Chloroform Fraction of Drymaria cordata Linn (CFDC) Suppresses Estradiol Benzoate- Induced Endometrial Hyperplasia

Page: [1298 - 1308] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Background: The diagnosis of uterine dysfunction (endometrial hyperplasia) is on the rise. The available treatment is quite expensive and associated with some side effects. The therapeutic potential of natural products is now being explored, as they are easily available with little or no side effects. Drymaraia cordata is folklorically utilized in the treatment of diverse ailments including uterine fibroids.

Objectives: This study aims to investigate the potential therapeutic effect of chloroform fraction of methanol extract of Drymaria cordata (CFDC) in estradiol benzoate (EB)-induced endometrial hyperplasia.

Methods: Thirty-six rats were randomly divided equally into six groups. These included control group, CFDC: (100 mg/kg), CFDC: (200 mg/kg), EB: (2 mg/kg), EB + CFDC (100 mg/kg), and EB + CFDC (200 mg/kg). Endometrial hyperplasia (EH) was induced by intraperitoneal injection of EB. The levels of estrogen (E2), progesterone (PG), Follicle stimulating hormone (FSH), Luteinizing hormone (LH), Malondialdehyde (MDA), Superoxide dismutase (SOD), and Glutathione peroxidase (GSH-Px) activities were determined using ELISA technique. The uterine histological assessment and immunohistochemical expression levels of estrogen receptor, Ki-67, cytochrome c, and caspase 3 were carried out.

Results: EH was severely expressed in the uterine section of EB-treated rats. However, CFDC administration improved the pathological features of the animal model. The sex hormones levels were increased in the EB-treated group, which were significantly reduced by CFDC. The antioxidant indices were also restored by CFDC. Immunoexpression levels of ERα and Ki-67 were downregulated while cytochrome c and caspase 3 were upregulated by CFDC.

Conclusion: This study suggests that CFDC contains phytochemicals that can protect against EB-induced EH via modulation of hormonal signaling, apoptotic machinery, and oxidative indices.

Graphical Abstract

[1]
Nair, A.; Taylor, H. The mechanism of menstruation.In: Amenorrhea. Contemporary Endocrinology; Santoro, N.F.; Neal-Perry, G., Eds.; Humana Press: Totowa, 2010, pp. 21-34.
[2]
Palmer, J.E.; Perunovic, B.; Tidy, J.A. Endometrial hyperplasia. Obstet. Gynaecol., 2008, 10(4), 211-216.
[http://dx.doi.org/10.1576/toag.10.4.211.27436]
[3]
Lacey, J.V., Jr; Chia, V.M. Endometrial hyperplasia and the risk of progression to carcinoma. Maturitas, 2009, 63(1), 39-44.
[http://dx.doi.org/10.1016/j.maturitas.2009.02.005] [PMID: 19285814]
[4]
Parkash, V.; Fadare, O.; Tornos, C.; McCluggage, W.G. Committee Opinion No. 631: Endometrial intraepithelial neoplasia. Obstet. Gynecol., 2015, 126(4), 897.
[http://dx.doi.org/10.1097/AOG.0000000000001071] [PMID: 26393443]
[5]
Chandra, V.; Kim, J.J.; Benbrook, D.M.; Dwivedi, A.; Rai, R. Therapeutic options for management of endometrial hyperplasia. J. Gynecol. Oncol., 2016, 27(1), e8.
[http://dx.doi.org/10.3802/jgo.2016.27.e8] [PMID: 26463434]
[6]
Medh, R.D.; Thompson, E.B. Hormonal regulation of physiological cell turnover and apoptosis. Cell Tissue Res., 2000, 301(1), 101-124.
[http://dx.doi.org/10.1007/s004419900159] [PMID: 10928284]
[7]
Horne, F.M.; Blithe, D.L. Progesterone receptor modulators and the endometrium: Changes and consequences. Hum. Reprod. Update, 2007, 13(6), 567-580.
