A Review of Soft Crawling Robots with Different Driving Methods

Article ID: e130223213622 Pages: 25

  • * (Excluding Mailing and Handling)

Abstract

Background: Traditional rigid robots are difficult to adapt to complex unstructured environments due to their limited degree of freedom and lack of flexibility. Therefore, soft crawling robots are concerned widely by their powerful deformation ability, infinite number of degrees of freedom, and effective interaction with humans.

Objective: This paper aims to report the recent progress of soft crawling robots and provide a reference for readers in this field.

Methods: By reading and summarizing the patents and papers related to soft crawling robots in recent years, they are divided into three categories according to different driving methods. The structure, motion mechanism, characteristics, and applications of each class of robots are compared and analyzed.

Results: The advantages and disadvantages of each driving method are analyzed, and the key issues in soft crawling robots are pointed out. Based on this, the future development direction of this research field is predicted.

Conclusion: The study shows that according to the driving method, soft crawling robots are classified as pressure driven, motor-wire driven, and soft active material driven. In addition, the characteristics of each drive are summarized. In the future, soft crawling robots will have more potential applications in biomedicine, outdoor survey, rescue search, and inspection and maintenance of equipment.

Graphical Abstract

[1]
L. Xu, J.N. Ding, and S.Y. Liu, "Magnetically driven hopping soft robot based on magnetically programmed temperature-sensitive hydrogels", U.S. Patent 11,123,859, 2021.
[2]
J.T. Bai, K.D. Zhang, X.R. Zheng, and X.Z. Yan, "A light-driven bionic octopus soft underwater robot", C.N. Patent 112,478,113, 2021.
[3]
L.J. Xue, X. Wang, B.S. Yang, and S. Liu, "A bionic soft robot", C.N. Patent 109, 533, 066, 2019.
[4]
F.L. Han, L. Fei, W. Liu, H.M. Zhao, Z. Chen, and H.Z. Yan, "A kind of soft robot imitating looper", C.N. Patent 212, 022, 832, 2020.
[5]
K. Yang, X.D. Yang, and Z.H. Bao, "A magneto-fluid driven soft robot imitating an inchworm", C.N. Patent 111, 558, 931, 2020.
[6]
Z.F. Liu, J.J. Li, X. Chen, and Y.T., "Zhong, A spiral photothermal drive film and a soft crawling robot based on the film", C.N. Patent 109, 929, 131, 2021.
[7]
Z.G. Pei, X.Z. Xiong, and C. Jiang, "A soft robot based on needle fabric actuator imitating inchworm", C.N. Patent 111, 688, 834, 2021.
[8]
L. Li, Y.W. Ju, Q.L. Cao, Y. Xie, and X.T. Han, "A drive device for a magnetic soft robot imitating the motion of an inchworm", C.N. Patent 112, 809, 661, 2022.
[9]
L.M. Sui, T.Y. Liu, and Y. Wang, "A pneumatic earthworm imitation soft robot", C.N. Patent 108, 891, 496, 2021.
[10]
Z.Q. Zhang, F.J. Zhang, J.L. Ding, and X.D. Wang, "Shape-memory polymer-driven soft robot based on a starfish imitation and control method", C.N. Patent 108, 891, 562, 2020.
[11]
F. Yang, H.H. Yue, J.S. Xu, and Q.C. Li, "A vapor-hydraulic phase change driven wireless addressable starfish-like soft body robot", C.N. Patent 112, 271, 829, 2021.
[12]
Z.Q. Zhang, F.J. Zhang, J.L. Ding, and G.G. Chen, "An electromagnetically driven snake-like soft robot", C.N. Patent 108, 481, 305, 2020.
[13]
T. Li, H.B. Liu, and Y.H. Ge, "A pneumatically driven snake-like soft robot", C.N. Patent 113, 400, 288, 2021.
[14]
J.H. Zhang, S.Z. Guo, and B.T. Li, "A pneumatically driven stingray-like fluctuating propulsion soft robot and its production method", C.N. Patent 111, 688, 893, 2021.
[15]
Z.M. Xiao, X. Hu, G.W. Ye, and R.Z. Tang, "A deformable fish fin based on memory metal control", C. N. Patent 114, 212, 229, 2022.
