Screening of MMP-2 Inhibiting Phytoconstituents for the Development of Newer Pancreatic Cancer Treatment Modalities

Page: [304 - 313] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: Pancreatic cancer metastasis is characterized by a higher incidence of morbidity and mortality. The present study attempts to identify phytocomponents with the potential to inhibit the secretion of MMP-2 by pancreatic cancer cells and ascertain the efficacy of individual components.

Methods: Overall survival analysis carried out revealed reduced survival of patients with high MMP-2 expression. Data analysis from TCGA revealed increased MMP-2 expression in pancreatic cancer patients compared to adjacent normal tissues. The expression of MMP-2 was reported at different stages of pancreatic cancer (Stage I-IV). To understand the relevance of phytocomponents in binding to the catalytic site of MMP-2, molecular docking studies were performed to find the effectiveness based on Glide score/energy. To substantiate the in-silico analysis, the eight components were also tested in vitro for reducing the survival in PANC-1 cells at three different time points (24, 48, and 72 hours). Finally, zymography analysis was performed using the eight components in the PANC-1 conditioned media of treated cells to ascertain the enzymatic activity of MMP-2.

Results: The obtained results suggest plumbagin, emodin, and EGCG exert potential inhibition in PANC-1 cells, among other phytocomponents tested. Therefore, as assessed using computational studies, the binding ability of plumbagin, emodin, and EGCG can be interpreted as inhibiting effects on MMP-2 activities.

Conclusion: These compounds could find potential application in preventing the progression, sustenance, and metastasis of pancreatic cancer and need to be explored further using a pre-clinical model system in order to validate the efficacy, bioavailability, and safety.

Graphical Abstract

[1]
Rawla, P.; Sunkara, T.; Gaduputi, V. Epidemiology of pancreatic cancer: Global trends, etiology and risk factors. World J. Oncol., 2019, 10(1), 10-27.
[http://dx.doi.org/10.14740/wjon1166] [PMID: 30834048]
[2]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[3]
Zeng, S.; Pöttler, M.; Lan, B.; Grützmann, R.; Pilarsky, C.; Yang, H. Chemoresistance in pancreatic cancer. Int. J. Mol. Sci., 2019, 20(18), 4504.
[http://dx.doi.org/10.3390/ijms20184504] [PMID: 31514451]
[4]
Ayres Pereira, M.; Chio, I.I.C. Metastasis in pancreatic ductal adenocarcinoma: Current standing and methodologies. Genes, 2019, 11(1), 6.
[http://dx.doi.org/10.3390/genes11010006] [PMID: 31861620]
[5]
Juuti, A.; Lundin, J.; Nordling, S.; Louhimo, J.; Haglund, C. Epithelial MMP-2 expression correlates with worse prognosis in pancreatic cancer. Oncology, 2006, 71(1-2), 61-68.
[http://dx.doi.org/10.1159/000100988] [PMID: 17377415]
[6]
Niland, S.; Riscanevo, A.X.; Eble, J.A. Matrix metalloproteinases shape the tumor microenvironment in cancer progression. Int. J. Mol. Sci., 2021, 23(1), 146.
[http://dx.doi.org/10.3390/ijms23010146] [PMID: 35008569]
[7]
Łukaszewicz-Zając, M.; Gryko, M.; Pączek, S.; Szmitkowski, M,.; Kędra, B. Mroczko, B. Matrix metalloproteinase 2 (MMP-2) and its tissue inhibitor 2 (TIMP-2) in pancreatic cancer (PC). Oncotarget, 2019, 10(3), 395-403.
[8]
Tarazona, J.G.R.; Abdallah, E.A. Flores de, B.C.T.; Braun, A.C.; Camillo, C.M.C.; Marchi, F.A.; Ruano, A.P.C.; Chinen, L.T.D. Proteínas mir-203a-3p e MMP-2 são altamente expressas em células tumorais circulantes de pacientes com carcinoma pancreático. ABCD. Arq. Bras. Cir. Dig., 2021, 34(4)e1628
[http://dx.doi.org/10.1590/0102-672020210002e1628] [PMID: 35107490]
[9]
Periyasamy, L.; Muruganantham, B.; Park, W.Y.; Muthusami, S. Phyto-targeting the CEMIP expression as a strategy to prevent pancreatic cancer metastasis. Curr. Pharm. Des., 2022, 28(11), 922-946.
