinib. Biochem. Biophys. Res. Commun., 2018, 503(4), 2271-2276.
[http://dx.doi.org/10.1016/j.bbrc.2018.06.148] [PMID: 29959921]
[170]
Mumford, B.P.; Gibson, A.; Chong, A.H. Repigmentation of vitiligo with oral baricitinib. Australas. J. Dermatol., 2020, 61(4), 374-376.
[http://dx.doi.org/10.1111/ajd.13348] [PMID: 32491188]
[171]
Peeva, E.; Hodge, M.R.; Kieras, E.; Vazquez, M.L.; Goteti, K.; Tarabar, S.G.; Alvey, C.W.; Banfield, C. Evaluation of a janus kinase 1 inhibitor, pf-04965842, in healthy subjects: A phase 1, randomized, placebo-controlled, dose-escalation study. Br. J. Clin. Pharmacol., 2018, 84(8), 1776-1788.
[http://dx.doi.org/10.1111/bcp.13612] [PMID: 29672897]
[172]
Agarwal, P.; Rashighi, M.; Essien, K.I.; Richmond, J.M.; Randall, L.; Pazoki-Toroudi, H.; Hunter, C.A.; Harris, J.E. Simvastatin prevents and reverses depigmentation in a mouse model of vitiligo. J. Invest. Dermatol., 2015, 135(4), 1080-1088.
[http://dx.doi.org/10.1038/jid.2014.529] [PMID: 25521459]
[173]
Kwak, B.; Mulhaupt, F.; Veillard, N.; Pelli, G.; Mach, F. The HMG-CoA reductase inhibitor simvastatin nhibits IFN-gamma induced MHC class II expression in human vascular endothelial cells - Statins as a potential novel immunosuppressive agent. Swiss Med. Wkly., 2001, 131(3-4), 41-46.
[PMID: 11219190]
[174]
Feily, A.; Baktash, D.; Mohebbipour, A.; Feily, A. Potential advantages of simvastatin as a novel anti-vitiligo arsenal. Eur. Rev. Med. Pharmacol. Sci., 2013, 17(14), 1982-1983.
[PMID: 23877867]
[175]
Galus, R.; Sajjad, E.; Niderla, J.; Borowska, K. Włodarski, K.; Włodarski, P.; Jóźwiak, J. Fluvastatin increases tyrosinase synthesis induced by UVB irradiation of B16F10 melanoma cells. Folia Histochem. Cytobiol., 2009, 47(3), 363-365.
[PMID: 20164019]
[176]
Galus, R. Niderla, J.; Śladowski, D.; Sajjad, E.; Włodarski, K.; Jóźwiak, J. Fluvastatin increases tyrosinase synthesis induced by α-melanocyte-stimulating hormone in B16F10 melanoma cells. Pharmacol. Rep., 2010, 62(1), 164-169.
[http://dx.doi.org/10.1016/S1734-1140(10)70253-X] [PMID: 20360626]
[177]
Noël, M.; Gagné, C.; Bergeron, J.; Jobin, J.; Poirier, P. Positive pleiotropic effects of HMG-CoA reductase inhibitor on vitiligo. Lipids Health Dis., 2004, 3(1), 7.
[http://dx.doi.org/10.1186/1476-511X-3-7] [PMID: 15134579]
[178]
Niezgoda, A.; Winnicki, A.; Kosmalski, T.; Kowaliszyn, B. Krysiński, J.; Czajkowski, R. The evaluation of vitiligous lesions repigmentation after the administration of atorvastatin calcium salt and simvastatin-acid sodium salt in patients with active vitiligo (evraas), a pilot study: Study protocol for a randomized controlled trial. Trials, 2019, 20(1), 78.
[http://dx.doi.org/10.1186/s13063-018-3168-4] [PMID: 30683146]
[179]
Yazdani Ashtiani, S.; Ahmad Nasrollahi, S.; Naeimifar, A.; Nassiri Kashani, A.; Samadi, A.; Yadangi, S.; Aboutaleb, E.; Abdolmaleki, P.; Dinarvand, R.; Firooz, A. Preparation and safety evaluation of topical simvastatin loaded nlcs for vitiligo. Adv. Pharm. Bull., 2020, 11(1), 104-110.