[16]
J. Hwang, and W.D. Wang, "Shape memory alloy‐based soft amphibious robot capable of seal‐inspired locomotion", Adv. Mater. Technol., vol. 7, no. 6, p. 2101153, 2022.
[http://dx.doi.org/10.1002/admt.202101153]
[17]
X. Sheng, H. Xu, N. Zhang, N. Ding, X. Zhu, and G. Gu, "Multi-material 3D printing of caterpillar-inspired soft crawling robots with the pneumatically bellow-type body and anisotropic friction feet", Sens. Actuators A Phys., vol. 316, p. 112398, 2020.
[http://dx.doi.org/10.1016/j.sna.2020.112398]
[18]
Q.G. Huang, J.Y. Bai, Y. Cao, and Y.H. Cao, "A manta ray-like underwater soft robot based on liquid dielectric actuator", C.N. Patent 113, 086, 134, 2021.
[19]
C.Y. Yeh, S.C. Chou, H.W. Huang, H.C. Yu, and J.Y. Juang, "Tube-crawling soft robots driven by multistable buckling mechanics", Extreme Mech. Lett., vol. 26, pp. 61-68, 2019.
[http://dx.doi.org/10.1016/j.eml.2018.12.004]
[20]
Z.W. Jiao, M. Yu, and H.P. Ma, "A soft crawling robot based on Miura folding design", C.N. Patent 211, 565, 875, 2020.
[21]
K. Ito, Y. Homma, and J. Rossiter, "The soft multi-legged robot inspired by octopus: climbing various columnar objects", Adv. Robot., vol. 34, no. 17, pp. 1096-1109, 2020.
[http://dx.doi.org/10.1080/01691864.2020.1753570]
[22]
M. Ishida, D. Drotman, B. Shih, M. Luhar, and M.T. Tolley, "Morphing structure for changing hydrodynamic characteristics of a soft underwater walking robot", Extreme Mech. Lett., vol. 4, pp. 4163-4169, 2019.
[23]
N. Wang, B. Chen, X. Ge, X. Zhang, and W. Wang, "Modular crawling robots using soft pneumatic actuators", Front. Mech. Eng., vol. 16, no. 1, pp. 163-175, 2021.
[http://dx.doi.org/10.1007/s11465-020-0605-3]
[24]
J.M. Tuo, H.B. Zang, Y.X. Shu, and D.S. Liu, "A peristaltic bionic robot controlled by a single elastic-gasbag", In: 2018 WRC Symposium on Advanced Robotics and Automation (WRC SARA)., Beijing, China, 2018.
[http://dx.doi.org/10.1109/WRC-SARA.2018.8584220]
[25]
W.X. Zhou, R.Z. Xie, M.J. Su, and H.F. Zhu, "A leech-like soft climbing robot", C.N. Patent 210, 437, 289, 2020.
[26]
H.B. Xiang, J.C. Ba, Y. Li, T.L. Zhang, and S.J. Wang, "Study on Tetherless Micro-Soft Robot Based on Magnetic Elastic Composite Material", In 2019 IEEE International Conference on Mechatronics and Automation (ICMA), Tianjin, China, 2019, pp. 668-673
[http://dx.doi.org/10.1109/ICMA.2019.8816400]
[27]
T. Li, W. Jiang, J. Han, D. Niu, H. Liu, and B. Lu, "Enhancements of Loading Capacity and Moving Ability by Microstructures for Wireless Soft Robot Boats", Langmuir, vol. 36, no. 48, pp. 14728-14736, 2020.
[http://dx.doi.org/10.1021/acs.langmuir.0c02685] [PMID: 33225710]
[28]
J. Cao, L. Qin, J. Liu, Q. Ren, C.C. Foo, H. Wang, H.P. Lee, and J. Zhu, "Untethered soft robot capable of stable locomotion using soft electrostatic actuators", Extreme Mech. Lett., vol. 21, pp. 9-16, 2018.
[http://dx.doi.org/10.1016/j.eml.2018.02.004]
[29]
J. Congran, Z. Chen, and J.H. Zhang, "Electrostatic-actuator-based, tunable, soft robots", W.O. Patent 2020, 112947, 2020.