[http://dx.doi.org/10.2174/1381612828666220302153201] [PMID: 35236267]
[10]
Muthusami, S.; Prabakaran, D.S.; An, Z.; Yu, J.R.; Park, W.Y. EGCG suppresses fused toes homolog protein through p53 in cervical cancer cells. Mol. Biol. Rep., 2013, 40(10), 5587-5596.
[http://dx.doi.org/10.1007/s11033-013-2660-x] [PMID: 24065519]
[11]
Wei, R.; Penso, N.E.C.; Hackman, R.M.; Wang, Y.; Mackenzie, G.G. Epigallocatechin-3-Gallate (EGCG) suppresses pancreatic cancer cell growth, invasion, and migration partly through the inhibition of Akt pathway and epithelial–mesenchymal transition: Enhanced efficacy when combined with gemcitabine. Nutrients, 2019, 11(8), 1856.
[http://dx.doi.org/10.3390/nu11081856] [PMID: 31405071]
[12]
Sandur, S.K.; Ichikawa, H.; Sethi, G.; Ahn, K.S.; Aggarwal, B.B. Plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone) suppresses NF-kappaB activation and NF-kappaB-regulated gene products through modulation of p65 and IkappaBalpha kinase activation, leading to potentiation of apoptosis induced by cytokine and chemotherapeutic agents. J. Biol. Chem., 2006, 281(25), 17023-17033.
[http://dx.doi.org/10.1074/jbc.M601595200] [PMID: 16624823]
[13]
Hafeez, B.B.; Zhong, W.; Fischer, J.W.; Mustafa, A.; Shi, X.; Meske, L.; Hong, H.; Cai, W.; Havighurst, T.; Kim, K.; Verma, A.K. Plumbagin, a medicinal plant (Lumbago zeylanica)-derived 1,4-naphthoquinone, inhibits growth and metastasis of human prostate cancer PC-3M-luciferase cells in an orthotopic xenograft mouse model. Mol. Oncol., 2013, 7(3), 428-439.
[http://dx.doi.org/10.1016/j.molonc.2012.12.001] [PMID: 23273564]
[14]
Lou, C.; Zhang, F.; Yang, M.; Zhao, J.; Zeng, W.; Fang, X.; Zhang, Y.; Zhang, C.; Liang, W. Naringenin decreases invasiveness and metastasis by inhibiting TGF--induced epithelial to mesenchymal transition in pancreatic cancer cells. PLoS One, 2012, 7(12)e50956
[http://dx.doi.org/10.1371/journal.pone.0050956] [PMID: 23300530]
[15]
Wahab, A.; Gao, K.; Jia, C.; Zhang, F.; Tian, G.; Murtaza, G.; Chen, J. Significance of resveratrol in clinical management of chronic diseases. Molecules, 2017, 22(8), 1329.
[http://dx.doi.org/10.3390/molecules22081329] [PMID: 28820474]
[16]
Qin, T.; Cheng, L.; Xiao, Y.; Qian, W.; Li, J.; Wu, Z.; Wang, Z.; Xu, Q.; Duan, W.; Wong, L.; Wu, E.; Ma, Q.; Ma, J. NAF-1 inhibition by resveratrol suppresses cancer stem cell-like properties and the invasion of pancreatic cancer. Front. Oncol., 2020, 10, 1038.
[http://dx.doi.org/10.3389/fonc.2020.01038] [PMID: 32766132]
[17]
Erlund, I. Review of the flavonoids quercetin, hesperetin, and naringenin. Dietary sources, bioactivities, bioavailability, and epidemiology. Nutr. Res., 2004, 24(10), 851-874.
[http://dx.doi.org/10.1016/j.nutres.2004.07.005]
[18]
Choi, D.; Kim, C.L.; Kim, J.E.; Mo, J.S.; Jeong, H.S. Hesperetin inhibit EMT in TGF- treated podocyte by regulation of mTOR pathway. Biochem. Biophys. Res. Commun., 2020, 528(1), 154-159.
[http://dx.doi.org/10.1016/j.bbrc.2020.05.087] [PMID: 32451085]
[19]
Dong, X.; Fu, J.; Yin, X.; Cao, S.; Li, X.; Lin, L.; Ni, J. Emodin: A review of its pharmacology, toxicity and pharmacokinetics. Phytother. Res., 2016, 30(8), 1207-1218.