[http://dx.doi.org/10.34172/apb.2021.011] [PMID: 33747857]
[180]
Vanderweil, S.G.; Amano, S.; Ko, W.C.; Richmond, J.M.; Kelley, M.; Senna, M.M.; Pearson, A.; Chowdary, S.; Hartigan, C.; Barton, B.; Harris, J.E. A double-blind, placebo-controlled, phase-II clinical trial to evaluate oral simvastatin as a treatment for vitiligo. J. Am. Acad. Dermatol., 2017, 76(1), 150-151.e3.
[http://dx.doi.org/10.1016/j.jaad.2016.06.015] [PMID: 27986135]
[181]
Nguyen, S.; Chuah, S.Y.; Fontas, E.; Khemis, A.; Jhingan, A.; Thng, S.T.G.; Passeron, T. Atorvastatin in combination with narrowband uv-b in adult patients with active vitiligo. JAMA Dermatol., 2018, 154(6), 725-726.
[http://dx.doi.org/10.1001/jamadermatol.2017.6401] [PMID: 29617528]
[182]
Mittal, A.K.; Taneja, A.; Kumari, A.; Vyas, K.; Khare, A.K.; Gupta, L.K. Cyclosporine in treatment of progressive vitiligo: An open-label, single-arm interventional study. Indian J. Dermatol. Venereol. Leprol., 2019, 85(5), 528-531.
[http://dx.doi.org/10.4103/ijdvl.IJDVL_656_18] [PMID: 31389371]
[183]
Mehta, H.; Kumar, S.; Parsad, D.; Bishnoi, A.; Vinay, K.; Kumaran, M.S. Oral cyclosporine is effective in stabilizing active vitiligo: Results of a randomized controlled trial. Dermatol. Ther., 2021, 34(5), e15033.
[http://dx.doi.org/10.1111/dth.15033] [PMID: 34151493]
[184]
Parsad, D.; Kanwar, A. Oral minocycline in the treatment of vitiligo - A preliminary study. Dermatol. Ther., 2010, 23(3), 305-307.
[http://dx.doi.org/10.1111/j.1529-8019.2010.01328.x] [PMID: 20597950]
[185]
Singh, A.; Kanwar, A.J.; Parsad, D.; Mahajan, R. Randomized controlled study to evaluate the effectiveness of dexamethasone oral minipulse therapy versus oral minocycline in patients with active vitiligo vulgaris. Indian J. Dermatol. Venereol. Leprol., 2014, 80(1), 29-35.
[http://dx.doi.org/10.4103/0378-6323.148562] [PMID: 24448120]
[186]
Siadat, A.H.; Zeinali, N.; Iraji, F.; Abtahi-Naeini, B.; Nilforoushzadeh, M.A.; Jamshidi, K.; Khosravani, P. Narrow-band ultraviolet b versus oral minocycline in treatment of unstable vitiligo: A prospective comparative trial. Dermatol. Res. Pract., 2014, 2014, 1-4.
[http://dx.doi.org/10.1155/2014/240856] [PMID: 25221600]
[187]
Pasricha, J.S.; Khera, V. Effect of prolonged treatment with levamisole on vitiligo with limited and slow-spreading disease. Int. J. Dermatol., 1994, 33(8), 584-587.
[http://dx.doi.org/10.1111/j.1365-4362.1994.tb02903.x] [PMID: 7960359]
[188]
Agarwal, S.; Ramam, M.; Sharma, V.K.; Khandpur, S.; Pal, H.; Pandey, R.M. A randomized placebo-controlled double-blind study of levamisole in the treatment of limited and slowly spreading vitiligo. Br. J. Dermatol., 2005, 153(1), 163-166.
[http://dx.doi.org/10.1111/j.1365-2133.2005.06556.x] [PMID: 16029343]
[189]
Li, D.G.; Hu, W.Z.; Ma, H.J.; Liu, W.; Yang, Q.Q.; Zhao, G. Hydroxychloroquine protects melanocytes from autoantibody-induced injury by reducing the binding of antigen-antibody complexes. Mol. Med. Rep., 2016, 14(2), 1275-1282.