[30]
W. Zheng, "A super-helical polymer actuator-driven soft crawling robot", C.N. Patent 112, 158, 271, 2021.
[31]
G.G. Chen, Y.L. Wang, J.N. Ding, and X.H. Hu, "A soft robot with spiral wound polymer artificial muscle", C.N. Patent 112, 792, 804, 2021.
[32]
W. Zhao, T. Osaka, A. Ming, and M. Shimojo, "Development of a soft underwater robot mimicking cow-nosed ray", In: 2011 IEEE International Conference on Robotics and Biomimetics, Karon Beach, Thailand, 2011, pp. 1724-1729.
[http://dx.doi.org/10.1109/ROBIO.2011.6181538]
[33]
T. Mao, H.M. Peng, and L.L. Mao, "A piezoelectric drive-based legged jumping robot and its control method", C.N. Patent 109, 353, 424, 2020.
[34]
C. Ahn, X. Liang, and S. Cai, "Bioinspired design of light‐powered crawling, squeezing, and jumping untethered soft robot", Adv. Mater. Technol., vol. 4, no. 7, pp. 1900185-1900185, 2019.
[http://dx.doi.org/10.1002/admt.201900185]
[35]
M. Rogóż, H. Zeng, C. Xuan, D.S. Wiersma, and P. Wasylczyk, "Light-driven soft robot mimics caterpillar locomotion in natural scale", Adv. Opt. Mater., vol. 4, no. 11, pp. 1689-1694, 2016.
[http://dx.doi.org/10.1002/adom.201600503]
[36]
J.J. Luo, X.L. Wang, X.S. Hui, and H. Sun, "A steerable soft crawling robot based on shape memory alloy drive and its control method", C.N. Patent 113, 602, 372, 2021.
[37]
C.S. Bian, W.F. Bai, Z.C. Zhu, J. Ru, and H.L. Chen, "Research on actuating technology of IPMC-based biomimetic robotic fish", J. Unmanned Undersea Syst., vol. 27, pp. 149-156, 2019.
[38]
X.D. Wang, Z.H. Bo, G.G. Chen, L. Xu, and Z.Q. Zhang, "A 3D printing technology based pneumatic mimic looper soft robot.", C.N. Patent 111, 558, 932, 2020.
[39]
X. Liu, M. Song, Y. Fang, Y. Zhao, and C. Cao, "Worm‐inspired soft robots enable adaptable pipeline and tunnel inspection", Adv. Intell. Syst., vol. 4, no. 1, p. 2100128, 2022.
[http://dx.doi.org/10.1002/aisy.202100128]
[40]
Y. Xu, C.H. Xia, S.Y. Li, and S.C. Liu, "A high stowage rate bionic pneumatic soft worm robot", C.N. Patent 213, 616, 692, 2021.
[41]
G.G. Chen, W. Qiu, J.N. Ding, Z.Q. Zhang, and Y. Yang, "A bionic soft climbing robot for pollination and fruit thinning of fruit tree", C.N. Patent 112, 894, 844, 2022.
[42]
Y.H. Zhao, H. Zhao, and D.B. Tan, "Review of fluid drive methods for soft robots", Chin. Hydraul. Pneumat., vol. 45, pp. 135-145, 2021.
[43]
M.S. Xavier, A.J. Fleming, and Y.K. Yong, "Image-guided locomotion of a pneumatic-driven peristaltic soft robot", In 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO), Dali, China, 2019, pp. 2269-2274
[http://dx.doi.org/10.1109/ROBIO49542.2019.8961406]
[44]
Z. Tang, J. Lu, Z. Wang, G. Ma, W. Chen, and H. Feng, "Development of a new multi-cavity pneumatic-driven earthworm-like soft robot", Robotica, vol. 38, no. 12, pp. 2290-2304, 2020.
[http://dx.doi.org/10.1017/S0263574720000284]
[45]
M. Yu, W. Yang, Y. Yu, X. Cheng, and Z. Jiao, "A crawling soft robot driven by pneumatic foldable actuators based on miura-ori", Actuators, vol. 9, no. 2, p. 26, 2020.
