Greener Approaches Towards 1,4–Benzothiazine Synthesis: Recent Updates and Outlook

Page: [230 - 236] Pages: 7

  • * (Excluding Mailing and Handling)

Abstract

Heterocyclic moieties are ubiquitous in nature and the exploration of heterocyclic chemistry goes centuries back, which have coalesced into the invention of greener methodologies towards the synthesis of heterocycles of potential uses. Benzothiazine is an important class of heterocyclic molecule, in which a benzene ring is fused with a six–member N, S containing ring. Amongst the three possible isomers, 1,4–benzothiazines show a wide spectrum of pharmaceutical and biological activities like anti–inflammatory, anti–rheumatic, antihypertensive, andantipathogenic roles. In search of greener protocols,metal–free catalysts, and environmentally benign reaction conditions, a lot have been unboxed to date, and many other dimensions remain yet to be deciphered. This minireview is an attempt to classify various sustainable protocols for the synthesis of 1,4–benzothiazine scaffolds over the last decade based on the reacting components and pathways, along with the consideration of plausible mechanistic insights and critical analysis.

Graphical Abstract

[1]
Rai, A.; Singh, A.K.; Raj, V.; Saha, S. 1,4-benzothiazines-a biologically attractive scaffold. Mini Rev. Med. Chem., 2017, 18(1), 42-57.
[http://dx.doi.org/10.2174/1389557517666170529075556] [PMID: 28552049]
[2]
Tandon, V.; Chhikara, B.S.; Mishra, A.K. KF–alumina immobilized in ionic liquids: A novel heterogeneous base for heterocyclization of alkylsulfanylphenylamines into 1,4–benzothiazine. Heterocycles, 2004, 63(5), 1057.
[http://dx.doi.org/10.3987/COM-04-10003]
[3]
Pluta, K. Morak-Młodawska, B.; Jeleń M. Recent progress in biological activities of synthesized phenothiazines. Eur. J. Med. Chem., 2011, 46(8), 3179-3189.
[http://dx.doi.org/10.1016/j.ejmech.2011.05.013] [PMID: 21620536]
[4]
Rathore, B.S.; Kumar, M. Synthesis of 7-chloro-5-trifluoromethyl/7-fluoro/7-trifluoromethyl-4H-1,4-benzothiazines as antimicrobial agents. Bioorg. Med. Chem., 2006, 14(16), 5678-5682.
[http://dx.doi.org/10.1016/j.bmc.2006.04.009] [PMID: 16650998]
[5]
Sonawane, A.E.; Pawar, Y.A.; Nagle, P.S.; Mahulikar, P.P.; More, D.H. Synthesis of 1,4-benzothiazine compounds containing isatin hydrazone moiety as antimicrobial agent. Chin. J. Chem., 2009, 27(10), 2049-2054.
[http://dx.doi.org/10.1002/cjoc.200990344]
[6]
Rai, A.; Raj, V.; Singh, A.K.; Keshari, A.K.; Kumar, U.; Kumar, D.; Saha, S. Design and synthesis of 1,4-benzothiazine derivatives with promising effects against colorectal cancer cells. Cogent Chem., 2017, 3(1), 1303909.
[http://dx.doi.org/10.1080/23312009.2017.1303909]
[7]
Macchiarulo, A.; Costantino, G.; Fringuelli, D.; Vecchiarelli, A.; Schiaffella, F.; Fringuelli, R. 1,4-Benzothiazine and 1,4-Benzoxazine imidazole derivatives with antifungal activity: A docking study. Bioorg. Med. Chem., 2002, 10(11), 3415-3423.
[http://dx.doi.org/10.1016/S0968-0896(02)00263-8] [PMID: 12213454]
[8]
Campiani, G.; Garofalo, A.; Fiorini, I.; Botta, M.; Nacci, V.; Tafi, A.; Chiarini, A.; Budriesi, R.; Bruni, G.; Romeo, M.R. Pyrrolo[2,1-c][1,4]benzothiazines: Synthesis, structure-activity relationships, molecular modeling studies, and cardiovascular activity. J. Med. Chem., 1995, 38(22), 4393-4410.
[http://dx.doi.org/10.1021/jm00022a005] [PMID: 7473567]
[9]
Parai, M.K.; Panda, G. A convenient synthesis of chiral amino acid derived 3,4-dihydro-2H-benzo[b][1,4]thiazines and antibiotic levofloxacin. Tetrahedron Lett., 2009, 50(33), 4703-4705.