[http://dx.doi.org/10.3892/mmr.2016.5354] [PMID: 27277530]
[190]
Huff, S.B.; Gottwald, L.D. Repigmentation of tenacious vitiligo on apremilast. Case Rep. Dermatol. Med., 2017, 2017, 2386234.
[http://dx.doi.org/10.1155/2017/2386234]
[191]
Majid, I.; Imran, S.; Batool, S. Apremilast is effective in controlling the progression of adult vitiligo: A case series. Dermatol. Ther., 2019, 32(4), e12923.
[http://dx.doi.org/10.1111/dth.12923] [PMID: 30977956]
[192]
Guan, C.; Li, Q.; Song, X.; Xu, W.; Li, L.; Xu, A. Antroquinonol exerts immunosuppressive effect on cd8+ t cell proliferation and activation to resist depigmentation induced by H2O2. Oxid. Med. Cell. Longev., 2017, 2017, 9303054.
[http://dx.doi.org/10.1155/2017/9303054] [PMID: 29456788]
[193]
Radmanesh, M.; Saedi, K. The efficacy of combined PUVA and low-dose azathioprine for early and enhanced repigmentation in vitiligo patients. J. Dermatolog. Treat., 2006, 17(3), 151-153.
[http://dx.doi.org/10.1080/09546630600791442] [PMID: 16854754]
[194]
Abd El-Samad, Z.; Shaaban, D. Treatment of localized non-segmental vitiligo with intradermal 5-flurouracil injection combined with narrow-band ultraviolet B: A preliminary study. J. Dermatolog. Treat., 2012, 23(6), 443-448.
[http://dx.doi.org/10.3109/09546634.2011.579084] [PMID: 21781011]
[195]
Gandhi, S.; Shashikiran, A.R.; Murugesh, S.B.; Kusagur, M. Sugareddy, Efficacy of topical 5% fluorouracil needling in vitiligo. Indian J. Dermatol. Venereol. Leprol., 2018, 84(2), 203-205.
[http://dx.doi.org/10.4103/ijdvl.IJDVL_386_16] [PMID: 29380751]
[196]
Bishnoi, A.; Vinay, K.; Kumaran, M.S.; Parsad, D. Oral mycophenolate mofetil as a stabilizing treatment for progressive non-segmental vitiligo: Results from a prospective, randomized, investigator-blinded pilot study. Arch. Dermatol. Res., 2021, 313(5), 357-365.
[http://dx.doi.org/10.1007/s00403-020-02108-8] [PMID: 32737577]
[197]
Handjani, F.; Aghaei, S.; Moezzi, I.; Saki, N. opical mycophenolate mofetil in the treatment of vitiligo: A pilot study. Dermatol. Pract. Concept., 2017, 7(2), 31-33.
[http://dx.doi.org/10.5826/dpc.0702a06] [PMID: 28515990]
[198]
Alghamdi, K.M.; Khurrum, H.; Taieb, A.; Ezzedine, K. Treatment of generalized vitiligo with anti-TNF-α Agents. J. Drugs Dermatol., 2012, 11(4), 534-539.
[PMID: 22453596]
[199]
Abdelmaksoud, A.; Dave, D.D.; Lotti, T.; Vestita, M. Topical methotrexate 1% gel for treatment of vitiligo: A case report and review of the literature. Dermatol. Ther., 2019, 32(5), e13013.
[http://dx.doi.org/10.1111/dth.13013] [PMID: 31265164]
[200]
Garza-Mayers, A.C.; Kroshinsky, D. Low-dose methotrexate for vitiligo. J. Drugs Dermatol., 2017, 16(7), 705-706.
[PMID: 28697225]
[201]
Singh, H.; Kumaran, M.S.; Bains, A.; Parsad, D. A randomized comparative study of oral corticosteroid minipulse and low-dose oral methotrexate in the treatment of unstable vitiligo. Dermatology, 2015, 231(3), 286-290.