[http://dx.doi.org/10.3390/act9020026]
[46]
W. Zhao, Y. Zhang, and N. Wang, "Development and performance analysis of pneumatic soft-bodied bionic actuator", Appl. Bionics Biomech., vol. 2021, pp. 1-13, 2021.
[http://dx.doi.org/10.1155/2021/6623059] [PMID: 33680074]
[47]
D.K. Liang, and Y.H. Chen, "N. Sun, Y. M. Wu, L. Q. Liu, and Y. C. Fang, “Overview of control methods for pneumatic artificial muscle-actuated robots", Control Decision, vol. 36, pp. 27-41, 2021.
[48]
B.B. Hu, G.Q. Jin, Z.J. Liu, and P.B. Wang, "A Multi-actuator Soft Robot Inspired by Young Tiger Beetle", In Proceedings of the 2018 13th World Congress on Intelligent Control and Automation, Changsha, China, 2018, pp. 383-388
[http://dx.doi.org/10.1109/WCICA.2018.8630720]
[49]
Z. Zhang, H.C. Shen, M. Sun, J.Q. Li, and H.P. Wu, "Pneumatic loadable crawling flexible robot", C.N. Patent 112, 720, 510, 2021.
[50]
M.T. Tolley, R.F. Shepherd, B. Mosadegh, R.J. Wood, and G.M. Whitesides, "Resilient, untethered soft robot", U.S. Patent 10, 689, 044, 2020.
[51]
H.G. Liao, B.Y. Zhang, H.X. Wang, and T.T. Zhang, "Self-Propelled Soft Robot Body", U.S. Patent 2020, 0221938, 2020.
[52]
J.B. Wang, Y.Q. Fei, C.Y. Liu, J.P. Liu, and W.M. Zhang, "A bionic soft tumbling robot", C.N. Patent 110, 774, 292, 2021.
[53]
R.Z. Xie, Y.H. Zhang, Y.S. Guan, and M.J. Li, "A pneumatic soft robot that imitates the climbing of an inchworm", C.N. Patent 207, 058, 581, 2018.
[54]
J. Wang, J. Min, Y. Fei, and W. Pang, "Study on nonlinear crawling locomotion of modular differential drive soft robot", Nonlinear Dyn., vol. 97, no. 2, pp. 1107-1123, 2019.
[http://dx.doi.org/10.1007/s11071-019-05035-0]
[55]
R.Z. Xie, Y.S. Guan, and M.J. Su, "A pneumatically adsorbed mimic looper soft climbing robot", C.N. Patent 210, 525, 133, 2020.
[56]
X.Q. Wang, Z.Y. Zhang, B. Liang, D.S. Meng, and S.T. Wang, "Pneumatically driven soft crawling robot and its manufacturing and control method", C.N. Patent 110, 270, 987, 2020.
[57]
H.C. Liu, "A pneumatic bionic soft crawling robot", C.N. Patent 108, 263, 504, 2018.
[58]
S. Liu, Design and control of a bionic quadruped soft robot., University of Technology of Inner Mongolia: Inner Mongolia, China, 2021.
[59]
J.Z. Ge, A.A. Calderón, L. Chang, and N.O. Pérez-Arancibia, "An earthworm-inspired friction-controlled soft robot capable of bidirectional locomotion", Bioinspir. Biomim., vol. 14, no. 3, p. 036004, 2019.
[http://dx.doi.org/10.1088/1748-3190/aae7bb] [PMID: 30523957]
[60]
B. George, R. Moritz, and M.F. Stoelen, Jellyfish Inspired Soft Robot Prototype Which Uses Circumferential Contraction for Jet Propulsion. Biomimetic and Biohybrid Systems., vol. 10384. Springer: Cham, Switzerland, 2017, pp. 61-72.
[http://dx.doi.org/10.1007/978-3-319-63537-8_6]
[61]
P.C. Jiao, H.P. Wang, and X.H. Ye, "A frog-like underwater soft robot based on chemical exergy reaction drive", C.N. Patent 112, 441, 204, 2021.
[62]
Z.Y. Wu, Y.L. Song, J.Y. He, and Z.F. Wu, "A pneumatic bionic soft pipeline robot", C.N. Patent 108, 443, 641, 2018.