[http://dx.doi.org/10.1002/ptr.5631] [PMID: 27188216]
[20]
Liu, A.; Chen, H.; Wei, W.; Ye, S.; Liao, W.; Gong, J.; Jiang, Z.; Wang, L.; Lin, S. Antiproliferative and antimetastatic effects of emodin on human pancreatic cancer. Oncol. Rep., 2011, 26(1), 81-89.
[PMID: 21491088]
[21]
Lu, C.H.; Chen, W.T.; Hsieh, C.H.; Kuo, Y.Y.; Chao, C.Y. Thermal cycling-hyperthermia in combination with polyphenols, epigallocatechin gallate and chlorogenic acid, exerts synergistic anticancer effect against human pancreatic cancer PANC-1 cells. PLoS One, 2019, 14(5)e0217676
[http://dx.doi.org/10.1371/journal.pone.0217676] [PMID: 31150487]
[22]
Yang, H.; Said, A.M.; Huang, H.; Papa, A.P.D.; Jin, G.; Wu, S.; Ma, N.; Lan, L.; Shangguan, F.; Zhang, Q. Chlorogenic acid depresses cellular bioenergetics to suppress pancreatic carcinoma through modulating C‐MYC‐TFR1 axis. Phytother. Res., 2021, 35(4), 2200-2210.
[http://dx.doi.org/10.1002/ptr.6971] [PMID: 33258205]
[23]
He, C.; Wang, Z.; Shi, J. Pharmacological effects of icariin. Adv. Pharmacol., 2020, 87, 179-203.
[http://dx.doi.org/10.1016/bs.apha.2019.10.004] [PMID: 32089233]
[24]
Alhakamy, N.A. Development and evaluation of icariin-loaded PLGA-PEG nanoparticles for potentiation the proapoptotic activity in pancreatic cancer cells. AAPS PharmSciTech, 2021, 22(8), 252.
[http://dx.doi.org/10.1208/s12249-021-02111-w] [PMID: 34668089]
[25]
Tang, Z.; Kang, B.; Li, C.; Chen, T.; Zhang, Z. GEPIA2: An enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res., 2019, 47(W1), W556-W560.
[http://dx.doi.org/10.1093/nar/gkz430] [PMID: 31114875]
[26]
Chandrashekar, D.S.; Bashel, B.; Balasubramanya, S.A.H.; Creighton, C.J.; Ponce-Rodriguez, I.; Chakravarthi, B.V.S.K.; Varambally, S. UALCAN: A portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia, 2017, 19(8), 649-658.
[http://dx.doi.org/10.1016/j.neo.2017.05.002] [PMID: 28732212]
[27]
Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.; Mainz, D.T. Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem., 2006, 49(21), 6177-6196.
[http://dx.doi.org/10.1021/jm051256o] [PMID: 17034125]
[28]
Jiang, H.; Li, H. Prognostic values of tumoral MMP2 and MMP9 overexpression in breast cancer: A systematic review and meta-analysis. BMC Cancer, 2021, 21(1), 149.
[http://dx.doi.org/10.1186/s12885-021-07860-2] [PMID: 33568081]
[29]
Higuera, O.; Ghanem, I.; Nasimi, R.; Prieto, I.; Koren, L.; Feliu, J. Management of pancreatic cancer in the elderly. World J. Gastroenterol., 2016, 22(2), 764-775.
[http://dx.doi.org/10.3748/wjg.v22.i2.764] [PMID: 26811623]
[30]
Ye, Y.; Kuang, X.; Xie, Z.; Liang, L.; Zhang, Z.; Zhang, Y.; Ma, F.; Gao, Q.; Chang, R.; Lee, H.H.; Zhao, S.; Su, J.; Li, H.; Peng, J.; Chen, H.; Yin, M.; Peng, C.; Yang, N.; Wang, J.; Liu, J.; Liu, H.; Han, L.; Chen, X. Small-molecule MMP2/MMP9 inhibitor SB-3CT modulates tumor immune surveillance by regulating PD-L1. Genome Med., 2020, 12(1), 83.