[http://dx.doi.org/10.1159/000433424] [PMID: 26278124]
[202]
AlGhamdi, K.; Khurrum, H. Methotrexate for the treatment of generalized vitiligo. Saudi Pharm. J., 2013, 21(4), 423-424.
[http://dx.doi.org/10.1016/j.jsps.2012.12.003] [PMID: 24227963]
[203]
Srinivas, C.R.; Shenoi, S.D.; Balachandran, C. Acceleration of repigmentation in vitiligo by topical minoxidil in patients on photochemotherapy. Int. J. Dermatol., 1990, 29(2), 154-155.
[http://dx.doi.org/10.1111/j.1365-4362.1990.tb04096.x] [PMID: 2323875]
[204]
Kanellis, V.; Gupta, M. Enhanced repigmentation of vitiligo by topical minoxidil and excimer lamp treatment. Pigment Inte., 2019, 6(1), 46-47.
[205]
Lim, H.W.; Grimes, P.E.; Agbai, O.; Hamzavi, I.; Henderson, M.; Haddican, M.; Linkner, R.V.; Lebwohl, M. Afamelanotide and narrowband UV-B phototherapy for the treatment of vitiligo: A randomized multicenter trial. JAMA Dermatol., 2015, 151(1), 42-50.
[http://dx.doi.org/10.1001/jamadermatol.2014.1875] [PMID: 25230094]
[206]
Starner, R.J.; McClelland, L.; Abdel-Malek, Z.; Fricke, A.; Scott, G. PGE2 is a UVR-inducible autocrine factor for human melanocytes that stimulates tyrosinase activation. Exp. Dermatol., 2010, 19(7), 682-684.
[http://dx.doi.org/10.1111/j.1600-0625.2010.01074.x] [PMID: 20500768]
[207]
Pentland, A.P.; Mahoney, M.G. Keratinocyte prostaglandin synthesis is enhanced by IL-1. J. Invest. Dermatol., 1990, 94(1), 43-46.
[http://dx.doi.org/10.1111/1523-1747.ep12873337] [PMID: 2295836]
[208]
Friedmann, P.S.; Gilchrest, B.A. Ultraviolet radiation directly induces pigment production by cultured human melanocytes. J. Cell. Physiol., 1987, 133(1), 88-94.
[http://dx.doi.org/10.1002/jcp.1041330111] [PMID: 2822734]
[209]
Jiao, Y.N.; Wang, J.X.; Zhang, Y.; Wu, D.M.; Chen, K.; Yu, N.; Jiang, M.; Xia, L.; Liang, L.; Wang, J.W.; Wang, J.F. Influence of combination of external prostaglandin and narrow band ultraviolet B on skin melanin and tyrosinase level in Guinea pigs with vitiligo. Chin. J. Clin. Pharmacol., 2018, 34(09), 1105-1107.
[210]
Kapoor, R.; Phiske, M.M.; Jerajani, H.R. Evaluation of safety and efficacy of topical prostaglandin E2 in treatment of vitiligo. Br. J. Dermatol., 2009, 160(4), 861-863.
[http://dx.doi.org/10.1111/j.1365-2133.2008.08923.x] [PMID: 19014395]
[211]
Parsad, D.; Pandhi, R.; Dogra, S.; Kumar, B. Topical prostaglandin analog (PGE2) in vitiligo - A preliminary study. Int. J. Dermatol., 2002, 41(12), 942-945.
[http://dx.doi.org/10.1046/j.1365-4362.2002.01612.x] [PMID: 12492997]
[212]
Eldelee, S.A.; Gheida, S.F.; Sarhan, N.I. brahim, Z.A.; Elfar, N.N. Evaluation of the effect of combined intralesional injection of prostaglandin F2alpha with narrow band UVB phototherapy in reatment of resistant cases of vitiligo. J. Dermatolog. Treat., 2021, 32(4), 383-390.