[63]
P.C. Jiao, H.P. Wang, S. Yang, and Z.G. He, "A high speed soft robot based on chemical exergy reaction drive for imitation striped bass", C.N. Patent 111, 806, 662, 2021.
[64]
Z.G. He, S. Yang, H.P. Wang, and P.C. Jiao, "A worm-like crawling soft robot based on chemical exergy reaction drive", C.N. Patent 111, 806, 585, 2021.
[65]
C.D. Onal, X. Chen, G.M. Whitesides, and D. Rus, Soft Mobile Robots with On-Board Chemical Pressure Generation.Springer Tracts in Advanced Robotics, Robotics Research., vol. 100. Springer: Cham, Switzerland, 2016, pp. 525-540.
[66]
P.Y. Chen, C.Y. Wang, and J.J. Zhang, "A kind of pull-wire flexible bionic machine fish body", C.N. Patent 108, 557, 045, 2018.
[67]
X.T. Chen, C.Z. Yuan, and P. Stegagno, "A Cable-Driven Switching-Legged Inchworm Soft Robot: Design and Testing", In 2021 American Control Conference (ACC), LA, United States, 2021, pp. 2-7
[http://dx.doi.org/10.23919/ACC50511.2021.9482921]
[68]
L. Xie, J.H. Liu, and W.Z. Hong, "A turnable soft crawling robot", C.N. Patent 108, 313, 151, 2019.
[69]
Y. Jiang, X.C. Liu, H. Chen, W.J. Gong, Y. Lu, and W.D. Zhang, "Design and modeling of a biomimetic wire-driven soft robotic fish", In 2019 Chinese Automation Congress (CAC), Hangzhou, China, 2019, pp. 1778-1782
[http://dx.doi.org/10.1109/CAC48633.2019.8996663]
[70]
S. Qi, M. Yu, J. Fu, M. Zhu, Y.P. Xie, and W. Li, "Preparation of magnetorheological elastomers with programmable magneto-deformation", C.N. Patent 109, 818, 523, 2020.
[71]
B.H. Domac, H.A. Alshammari, N. Gunduz Akdogan, and O. Akdogan, "Development and characterization of magnetically actuated milli-swimmers by stereolithography", J. Magn. Magn. Mater., vol. 548, p. 168976, 2022.
[http://dx.doi.org/10.1016/j.jmmm.2021.168976]
[72]
F. Zhao, W. Rong, L. Wang, and L. Sun, "Magnetic actuated shape-memory helical microswimmers with programmable recovery behaviors", J. Bionics Eng., vol. 18, no. 4, pp. 799-811, 2021.
[http://dx.doi.org/10.1007/s42235-021-0063-6]
[73]
V.K. Venkiteswaran, L.F.P. Samaniego, J. Sikorski, and S. Misra, "Bio-inspired Terrestrial Motion of Magnetic Soft Millirobots", In International Conference on Robotics and Automation, vol. 4, 2021, pp. 1753-1759
[74]
T.L. You, H. Philamore, and F. Matsuno, "A Magneto-Active Elastomer Crawler with Peristaltic and Caterpillar Locomotion Patterns", Actuators, vol. 10, no. 4, p. 74, 2021.
[http://dx.doi.org/10.3390/act10040074]
[75]
M.W. Li, T.L. Zhang, H.B. Xiang, S.J. Wang, and X.P. Yang, "Swimming characteristics of soft robot with magnetoelastic material", In 2019 IEEE International Conference on Robotics and Biomimetics, Dali, China, 2019, pp. 636-641
[76]
K.E. Peyer, E.C. Siringil, L. Zhang, M. Suter, and B.J. Nelson, "Bacteria-Inspired Magnetic Polymer Composite Microrobots", Lecture Notes in Computer Science, Biomimetic and Biohybrid Systems. vol. 8064., Springer: Cham, Switzerland, 2013, pp. 216-227.
[http://dx.doi.org/10.1007/978-3-642-39802-5_19]
[77]
X. Yang, R. Tan, H. Lu, and Y. Shen, "Starfish inspired milli soft robot with omnidirectional adaptive locomotion ability", IEEE Robot. Autom. Lett., vol. 6, no. 2, pp. 3325-3332, 2021.