[http://dx.doi.org/10.1093/humupd/dmm023] [PMID: 17630398]
[8]
Deroo, B.J.; Korach, K.S. Estrogen receptors and human disease. J. Clin. Invest., 2006, 116(3), 561-570.
[http://dx.doi.org/10.1172/JCI27987] [PMID: 16511588]
[9]
Acconcia, F.; Marino, M. The effects of 17β-estradiol in cancer are mediated by estrogen receptor signaling at the plasma membrane. Front. Physiol., 2011, 2, 30.
[http://dx.doi.org/10.3389/fphys.2011.00030] [PMID: 21747767]
[10]
Skrzypczak, M.; Merx, I.; Schüler-Toprak, S.; Weber, F.; Inwald, E.C.; Ortmann, O.; Treeck, O. Molecular profiling of estrogen receptor α and progesterone receptor transcript variants in endometrial cancer. Steroids, 2015, 104, 122-128.
[http://dx.doi.org/10.1016/j.steroids.2015.09.004] [PMID: 26428028]
[11]
Dimitrakopoulos, F.I.; Kottorou, A.; Tzezou, A. Endocrine resistance and epigenetic reprogramming in estrogen receptor positive breast cancer. Cancer Lett., 2021, 517, 55-65.
[http://dx.doi.org/10.1016/j.canlet.2021.05.030] [PMID: 34077785]
[12]
Ozdegirmenci, O.; Kayikcioglu, F.; Bozkurt, U.; Akgul, M.A.; Haberal, A. Comparison of the efficacy of three progestins in the treatment of simple endometrial hyperplasia without atypia. Gynecol. Obstet. Invest., 2011, 72(1), 10-14.
[http://dx.doi.org/10.1159/000321390] [PMID: 21266792]
[13]
Daud, S.; Jalil, S.S.A.; Griffin, M.; Ewies, A.A.A. Endometrial hyperplasia - the dilemma of management remains: A retrospective obser-vational study of 280 women. Eur. J. Obstet. Gynecol. Reprod. Biol., 2011, 159(1), 172-175.
[http://dx.doi.org/10.1016/j.ejogrb.2011.06.023] [PMID: 21764501]
[14]
Nieman, K.M.; Romero, I.L.; Van Houten, B.; Lengyel, E. Adipose tissue and adipocytes support tumorigenesis and metastasis. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2013, 1831(10), 1533-1541.
[http://dx.doi.org/10.1016/j.bbalip.2013.02.010] [PMID: 23500888]
[15]
Zhang, Q.; Shen, Q.; Celestino, J.; Milam, M.R.; Westin, S.N.; Lacour, R.A.; Meyer, L.A.; Shipley, G.L.; Davies, P.J.A.; Deng, L.; McCampbell, A.S.; Broaddus, R.R.; Lu, K.H. Enhanced estrogen-induced proliferation in obese rat endometrium. Am. J. Obstet. Gynecol., 2009, 200(2), 186.e1-186.e8.
[http://dx.doi.org/10.1016/j.ajog.2008.08.064] [PMID: 19185100]
[16]
Deligdisch, L. Hormonal pathology of the endometrium. Mod. Pathol., 2000, 13(3), 285-294.
[http://dx.doi.org/10.1038/modpathol.3880050] [PMID: 10757339]
[17]
Silverberg, S.G. Problems in the differential diagnosis of endometrial hyperplasia and carcinoma. Mod. Pathol., 2000, 13(3), 309-327.
[http://dx.doi.org/10.1038/modpathol.3880053] [PMID: 10757341]
[18]
Gunin, A.G.; Mashin, I.N.; Zakharov, D.A. Proliferation, mitosis orientation and morphogenetic changes in the uterus of mice following chronic treatment with both estrogen and glucocorticoid hormones. J. Endocrinol., 2001, 169(1), 23-31.
[http://dx.doi.org/10.1677/joe.0.1690023] [PMID: 11250643]
[19]
Burns, K.A.; Korach, K.S. Estrogen receptors and human disease: An update. Arch. Toxicol., 2012, 86(10), 1491-1504.