[http://dx.doi.org/10.1080/09546634.2019.1658860] [PMID: 31437059]
[213]
Anbar, T.S.; El-Ammawi, T.S.; Barakat, M.; Fawzy, A. Skin pigmentation after NB-UVB and three analogues of prostaglandin F2α in guinea pigs: A comparative study. J. Eur. Acad. Dermatol. Venereol., 2010, 24(1), 28-31.
[http://dx.doi.org/10.1111/j.1468-3083.2009.03346.x] [PMID: 19627411]
[214]
Jha, A.K.; Sinha, R. Bimatoprost in vitiligo. Clin. Exp. Dermatol., 2016, 41(7), 821-822.
[http://dx.doi.org/10.1111/ced.12904] [PMID: 27663165]
[215]
Jha, A.K.; Prasad, S.; Sinha, R. Bimatoprost ophthalmic solution in facial vitiligo. J. Cosmet. Dermatol., 2018, 17(3), 437-440.
[http://dx.doi.org/10.1111/jocd.12443] [PMID: 29034590]
[216]
Zhong, W.; Shao, Y.; Ye, T.; Li, J.; Yu, B.; Dou, X. Perforating granuloma annulare: A case report and literature review. J. Eur. Acad. Dermatol. Venereol., 2016, 30(7), 1246-1247.
[http://dx.doi.org/10.1111/jdv.13174] [PMID: 25924054]
[217]
Pruettivorawongse, D.; Kanokrungsee, S.; Ratchatanawin, N. Comparison of efficacy and safety of topical 0.01% bimatoprost and 0.1% tacrolimus in the treatment of facial vitiligo: A randomized, single-blinded, intra-individual controlled trial. J. Am. Acad. Dermatol., 2018, 79(3), AB82-AB82.
[http://dx.doi.org/10.1016/j.jaad.2018.05.359]
[218]
Grimes, P.E. Bimatoprost 0.03% solution for the treatment of nonfacial vitiligo. J. Drugs Dermatol., 2016, 15(6), 703-710.
[PMID: 27272076]
[219]
Khullar, G. Comparison of efficacy and safety profile of topical bimatoprost (0.03%) in combination with NB-UVB versus NB-UVB alone in the reatment of vitiligo: A 24-week prospective right-left comparative clinical trial. J. Am. Acad. Dermatol., 2015, 72(5)
[220]
Sharma, S.; Parsad, D.; Bhattacharjee, R.; Muthu, S.K. A prospective right-left comparative study to evaluate the efficacy and tolerability of combination of NB-UVB and topical bimatoprost 0.03% eye drops versus NB-UVB given alone in patients of vitiligo vulgaris. J. Eur. Acad. Dermatol. Venereol., 2018, 32(8), e330-e331.
[http://dx.doi.org/10.1111/jdv.14882] [PMID: 29444382]
[221]
Nowroozpoor, D.K.; Hosseini, A.; Rahmatpour, R.G.; Saeedi, M.; Morteza-Semnani, K.; Sadeghi, Z.; Ghasemzadeh, D.S.M.; Goldust, M.; Lotti, T.; Vojvodic, A.; Goren, A.; Sonthalia, S.; Rathod, D. Efficacy of topical latanoprost in the treatment of eyelid vitiligo: A randomized, double-blind clinical trial study. Dermatol. Ther., 2020, 33(1), e13175.
[http://dx.doi.org/10.1111/dth.13175] [PMID: 31758835]
[222]
Yadav, S.; Dogra, S.; Kaur, I. An unusual anatomical colocalization of alopecia areata and vitiligo in a child, and improvement during treatment with topical prostaglandin E2. Clin. Exp. Dermatol., 2009, 34(8), e1010-e1011.
[http://dx.doi.org/10.1111/j.1365-2230.2009.03677.x] [PMID: 20055821]
[223]
Kim, T. Three cases of vitiligo showing response to application of latanoprost. Korean J. Dermatol., 2010, 48(4), 350-353.
[224]
Anbar, T.S.; El-Ammawi, T.S.; Abdel-Rahman, A.T.; Hanna, M.R. The effect of latanoprost on vitiligo: A preliminary comparative study. Int. J. Dermatol., 2015, 54(5), 587-593.