[http://dx.doi.org/10.1109/LRA.2021.3062823]
[78]
J. Zhang, and E. Diller, "Untethered miniature soft robots: modeling and design of a millimeter-scale swimming magnetic sheet", Soft Robot., vol. 5, no. 6, pp. 761-776, 2018.
[http://dx.doi.org/10.1089/soro.2017.0126] [PMID: 30256177]
[79]
Z.Y. Shi, Y.Y. Wang, and Y.Y. Zhang, "Biomimetic soft robot based on looper", C.N. Patent 210, 525, 084, 2020.
[80]
J. Li, G.Y. Xiao, Y.Y. Zhang, and G.Q. Lai, "Imitating an inchworm soft robot", C.N. Patent 214, 057, 751, 2021.
[81]
H. Lu, G. Yun, T. Cole, Y. Ouyang, H. Ren, J. Shu, Y. Zhang, S. Zhang, M.D. Dickey, W. Li, and S.Y. Tang, "Reversible underwater adhesion for soft robotic feet by leveraging electrochemically tunable liquid metal interfaces", ACS Appl. Mater. Interfaces, vol. 13, no. 31, pp. 37904-37914, 2021.
[http://dx.doi.org/10.1021/acsami.1c09776] [PMID: 34319083]
[82]
B. Su, X. Yang, C.Z. Yan, X. Li, and H.Z. Wu, "A 4D printing-based wheel-shaped mobile robot", C.N. Patent 112, 247, 975, 2022.
[83]
C. Wu, Z. Zhang, and W. Zheng, "A twisted and coiled polymer artificial muscles driven soft crawling robot based on enhanced antagonistic configuration", Machines, vol. 10, no. 2, p. 142, 2022.
[http://dx.doi.org/10.3390/machines10020142]
[84]
K.H. Cho, Y. Kim, S.Y. Yang, K. Kim, J.H. Park, H. Rodrigue, H. Moon, J.C. Koo, J. Nam, and H.R. Choi, "Artificial musculoskeletal actuation module driven by twisted and coiled soft actuators", Smart Mater. Struct., vol. 28, no. 12, p. 125010, 2019.
[http://dx.doi.org/10.1088/1361-665X/ab5155]
[85]
X. Tang, Y. Liu, K. Li, W. Chen, and J. Zhao, "Finite element and analytical models for twisted and coiled actuator", Mater. Res. Express, vol. 5, no. 1, p. 015701, 2018.
[http://dx.doi.org/10.1088/2053-1591/aa9f3d]
[86]
P. Zhao, B. Xu, Y. Zhang, B. Li, and H. Chen, "Study on the twisted and coiled polymer actuator with strain self-sensing ability", ACS Appl. Mater. Interfaces, vol. 12, no. 13, pp. 15716-15725, 2020.
[http://dx.doi.org/10.1021/acsami.0c01179] [PMID: 32141730]
[87]
X. Tang, K. Li, Y. Liu, D. Zhou, and J. Zhao, "A soft crawling robot driven by single twisted and coiled actuator", Sens. Actuators A Phys., vol. 291, pp. 80-86, 2019.
[http://dx.doi.org/10.1016/j.sna.2019.03.049]
[88]
D. Zhou, W. Zuo, X. Tang, J. Deng, and Y. Liu, "A multi-motion bionic soft hexapod robot driven by self-sensing controlled twisted artificial muscles", Bioinspir. Biomim., vol. 16, no. 4, p. 045003, 2021.
[http://dx.doi.org/10.1088/1748-3190/ac0121] [PMID: 33984843]
[89]
Z. Liu, R. Zhang, Y. Xiao, J. Li, W. Chang, D. Qian, and Z. Liu, "Somatosensitive film soft crawling robots driven by artificial muscle for load carrying and multi-terrain locomotion", Mater. Horiz., vol. 8, no. 6, pp. 1783-1794, 2021.