[http://dx.doi.org/10.1016/j.tetlet.2009.05.104]
[10]
Grandolini, G.; Perioli, L.; Ambrogi, V. Synthesis of some new 1,4-benzothiazine and 1,5-benzothiazepine tricyclic derivatives with structural analogy with TIBO and their screening for anti-HIV activity. Eur. J. Med. Chem., 1999, 34(9), 701-709.
[http://dx.doi.org/10.1016/S0223-5234(99)00223-8]
[11]
Maheshwari, M.; Goyal, A.A. Review: Synthesis and medicinal importance of 1,4–benzothiazine analogues. Asian J. Pharm. Clin. Res., 2015, 41-46. Available from https://innovareacademics.in/journals/index.php/ajpcr/article/view/4445
[12]
Grandolini, G.; Rossi, C.; Tiralti, M.C.; Orzalesi, G.; De Regis, M. Studies on annelated 1,4-benzothiazines and 1,5-benzothiazepines. I. Synthesis of 4H-s-triazolo[3,4-c]-1,4-benzothiazine and derivatives with potential CNS activity. Farmaco, Sci., 1985, 40(4), 221-236.
[http://dx.doi.org/10.1002/chin.198539249] [PMID: 4018250]
[13]
Kajino, M.; Mizuno, K.; Tawada, H.; Shibouta, Y.; Nishikawa, K.; Meguro, K. Synthesis and biological activities of new 1,4-benzothiazine derivatives. Chem. Pharm. Bull., 1991, 39(11), 2888-2895.
[http://dx.doi.org/10.1248/cpb.39.2888] [PMID: 1799937]
[14]
Dabholkar, V.V.; Gavande, R.P. Synthesis and antimicrobial activities of novel 1,4-benzothiazine derivatives. Arab. J. Chem., 2016, 9, S225-S229.
[http://dx.doi.org/10.1016/j.arabjc.2011.03.009]
[15]
Harmata, M.; Cai, Z.; Chen, Y. Benzothiazines in synthesis. A formal total synthesis of pseudopteroxazole. J. Org. Chem., 2009, 74(15), 5559-5561.
[http://dx.doi.org/10.1021/jo9009112] [PMID: 19537725]
[16]
Prasad, C.D.; Verma, A.; Sattar, M.; Kumar, S. Silver-mediated thio-acetoxylation and TFA triggered cyclization of amino disulfides with unactivated alkenes: Synthesis of 3-aryl/alkyl-1,4-benzothiazines. RSC Advances, 2015, 5(93), 75881-75888.
[http://dx.doi.org/10.1039/C5RA12995H]
[17]
Li, W.L.; Tian, S.B.; Zhu, F. Sulfonic acid functionalized Nano–γ–Al2O3: A new, efficient, and reusable catalyst for synthesis of 3–substituted–2h–1,4–benzothiazines. Sci. World J., 2013, 838374 Available from: https://www.hindawi.com/journals/tswj/2013/838374
[http://dx.doi.org/10.1155/2013/838374]
[18]
Saadouni, M.; Ghailane, T.; Boukhris, S.; Hassikou, A.; Habbadi, N.; Ghailane, R.; Harcharras, M.; Souizi, A.; Amri, H. Regioselective synthesis of new variety of 1,4–benzothiazines. Org. Commun., 2014, 7(2), 77-84.
[19]
Sheibani, H.; Islami, M.R.; Nassab, F.H.; Hassanpour, A. Nucleophilic addition of enaminones to the S-S dimer of 2-aminobenzenethiol. ARKIVOC, 2007, 2006(15), 175-180.
[http://dx.doi.org/10.3998/ark.5550190.0007.f21]
[20]
El–Mahdy, F.M.; Mohamed, S.O.; El–Sherif, A.H.; Hozien, A.Z. An efficient one–pot synthesis of benzo[1,4]thiazines, benzo[1,3]thiazoles and benzo[1,5]thiazepines. Curr. Org. Synth., 2017, 14(4), 604-611.
[http://dx.doi.org/10.2174/1570179413666160624082057]
[21]
Sharma, P.K.; Amin, A.; Kumar, M. Synthetic methods of medicinally important heterocycles-thiazines: A review. Open Med. Chem. J., 2020, 14(1), 71-82.