[http://dx.doi.org/10.1007/s00204-012-0868-5] [PMID: 22648069]
[20]
Caldon, C.E. Estrogen signaling and the DNA damage response in hormone dependent breast cancers. Front. Oncol., 2014, 4, 106.
[http://dx.doi.org/10.3389/fonc.2014.00106] [PMID: 24860786]
[21]
Williamson, L.M.; Lees-Miller, S.P. Estrogen receptor α-mediated transcription induces cell cycle-dependent DNA double-strand breaks. Carcinogenesis, 2011, 32(3), 279-285.
[http://dx.doi.org/10.1093/carcin/bgq255] [PMID: 21112959]
[22]
Ashby, J.; Tinwell, H.; Soames, A.; Foster, J. Induction of hyperplasia and increased DNA content in the uterus of immature rats exposed to coumestrol. Environ. Health Perspect., 1999, 107(10), 819-822.
[http://dx.doi.org/10.1289/ehp.99107819] [PMID: 10504149]
[23]
Yager, J.D.; Davidson, N.E. Estrogen carcinogenesis in breast cancer. N. Engl. J. Med., 2006, 354(3), 270-282.
[http://dx.doi.org/10.1056/NEJMra050776] [PMID: 16421368]
[24]
El-Sharkawy, S.L.; Abbas, N.F.; El-Henawy, A.M.Y.; Badawi, M.A.E.M.; Yasseen, N.N. Morphometric and DNA image analysis of en-dometrial hyperplasia and carcinoma. Appl. Immunohistochem. Mol. Morphol., 2017, 25(1), 32-38.
[http://dx.doi.org/10.1097/PAI.0000000000000259] [PMID: 26469331]
[25]
Lumachi, F.; Luisetto, G.; Basso, S.M.; Basso, U.; Brunello, A.; Camozzi, V. Endocrine therapy of breast cancer. Curr. Med. Chem., 2011, 18(4), 513-522.
[http://dx.doi.org/10.2174/092986711794480177] [PMID: 21143113]
[26]
Omar, M.; Laknaur, A.; Al-Hendy, A.; Yang, Q. Myometrial progesterone hyper-responsiveness associated with increased risk of human uterine fibroids. BMC Womens Health, 2019, 19(1), 92.
[http://dx.doi.org/10.1186/s12905-019-0795-1] [PMID: 31288815]
[27]
Magon, N.; Kumar, P. Hormones in pregnancy. Niger. Med. J., 2012, 53(4), 179-183.
[http://dx.doi.org/10.4103/0300-1652.107549] [PMID: 23661874]
[28]
Arab, H.; Alharbi, A.; Oraif, A.; Sagr, E.; Al Madani, H.; Abduljabbar, H.; Bajouh, O.S.; Faden, Y.; Sabr, Y. The role of progestogens in threatened and idiopathic recurrent miscarriage. Int. J. Womens Health, 2019, 11, 589-596.
[http://dx.doi.org/10.2147/IJWH.S224159] [PMID: 31807086]
[29]
Rein, M.S.; Barbieri, R.L.; Friedman, A.J. Progesterone: A critical role in the pathogenesis of uterine myomas. Am. J. Obstet. Gynecol., 1995, 172(1), 14-18.
[http://dx.doi.org/10.1016/0002-9378(95)90077-2] [PMID: 7847524]
[30]
William, J. Endometrial hyperplasia and apoptosis following neonatal diethylstilbestrol exposure and subsequent estrogen stimulation in both host and transplanted hamster. Cancer Res., 1997, 57, 1903-1908.
[PMID: 9157983]
[31]
Chuang, T.D.; Khorram, O. Regulation of cell cycle regulatory proteins by micro RNAs in uterine leiomyoma. Reprod. Sci., 2019, 26(2), 250-258.
[http://dx.doi.org/10.1177/1933719118768692] [PMID: 29642801]
[32]
Rubio, N.; España, L.; Fernández, Y.; Blanco, J.; Sierra, A. Metastatic behavior of human breast carcinomas overexpressing the Bcl-x(L) gene: A role in dormancy and organospecificity. Lab. Invest., 2001, 81(5), 725-734.