[http://dx.doi.org/10.1039/D1MH00457C] [PMID: 34846507]
[90]
Y.L. Zhang, Y.Q. Liu, D.D. Han, J.N. Ma, D. Wang, X.B. Li, and H.B. Sun, "Quantum‐confined‐superfluidics‐enabled moisture actuation based on unilaterally structured graphene oxide papers", Adv. Mater., vol. 31, no. 32, p. 1901585, 2019.
[http://dx.doi.org/10.1002/adma.201901585] [PMID: 31197895]
[91]
Q. Zhou, Preparation and photoresponse of flexible graphene-based bilayer composite films, University of Suzhou: Suzhou, China, 2018.
[92]
W. Wang, C. Xiang, Q. Zhu, W. Zhong, M. Li, K. Yan, and D. Wang, "Multistimulus responsive actuator with go and carbon nanotube/PDMS bilayer structure for flexible and smart devices", ACS Appl. Mater. Interfaces, vol. 10, no. 32, pp. 27215-27223, 2018.
[http://dx.doi.org/10.1021/acsami.8b08554] [PMID: 30036482]
[93]
D.D. Han, Y.Q. Liu, J.N. Ma, J.W. Mao, Z-D. Chen, Y-L. Zhang, and H-B. Sun, "Biomimetic graphene actuators enabled by multiresponse graphene oxide paper with pretailored reduction gradient", Adv. Mater. Technol., vol. 3, no. 12, p. 1800258, 2018.
[http://dx.doi.org/10.1002/admt.201800258]
[94]
K. Qi, and Y. Hu, "Preparation of paper-based graphene composite film and its intelligent deformation study", Hefei Gongye Daxue Xuebao. Ziran Kexueban, vol. 43, pp. 1045-1051, 2020. [Natural Science].
[95]
Y. Yang, M. Zhang, D. Li, and Y. Shen, "Graphene-based light-driven soft robot with snake-inspired concertina and serpentine locomotion", Adv. Mater. Technol., vol. 4, no. 1, p. 1800366, 2019.
[http://dx.doi.org/10.1002/admt.201800366]
[96]
C. Yin, and F.N. Wei, "A visible-light-driven jellyfish-like micro-swimming soft robot and its method", C.N. Patent 112, 623, 164, 2022.
[97]
X. Lv, L. Liu, Y. Liu, and J. Leng, "Dielectric elastomer energy harvesting: maximal converted energy, viscoelastic dissipation and a wave power generator", Smart Mater. Struct., vol. 24, no. 11, p. 115036, 2015.
[http://dx.doi.org/10.1088/0964-1726/24/11/115036]
[98]
M. Duduta, D.R. Clarke, and R.J. Wood, "A high speed soft robot based on dielectric elastomer actuators", In 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 2017, pp. 4346-4351
[http://dx.doi.org/10.1109/ICRA.2017.7989501]
[99]
E.F.M. Henke, S. Schlatter, and I.A. Anderson, "Soft dielectric elastomer oscillators driving bioinspired robots", Soft Robot., vol. 4, no. 4, pp. 353-366, 2017.
[http://dx.doi.org/10.1089/soro.2017.0022] [PMID: 29251566]
[100]
T.T. Lu, Q. Liu, and S.F. Xin, "Research progress of dielectric elastomers", Polym. Bull., vol. 10, pp. 10-18, 2018.
[101]
W.B. Li, W.M. Zhang, H.X. Zou, Z.K. Peng, and G. Meng, "A fast rolling soft robot driven by dielectric elastomer", IEEE/ASME Trans. Mechatron., vol. 23, no. 4, pp. 1630-1640, 2018.
[http://dx.doi.org/10.1109/TMECH.2018.2840688]
[102]
W.B. Li, W.M. Zhang, and X.Q. Li, "Design and experiment of an omnidirectional creeping soft robot driven by dielectric elastomer", In: Electroactive Polymer Actuators and Devices. (EAPAD), Denver, United States, 2018.
[103]
B. Luo, B.Y. Li, Y. Yu, M. Yu, J.Q. Ma, W.M. Yang, P.F. Wang, and Z.W. Jiao, "A jumping robot driven by a dielectric elastomer actuator", Machines, vol. 10, p. 2241, 2020.