[http://dx.doi.org/10.2174/1874104502014010071]
[22]
Meenakshi, M.; Antojenifer, P.; Karthikeyan, M.; Prahalathan, C.; Srinivasan, K. Synthesis and biological evaluation of new 1, 4-benzothiazine derivatives as potential COX-2 inhibitors. J. Heterocycl. Chem., 2022, 59(2), 351-358.
[http://dx.doi.org/10.1002/jhet.4389]
[23]
Paul, S.; Gupta, R.; Loupy, A.; Rani, B.; Dandia, A. Dry media synthesis of 4h–1,4–benzothiazines under microwave irradiation using basic alumina as solid support. Synth. Commun., 2001, 31(5), 711-717.
[http://dx.doi.org/10.1081/SCC-100103260]
[24]
Martins, M.A.P.; Frizzo, C.P.; Tier, A.Z.; Moreira, D.N.; Zanatta, N.; Bonacorso, H.G. Update 1 of: Ionic liquids in heterocyclic synthesis. Chem. Rev., 2014, 114(20), PR1-PR70.
[http://dx.doi.org/10.1021/cr500106x] [PMID: 25226579]
[25]
Sun, Q.; Bao, X. Facile preparation of dihydro-1,4-benzothiazine derivatives via oxidative ring-expansion of 2-aminobenzothiazoles with olefins. Chem. Commun., 2022, 58(13), 2216-2219.
[http://dx.doi.org/10.1039/D1CC06756G] [PMID: 35072669]
[26]
Fu, L.; Xu, J.; Yao, H.; Wu, X. A synthesis of 4h-1, 4-benzothiazines. J. Chem. Res., 2008, 2008(10), 566-567.
[http://dx.doi.org/10.3184/030823408X356323]
[27]
Pratap, U.R.; Jawale, D.V.; Londhe, B.S.; Mane, R.A. Baker’s yeast catalyzed synthesis of 1,4-benzothiazines, performed under ultrasonication. J. Mol. Catal., B Enzym., 2011, 68(1), 94-97.
[http://dx.doi.org/10.1016/j.molcatb.2010.09.018]
[28]
Alyea, E.C.; Malek, A. Reaction products of 2-aminobenzenethiol with some β-diketones. J. Heterocycl. Chem., 1985, 22(5), 1325-1327.
[http://dx.doi.org/10.1002/jhet.5570220536]
[29]
Gupta, R.R.; Kumar, R.; Gautam, R.K. Synthesis of 6-halogenated 4 H -1,4-benzothiazines. J. Heterocycl. Chem., 1984, 21(6), 1713-1715.
[http://dx.doi.org/10.1002/jhet.5570210628]
[30]
Aloui, S.; Forsal, I.; Sfaira, M.; Touhami, M.E.; Taleb, M.; Baba, M.F.; Daoudi, M. New mechanism synthesis of 1,4-benzothiazine and its inhibition performance on mild steel in hydrochloric acid. Port. Electrochem. Acta, 2009, 27(5), 599-613.
[http://dx.doi.org/10.4152/pea.200905599]
[31]
Munde, S.B.; Bondge, S.P.; Bhingolikar, V.E.; Mane, R.A. A facile synthesis of 1,4-benzothiazines under solvent free conditions. Green Chem., 2003, 5(2), 278-279.
[http://dx.doi.org/10.1039/b212042a]
[32]
Sheibani, H.; Islami, M.R.; Hassanpour, A.; Saidi, K. One-pot multi-component approach to the synthesis of 1,4-benzothiazines in aqueous media. Phosphorus Sulfur Silicon Relat. Elem., 2007, 183(1), 13-20.
[http://dx.doi.org/10.1080/10426500701544599]
[33]
Sheibani, H.; Islami, M.R.; Hassanpour, A.; Hosseininasab, F.A. Nucleophilic substitution of 2,2'′'-disulfanediyldianiline by β-keto esters and 1,3-diketones in the presence of triethylamine. ARKIVOC, 2006, 2006(15), 68-75.
[http://dx.doi.org/10.3998/ark.5550190.0007.f09]
[34]
Londhe, B.S.; Padwal, S.L.; Bhosale, M.R.; Mane, R.A. Novel synthesis of 1,4-benzothiazines in water accelerated by β-cyclodextrin. J. Indian Chem. Soc., 2016, 13(3), 443-447.