[http://dx.doi.org/10.1038/labinvest.3780281] [PMID: 11351044]
[33]
Kastratović, T.; Arsenijević, S.; Matović, Z.; Mitrović, M.; Nikolić, I.; Milosavljević, Z.; Protrka, Z.; Šorak, M.; Đurić, J. Methotrexate and myotrexate induce apoptosis in human myoma fibroblasts (T hES cell line) via mitochondrial pathway. Acta Pol. Pharm., 2015, 72(3), 455-464.
[PMID: 26642654]
[34]
Sreevalsan, S.; Safe, S. Reactive oxygen species and colorectal cancer. Curr. Colorectal Cancer Rep., 2013, 9(4), 350-357.
[http://dx.doi.org/10.1007/s11888-013-0190-5] [PMID: 25584043]
[35]
Marinescu, S.; Anghel, R.; Gruia, M.I.; Beuran, M. Involvement of reactive oxygen species in the mechanisms associated with cervical cancer specific treatment. Chirurgia, 2014, 109(6), 806-811.
[PMID: 25560505]
[36]
Chiou, J.F.; Hu, M.L. Elevated lipid peroxidation and disturbed antioxidant enzyme activities in plasma and erythrocytes of patients with uterine cervicitis and myoma. Clin. Biochem., 1999, 32(3), 189-192.
[http://dx.doi.org/10.1016/S0009-9120(98)00110-6] [PMID: 10383079]
[37]
Thyagarajan, A.; Sahu, R.P. Potential contributions of antioxidants to cancer therapy: Immunomodulation and radiosensitization. Integr. Cancer Ther., 2018, 17(2), 210-216.
[http://dx.doi.org/10.1177/1534735416681639] [PMID: 28627256]
[38]
Raffoul, J.J.; Banerjee, S.; Che, M.; Knoll, Z.E.; Doerge, D.R.; Abrams, J.; Kucuk, O.; Sarkar, F.H.; Hillman, G.G. Soy isoflavones enhance radiotherapy in a metastatic prostate cancer model. Int. J. Cancer, 2007, 120(11), 2491-2498.
[http://dx.doi.org/10.1002/ijc.22548] [PMID: 17304503]
[39]
Yasueda, A.; Urushima, H.; Ito, T. Efficacy and interaction of antioxidant supplements as adjuvant therapy in cancer treatment: A system-atic review. Integr. Cancer Ther., 2016, 15(1), 17-39.
[http://dx.doi.org/10.1177/1534735415610427] [PMID: 26503419]
[40]
Singh-Gupta, V.; Joiner, M.C.; Runyan, L.; Yunker, C.K.; Sarkar, F.H.; Miller, S.; Gadgeel, S.M.; Konski, A.A.; Hillman, G.G. Soy isofla-vones augment radiation effect by inhibiting APE1/Ref-1 DNA repair activity in non-small cell lung cancer. J. Thorac. Oncol., 2011, 6(4), 688-698.
[http://dx.doi.org/10.1097/JTO.0b013e31821034ae] [PMID: 21325978]
[41]
Tak, J.K.; Lee, J.H.; Park, J.W. Resveratrol and piperine enhance radiosensitivity of tumor cells. BMB Rep., 2012, 45(4), 242-246.
[http://dx.doi.org/10.5483/BMBRep.2012.45.4.242] [PMID: 22531135]
[42]
Mut-Salud, N.; Álvarez, P.J.; Garrido, J.M.; Carrasco, E.; Aránega, A.; Rodríguez-Serrano, F. Antioxidant intake and antitumor therapy: Toward nutritional recommendations for optimal results. Oxid. Med. Cell. Longev., 2016, 2016, 1-19.
[http://dx.doi.org/10.1155/2016/6719534] [PMID: 26682013]
[43]
de Martel, C.; Ferlay, J.; Franceschi, S.; Vignat, J.; Bray, F.; Forman, D.; Plummer, M. Global burden of cancers attributable to infections in 2008: A review and synthetic analysis. Lancet Oncol., 2012, 13(6), 607-615.