[http://dx.doi.org/10.1111/ijd.12631] [PMID: 25545321]
[225]
Korobko, I.V.; Lomonosov, K.M. A pilot comparative study of topical latanoprost and tacrolimus in combination with narrow-band ultraviolet B phototherapy and microneedling for the treatment of nonsegmental vitiligo. Dermatol. Ther., 2016, 29(6), 437-441.
[http://dx.doi.org/10.1111/dth.12383] [PMID: 27329330]
[226]
Stanimirovic, A.; Kovacevic, M.; Korobko, I.; Šitum, M.; Lotti, T. Combined therapy for resistant vitiligo lesions: NB-UVB, microneedling, and topical latanoprost, showed no enhanced efficacy compared to topical latanoprost and NB-UVB. Dermatol. Ther., 2016, 29(5), 312-316.
[http://dx.doi.org/10.1111/dth.12363] [PMID: 27356486]
[227]
Lotti, T.; Wollina, U.; Tchernev, G.; Valle, Y.; Lotti, J.; França, K.; Satolli, F.; Rovesti, M.; Tirant, M.; Lozev, I.; Pidakev, I.; Gianfaldoni, S. An innovative therapeutic protocol for vitiligo: Experience with the use of fraxel herbium laser, topical latanoprost and successive irradiation with UVa - 1 laser. Open Access Maced. J. Med. Sci., 2018, 6(1), 49-51.
[http://dx.doi.org/10.3889/oamjms.2018.059] [PMID: 29483980]
[228]
Aobuli, A.; Maitusong, J.; Bakri, M.; Lu, X.; Maiwulanjiang, M.; Aisa, H.A. The effect of volatile oil from vernonia anthelmintica seeds on melanin synthesis in b16 cells and its chemical analysis by GC-QTOF-MS. Evid. Based Complement. Alternat. Med., 2018, 2018, 1-8.
[http://dx.doi.org/10.1155/2018/6291281] [PMID: 30174712]
[229]
Nie, L.F.; Bozorov, K.; Niu, C.; Huang, G.; Aisa, H.A. Synthesis and biological evaluation of novel sulfonamide derivatives of tricyclic thieno[2,3-d]pyrimidin-4(3H)-ones on melanin synthesis in murine B16 cells. Res. Chem. Intermed., 2017, 43(12), 6835-6843.
[http://dx.doi.org/10.1007/s11164-017-3023-3]
[230]
Lin, C.B.; Babiarz, L.; Liebel, F.; Kizoulis, M.; Gendimenico, G.J.; Seiberg, M.; Roydon Price, E.; Fisher, D.E. Modulation of microphthalmia-associated transcription factor gene expression alters skin pigmentation. J. Invest. Dermatol., 2002, 119(6), 1330-1340.
[http://dx.doi.org/10.1046/j.1523-1747.2002.19615.x] [PMID: 12485436]
[231]
Levy, C.; Khaled, M.; Fisher, D.E. MITF: Master regulator of melanocyte development and melanoma oncogene. Trends Mol. Med., 2006, 12(9), 406-414.
[http://dx.doi.org/10.1016/j.molmed.2006.07.008] [PMID: 16899407]
[232]
Speeckaert, R.; van Geel, N. Targeting CTLA-4, PD-L1 and IDO to modulate immune responses in vitiligo. Exp. Dermatol., 2017, 26(7), 630-634.
[http://dx.doi.org/10.1111/exd.13069] [PMID: 27192950]
[233]
Di Nardo, V.; Barygina, V.; França, K.; Tirant, M.; Valle, Y.; Lotti, T. Functional nutrition as integrated approach in vitiligo management. Dermatol. Ther., 2019, 32(4), e12625.
[http://dx.doi.org/10.1111/dth.12625] [PMID: 30156053]
[234]
Wu, C.S.; Lan, C.C.E.; Chiou, M.H.; Yu, H.S. Basic fibroblast growth factor promotes melanocyte migration via increased expression of p125(FAK) on melanocytes. Acta Derm. Venereol., 2006, 86(6), 498-502.
[http://dx.doi.org/10.2340/00015555-0161] [PMID: 17106595]