[http://dx.doi.org/10.1007/s13738-015-0752-3]
[35]
Mayo, M.S.; Yu, X.; Zhou, X.; Feng, X.; Yamamoto, Y.; Bao, M. Convenient synthesis of benzothiazoles and benzimidazoles through brønsted acid catalyzed cyclization of 2–amino thiophenols/anilines with β–diketones. Org.c Lett., 2014, 16(3), 764-767.
[http://dx.doi.org/10.1021/ol403475v]
[36]
Dhopte, K.B.; Zambare, R.S.; Patwardhan, A.V.; Nemade, P.R. Role of graphene oxide as a heterogeneous acid catalyst and benign oxidant for synthesis of benzimidazoles and benzothiazoles. RSC Advances, 2016, 6(10), 8164-8172.
[http://dx.doi.org/10.1039/C5RA19066E]
[37]
Bhattacharya, S.; Ghosh, P.; Basu, B. Graphene oxide (GO): An efficient carbocatalyst for the benign synthesis of functionalized 1,4-benzothiazines. Tetrahedron Lett., 2017, 58(10), 926-931.
[http://dx.doi.org/10.1016/j.tetlet.2017.01.068]
[38]
Dreyer, D.R.; Jia, H.P.; Todd, A.D.; Geng, J.; Bielawski, C.W. Graphite oxide: A selective and highly efficient oxidant of thiols and sulfides. Org. Biomol. Chem., 2011, 9(21), 7292-7295.
[http://dx.doi.org/10.1039/c1ob06102j] [PMID: 21909587]
[39]
Preet, S.; Cannoo, D.S. Base induced synthesis of 4H-1,4-benzothiazines and their computational studies. RSC Advances, 2015, 5(97), 79232-79238.
[http://dx.doi.org/10.1039/C5RA12442E]
[40]
Stepanova, E.E.; Dmitriev, M.V.; Maslivets, A.N. Synthesis of 1,4-benzothiazinones from acylpyruvic acids or furan-2,3-diones and o -aminothiophenol. Beilstein J. Org. Chem., 2020, 16, 2322-2331.
[http://dx.doi.org/10.3762/bjoc.16.193] [PMID: 33029250]
[41]
Jiang, J.; Tuo, X.; Fu, Z.; Huang, H.; Deng, G.J. Three-component synthesis of 1,4-benzothiazines via iodide-catalyzed aerobic C–H sulfuration with elemental sulfur. Org. Biomol. Chem., 2020, 18(17), 3234-3238.
[http://dx.doi.org/10.1039/D0OB00074D] [PMID: 32270843]
[42]
Lim, F.P.; Dolzhenko, A.V. Microwave-assisted multicomponent reactions as a green synthetic approach to heterocycles: special reference to Hantzsch, Biginelli, and Groebke–Blackburn–Bienayme reactions. In: Green Synthetic Approaches for Biologically Relevant Heterocycles; Elsevier: Amsterdam, 2021; pp. 143-166.
[http://dx.doi.org/10.1016/B978-0-12-820586-0.00004-2]
[43]
Pagadala, R.; Kasi, V.; Shabalala, N.G.; Jonnalagadda, S.B. Ultrasound-assisted multicomponent synthesis of heterocycles in water–A review. Arabian. J. Chem., 2022, 15(1), 103544.
[http://dx.doi.org/10.1016/j.arabjc.2021.103544]
[44]
Mukherjee, N.; Maity, P.; Ranu, B.C. Use of ball milling for the synthesis of biologically active heterocycles. In: Green Synthetic Approaches for Biologically Relevant Heterocycles; Elsevier: Amsterdam, 2021; pp. 167-187.
[http://dx.doi.org/10.1016/B978-0-12-820586-0.00007-8]
[45]
Jones, A.C.; Leitch, J.A.; Raby-Buck, S.E. Mechanochemical techniques for the activation and use of zero-valent metals in synthesis. Nat. Synth., 2022, 1, 763-775.
[http://dx.doi.org/10.1038/s44160-022-00106-4]
[46]
Colella, M.; Degennaro, L.; Luisi, R. Continuous flow synthesis of heterocycles: A recent update on the flow synthesis of indoles. Molecules, 2020, 25(14), 3242.
[http://dx.doi.org/10.3390/molecules251432422020]