[http://dx.doi.org/10.1016/S1470-2045(12)70137-7] [PMID: 22575588]
[44]
Yajid, A.I.; Ab Rahman, H.S.; Pak Kai, M.W.; Wan Zain, W.Z. Potential benefits of Annona muricata in combating cancer: A review. Malays. J. Med. Sci., 2018, 25(1), 5-15.
[http://dx.doi.org/10.21315/mjms2018.25.1.2] [PMID: 29599630]
[45]
Bulun, S.E. Uterine Fibroids. N. Engl. J. Med., 2013, 369(14), 1344-1355.
[http://dx.doi.org/10.1056/NEJMra1209993] [PMID: 24088094]
[46]
Yong, Y.K.; Tan, J.J.; The, S.S.; Mah, S.H.; Ee, G.C.L.; Chiong, H.S.; Ahmad, Z. Clinacanthus nutans extracts are antioxidant with antipro-liferative efect on cultured human cancer cell lines. Evid-Based Compl Alt., 2013, (462751), 1-8.
[47]
Deng, S.; Shanmugam, M.K.; Kumar, A.P.; Yap, C.T.; Sethi, G.; Bishayee, A. Targeting autophagy using natural compounds for cancer prevention and therapy. Cancer, 2019, 125(8), 1228-1246.
[http://dx.doi.org/10.1002/cncr.31978] [PMID: 30748003]
[48]
Olowofolahan, A.O.; Olorunsogo, O.O. Effect of Gloriosa superba linn (EEGS) on mPT and monosodium glutamate-induced proliferative disorder using rat model. J. Ethnopharmacol., 2021, 267, 113498.
[http://dx.doi.org/10.1016/j.jep.2020.113498] [PMID: 33091496]
[49]
Olowofolahan, A.O.; Olorunsogo, O.O. Fractions of Ageratum conyzoides L. (Compositae) induce mitochondrial-mediated apoptosis in rats: Possible option in monosodium glutamate-induced hepatic and uterine pathological disorder. J. Ethnopharmacol., 2021, 277, 114192. b
[http://dx.doi.org/10.1016/j.jep.2021.114192] [PMID: 33974943]
[50]
Mishra, S.; Ahmad, S.; Kumar, N.; Sharma, B.K. Annona muricata (the cancer killer): A review. Glob J Pharma Res, 2013, 2, 1613-1618.
[51]
Burkill, H.M. The Useful Plants of West Tropical Africa 2nd Edition; Royal Botanic Gardens, Kew, 1985, 1, p. 343.
[52]
Mukherjee, P.K.; Saha, K.; Bhattacharya, S.; Giri, S.N.; Pal, M.; Saha, B.P. Studies on antitussive activity of Drymaria cordata Willd. (Car-yophyllaceae). J. Ethnopharmacol., 1997, 56(1), 77-80.
[http://dx.doi.org/10.1016/S0378-8741(97)01512-2] [PMID: 9147257]
[53]
Mukherjee, P.K.; Bhattacharya, S.; Saha, K.; Giri, S.N.; Pal, M.; Saha, B.P. Antibacterial evaluation of Drymaria cordata willd.(Fam. Cary-ophyllaceae) extract. Phytother. Res., 1998, 11, 249-250.
[54]
Adeyemi, O.O.; Akindele, A.J.; Ndubuisi, N. Anti-inflammatory activity of Drymaria cordata extract. J. Nat. Rem., 2008, 8(1), 93-100.
[55]
Barua, C.C.; Roy, J.D.; Buragohain, B.; Barua, A.G.; Borah, P.; Lahkar, M. Anxiolytic effect of hydroethanolic extract of Drymaria cordata L Willd. Indian J. Exp. Biol., 2009, 47(12), 969-973.
[PMID: 20329700]
[56]
Sowemimo, A.; van de Venter, M.; Baatjies, L.; Koekemoer, T. Cytotoxic activity of selected Nigerian plants. Afr. J. Tradit. Complement. Altern. Med., 2009, 6(4), 526-528.