[http://dx.doi.org/10.1186/s13073-020-00780-z] [PMID: 32988398]
[31]
Fazio, E.N.; Young, C.C.; Toma, J.; Levy, M.; Berger, K.R.; Johnson, C.L.; Mehmood, R.; Swan, P.; Chu, A.; Cregan, S.P.; Dilworth, F.J.; Howlett, C.J.; Pin, C.L. Activating transcription factor 3 promotes loss of the acinar cell phenotype in response to cerulein-induced pancreatitis in mice. Mol. Biol. Cell, 2017, 28(18), 2347-2359.
[http://dx.doi.org/10.1091/mbc.e17-04-0254] [PMID: 28701342]
[32]
Guenzle, J.; Wolf, L.J.; Garrelfs, N.W.C.; Goeldner, J.M.; Osterberg, N.; Schindler, C.R.; Saavedra, J.E.; Weyerbrock, A. ATF3 reduces migration capacity by regulation of matrix metalloproteinases via NFκB and STAT3 inhibition in glioblastoma. Cell Death Discov., 2017, 3(1), 17006.
[http://dx.doi.org/10.1038/cddiscovery.2017.6] [PMID: 28250971]
[33]
Cho, K.N.; Sukhthankar, M.; Lee, S.H.; Yoon, J.H.; Baek, S.J. Green tea catechin (-)-epicatechin gallate induces tumour suppressor protein ATF3 via EGR-1 activation. Eur. J. Cancer, 2007, 43(16), 2404-2412.
[http://dx.doi.org/10.1016/j.ejca.2007.07.020] [PMID: 17764926]
[34]
Hafeez, B.B.; Jamal, M.S.; Fischer, J.W.; Mustafa, A.; Verma, A.K. Plumbagin, a plant derived natural agent inhibits the growth of pancreatic cancer cells in in vitro and in vivo via targeting EGFR, Stat3 and NF-κB signaling pathways. Int. J. Cancer, 2012, 131(9), 2175-2186.
[http://dx.doi.org/10.1002/ijc.27478] [PMID: 22322442]
[35]
Lin, S.Z.; Wei, W.T.; Chen, H.; Chen, K.J.; Tong, H.F.; Wang, Z.H.; Ni, Z.L.; Liu, H.B.; Guo, H.C.; Liu, D.L. Antitumor activity of emodin against pancreatic cancer depends on its dual role: Promotion of apoptosis and suppression of angiogenesis. PLoS One, 2012, 7(8)e42146
[http://dx.doi.org/10.1371/journal.pone.0042146] [PMID: 22876305]
[36]
Song, K.; Lv, T.; Chen, Y.; Diao, Y.; Yao, Q.; Wang, Y. Emodin inhibits TGF-β2 by activating the FOXD3/miR 199a axis in ovarian cancer cells in vitro. Oncol. Rep., 2018, 39(5), 2063-2070.
[http://dx.doi.org/10.3892/or.2018.6301] [PMID: 29512773]
[37]
Panji, M.; Behmard, V.; Zare, Z.; Malekpour, M.; Nejadbiglari, H.; Yavari, S. Nayerpour dizaj, T.; Safaeian, A.; Maleki, N.; Abbasi, M.; Abazari, O.; Shabanzadeh, M.; Khanicheragh, P. Suppressing effects of green tea extract and Epigallocatechin-3-gallate (EGCG) on TGF--induced epithelial-to-mesenchymal transition via ROS/Smad signaling in human cervical cancer cells. Gene, 2021, 794145774
[http://dx.doi.org/10.1016/j.gene.2021.145774] [PMID: 34126197]
[38]
Slapak, E.J.; Duitman, J.; Tekin, C.; Bijlsma, M.F.; Spek, C.A. Matrix metalloproteases in pancreatic ductal adenocarcinoma: Key drivers of disease progression? Biology, 2020, 9(4), 80.
[http://dx.doi.org/10.3390/biology9040080] [PMID: 32325664]
[39]
Li, Y.; Song, T.; Chen, Z.; Wang, Y.; Zhang, J.; Wang, X. Pancreatic stellate cells activation and matrix metallopeptidase 2 expression correlate with lymph node metastasis in pancreatic carcinoma. Am. J. Med. Sci., 2019, 357(1), 16-22.
[http://dx.doi.org/10.1016/j.amjms.2018.10.001] [PMID: 30466735]