[104]
L. Xu, H.Q. Chen, J. Zou, W.T. Dong, G.Y. Gu, L.M. Zhu, and X.Y. Zhu, "Bio-inspired annelid robot: a dielectric elastomer actuated soft robot", Bioinspir. Biomim., vol. 12, no. 2, p. 025003, 2017.
[http://dx.doi.org/10.1088/1748-3190/aa50a5] [PMID: 28141580]
[105]
G. Gu, J. Zou, R. Zhao, X. Zhao, and X. Zhu, "Soft wall-climbing robots", Sci. Robot., vol. 3, no. 25, p. eaat2874, 2018.
[http://dx.doi.org/10.1126/scirobotics.aat2874] [PMID: 33141690]
[106]
W. Sun, B. Li, F. Zhang, C. Fang, Y. Lu, X. Gao, C. Cao, G. Chen, C. Zhang, and Z.L. Wang, "TENG-Bot: Triboelectric nanogenerator powered soft robot made of uni-directional dielectric elastomer", Nano Energy, vol. 85, p. 106012, 2021.
[http://dx.doi.org/10.1016/j.nanoen.2021.106012]
[107]
C. Zhang, "Simulation Analysis of Bionic Robot Fish Based on MFC Materials", Math. Probl. Eng., vol. 2019, pp. 1-9, 2019.
[http://dx.doi.org/10.1155/2019/2720873]
[108]
A. Ming, T. Ichikawa, W. Zhao, and M. Shimojo, "Development of a sea snake-like underwater robot", In 2014 IEEE International Conference on Robotics and Biomimetics (ROBIO 2014), Bali, Indonesia, 2014, pp. 761-766
[http://dx.doi.org/10.1109/ROBIO.2014.7090423]
[109]
D. Chen, W.P. Shao, and C.Q. Xu, "Development of a Soft Robotic Fish with BCF Propulsion Using MFC Smart Materials", In: 2018 37th Chinese Control Conference (CCC)., Wuhan, China, 2018.
[http://dx.doi.org/10.23919/ChiCC.2018.8483392]
[110]
J.M. Boothby, T. Van Volkenburg, N.Q. Le, K. Ohiri, M. Hagedon, and Z. Xia, "Effects of network structure on the mechanical and thermal responses of liquid crystal elastomers", Multifunct.Mater., vol. 3, no. 1, p. 015002, 2020.
[http://dx.doi.org/10.1088/2399-7532/ab6d1e]
[111]
D. Yuan, Y.X. You, D.Q. Liu, and G.F. Zhou, "Liquid crystal elastomer film and its preparation method, driving method and application", C.N. Patent 111, 471, 198, 2020.
[112]
J.M. Boothby, J.C. Gagnon, E. McDowell, T. Van Volkenburg, L. Currano, and Z. Xia, "An untethered soft robot based on liquid crystal elastomers", Soft Robot., vol. 9, no. 1, pp. 154-162, 2022.
[http://dx.doi.org/10.1089/soro.2020.0135] [PMID: 33411636]
[113]
M. Wang, Z.W. Cheng, B. Zuo, X.M. Chen, S. Huang, and H. Yang, "Liquid crystal elastomer electric locomotives", ACS Macro Lett., vol. 9, no. 6, pp. 860-865, 2020.
[http://dx.doi.org/10.1021/acsmacrolett.0c00333] [PMID: 35648519109]
[114]
B. Kang, B. Qiao, C.J. Shi, and R.F. Liu, "Bionic underwater robots and bionic underwater robotic systems", C.N. Patent 211, 869, 657, 2020.
[115]
F. wang, X.N. Zhao, and Y.P. Zhao, "A snake-like soft poleclimbing robot based on IPMC flexible actuator", C.N. Patent 213,918, 299, 2021.
[116]
X.H. Wang, "A bionic scallop robot", C.N. Patent 214, 138, 902, 2021.
[117]
J. Najem, S.A. Sarles, B. Akle, and D.J. Leo, "Biomimetic jellyfish-inspired underwater vehicle actuated by ionic polymer metal composite actuators", Smart Mater. Struct., vol. 21, no. 9, p. 094026, 2012.
[http://dx.doi.org/10.1088/0964-1726/21/9/094026]