[PMID: 20606772]
[57]
Akindele, A.J.; Ibe, I.F.; Adeyemi, O.O. Analgesic and Antipyretic activities of Drymaria cordata (Linn.) Willd. Afr. J. Tradit. Complement. Altern. Med., 2012, 9(1), 25-35.
[PMID: 23983316]
[58]
Olowofolahan, A.O.; Adeoye, O.A.; Offor, G.N.; Adebisi, L.A.; Olorunsogo, O.O. Induction of mitochondrial membrane permeability transition pore opening and cytochrome C release by fractions of Drymaria cordata. Arch. Basic Appl. Med., 2015, 3, 135-144.
[59]
Olowofolahan, A.O.; Olorunsogo, O.O. Induction of apoptosis in rat liver cells via caspase activation by chloroform fraction of methanol extract of Drymaria cordata. European J. Biomed. Pharm. Sci., 2018, 5(4), 73-83.
[60]
Olowofolahan, A.; Aina, O.; Hassan, E.; Olorunsogo, O. Ameliorative potentials of methanol extract and chloroform fraction of Drymaria cordata on MSG-induced uterine hyperplasia in female wistar rats. European J. Med. Plants, 2017, 20(4), 1-9.
[http://dx.doi.org/10.9734/EJMP/2017/36335]
[61]
Huang, H.C.; Tsai, W.J.; Liaw, C.C.; Wu, S.H.; Wu, Y.C.; Kuo, Y.H. Anti-platelet aggregation triterpene saponins from the galls of Sapin-dus mukorossi. Chem. Pharm. Bull., 2007, 55(9), 1412-1415.
[http://dx.doi.org/10.1248/cpb.55.1412] [PMID: 17827775]
[62]
Solomon, T.; Largesse, Z.; Mekbeb, A.; Eyasu, M.; Asfaw, D. Effect of Rumex steudelii methanolic root extract on ovarian folliculogene-sis and uterine histology in female albino rats. Afr. Health Sci., 2010, 10(4), 353-361.
[PMID: 21416037]
[63]
Reitman, S.; Frankel, S. A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am. J. Clin. Pathol., 1957, 28(1), 56-63.
[http://dx.doi.org/10.1093/ajcp/28.1.56] [PMID: 13458125]
[64]
Sbrana, E.; Newman, P.C.; Popov, V.L.; Xiao, S-Y.; Tesh, R.B.; Mateo, R. Clinical laboratory, virologic, and pathologic changes in ham-sters experimentally infected with Pirital virus (Arenaviridae): A rodent model of Lassa fever. Am. J. Trop. Med. Hyg., 2006, 74(6), 1096-1102.
[http://dx.doi.org/10.4269/ajtmh.2006.74.1096] [PMID: 16760527]
[65]
Olowofolahan, A.O.; Oyebode, O.T.; Olorunsogo, O.O. Methyl palmitate reversed estradiol benzoate-induced endometrial hyperplasia in female rats. Toxicol. Mech. Methods, 2021, 31(1), 43-52. a
[http://dx.doi.org/10.1080/15376516.2020.1827329] [PMID: 32967526]
[66]
Olowofolahan, A.O.; Olanlokun, J.O.; Olorunsogo, O.O. GCMS analysis and phytoprotective effect of chloroform fraction of methanol leaf extract of Drymaria cordata against MSG-induced lesions in specific tissues. Afr. J. Med. Med. Sci., 2020, 49, 409-419. [b]
[67]
You, Z.; Sun, J.; Xie, F.; Chen, Z.; Zhang, S.; Chen, H.; Liu, F.; Li, L.; Chen, G.; Song, Y.; Xuan, Y.; Zheng, G.; Xin, Y. Modulatory effect of fermented papaya extracts on mammary gland hyperplasia induced by estrogen and progestin in female rats. Oxid. Med. Cell. Longev., 2017, 2017, 1-11.
[http://dx.doi.org/10.1155/2017/8235069] [PMID: 29359010]
[68]
Ngokere, A.A.; Ezeofor, C.P.; Okoye, J.O.; Ibekailo, S.N.; Ude, T.; Awalu, C.J.; Amadi, M.S. Antiprogesteronic and estrogenic effect of Mangifera Indica. J. Pharmacol. Toxicol, 2014, 9(2), 82-89.
[http://dx.doi.org/10.3923/jpt.2014.82.89]
[69]
Das Gupta, S.; So, J.Y.; Wall, B.; Wahler, J.; Smolarek, A.K.; Sae-tan, S.; Soewono, K.Y.; Yu, H.; Lee, M.J.; Thomas, P.E.; Yang, C.S.; Suh, N. Tocopherols inhibit oxidative and nitrosative stress in estrogen-induced early mammary hyperplasia in ACI rats. Mol. Carcinog., 2015, 54(9), 916-925.
[http://dx.doi.org/10.1002/mc.22164] [PMID: 24782330]
[70]
Chen, T.; Li, J.; Chen, J.; Yang, C. Anti-hyperplasia effects of Rosa rugosa polyphenols in rats with hyperplasia of mammary gland. Environ. Toxicol. Pharmacol., 2015, 39(2), 990-996.
[http://dx.doi.org/10.1016/j.etap.2015.02.014]
[71]
Weroha, S.J.; Li, S.A.; Tawfik, O.; Li, J.J. Overexpression of cyclins D1 and D3 during estrogen-induced breast oncogenesis in female ACI rats. Carcinogenesis, 2006, 27(3), 491-498.
[http://dx.doi.org/10.1093/carcin/bgi278] [PMID: 16311245]
[72]
Singh, K.P.; Treas, J.; Tyagi, T.; Gao, W. DNA demethylation by 5-aza-2-deoxycytidine treatment abrogates 17 beta-estradiol-induced cell growth and restores expression of DNA repair genes in human breast cancer cells. Cancer Lett., 2012, 316(1), 62-69.
[http://dx.doi.org/10.1016/j.canlet.2011.10.022] [PMID: 22082530]
[73]
Islam, M.S.; Protic, O.; Stortoni, P.; Grechi, G.; Lamanna, P.; Petraglia, F.; Castellucci, M.; Ciarmela, P. Complex networks of multiple factors in the pathogenesis of uterine leiomyoma. Fertil. Steril., 2013, 100(1), 178-193.
[http://dx.doi.org/10.1016/j.fertnstert.2013.03.007] [PMID: 23557758]
[74]
Rizzello, A.; Franck, J.; Pellegrino, M.; Nuccio, F.; Simeone, P.; Fiore, G.; Tommaso, S.; Malvasi, A.; Tinelli, A.; Fournier, I.; Salzet, M.; Maffia, M.; Vergara, D. A proteomic analysis of human uterine myoma. Curr. Protein Pept. Sci., 2016, 18(2), 167-174.
[http://dx.doi.org/10.2174/1389203717666160322150603] [PMID: 27001059]
[75]
Xu, Q.; Chen, C.; Liu, B.; Lin, Y.; Zheng, P.; Zhou, D.; Xie, Y.; Lin, Y.; Guo, C.; Liu, J.; Li, L. Association of iRhom1 and iRhom2 ex-pression with prognosis in patients with cervical cancer and possible signaling pathways. Oncol. Rep., 2020, 43(1), 41-54.
[PMID: 31661139]
[76]
Li, X.; Pishdari, B.; Cui, P.; Hu, M.; Yang, H.P.; Guo, Y.R.; Jiang, H.Y.; Feng, Y.; Billig, H.; Shao, R. Regulation of androgen receptor ex-pression alters AMPK phosphorylation in the endometrium: In vivo and in vitro studies in women with polycystic ovary syndrome. Int. J. Biol. Sci., 2015, 11(12), 1376-1389.
[http://dx.doi.org/10.7150/ijbs.13109] [PMID: 26681917]
[77]
Hu, M.; Zhang, Y.; Feng, J.; Xu, X.; Zhang, J.; Zhao, W.; Guo, X.; Li, J.; Vestin, E.; Cui, P.; Li, X.; Wu, X.; Brännström, M.; Shao, L.R.; Billig, H. Uterine progesterone signaling is a target for metformin therapy in PCOS-like rats. J. Endocrinol., 2018, 237(2), 123-137.
[http://dx.doi.org/10.1530/JOE-18-0086] [PMID: 29535146]
[78]
Olowofolahan, A.O.; Tobih, S.E.; Olorunsogo, O.O. Amelioration of oestradiol valerate-induced endometrial hyperplasia in female rats by methanol fraction of Mangifera indica Linn via modulation of estrogen receptor signaling pathway. Indian J. Physiol. Pharmacol., 2021, 2021(65), 2.
[79]
Strubbe-Rivera, J.O.; Schrad, J.R.; Pavlov, E.V.; Conway, J.F.; Parent, K.N.; Bazil, J.N. The mitochondrial permeability transition phenom-enon elucidated by cryo-EM reveals the genuine impact of calcium overload on mitochondrial structure and function. Sci. Rep., 2021, 11(1), 1037.
[http://dx.doi.org/10.1038/s41598-020-80398-8] [PMID: 33441863]
[80]
Green, D.R.; Walczak, H. Apoptosis therapy: Driving cancers down the road to ruin. Nat. Med., 2013, 19(2), 131-133.
[http://dx.doi.org/10.1038/nm.3076] [PMID: 23389605]
[81]
Wu, H.; Medeiros, L.J.; Young, K.H. Apoptosis signaling and BCL-2 pathways provide opportunities for novel targeted therapeutic strate-gies in hematologic malignances. Blood Rev., 2018, 32(1), 8-28.
[http://dx.doi.org/10.1016/j.blre.2017.08.004] [PMID: 28802908]
[82]
Sermakkani, M.; Thangapandian, V. GC-MS analysis of Cassia italic leaf methanol extract. Asian J. Pharm. Clin. Res., 2012, 5, 90-94.
[83]
Gomathi, D.; Kalaiselvi, M.; Ravikumar, G.; Devaki, K.; Uma, C. GC-MS analysis of bioactive compounds from the whole plant ethanolic extract of Evolvulus alsinoides (L.). J. Food Sci. Technol., 2015, 52(2), 1212-1217.
[http://dx.doi.org/10.1007/s13197-013-1105-9] [PMID: 25694742]
[84]
Vijisaral, E.D.; Subramanian, A. GC-MS analysis of ethanol extract of Cyperus rotundus leaves. Int. J. Curr. Biotechnol., 2014, 2, 19-23.
[85]
Dandekar, R.; Fegade, B.; Bhaskar, V.H. GC-MS analysis of phytoconstituents in alcohol extract of Epiphyllum oxipetalum leaves. J. Pharmacogn. Phytochem., 2015, 4, 149-154.
[86]
Rajab, M.; Cantrell, C.; Franzblau, S.; Fischer, N. Antimycobacterial activity of (E)-phytol and derivatives: A preliminary structure-activity study. Planta Med., 1998, 64(1), 2-4.
[http://dx.doi.org/10.1055/s-2006-957354] [PMID: 9491760]
[87]
Rajeswari, G.; Murugan, M.; Mohan, V.R. GC-MS analysis of bioactive components of Hugonia mystax L (Linaceae). Res. J. Pharm. Biol. Chem. Sci., 2012, 3, 301-308.
[88]
Saikia, D.; Parihar, S.; Chanda, D.; Ojha, S.; Kumar, J.K.; Chanotiya, C.S.; Shanker, K.; Negi, A.S. Antitubercular potential of some sem-isynthetic analogues of phytol. Bioorg. Med. Chem. Lett., 2010, 20(2), 508-512.
[http://dx.doi.org/10.1016/j.bmcl.2009.11.107] [PMID: 20004575]
[89]
Ryu, K.R.; Choi, J.Y.; Chung, S.; Kim, D.H. Anti-scratching behavioral effect of the essential oil and phytol isolated from Artemisia prin-ceps Pamp. in mice. Planta Med., 2011, 77(1), 22-26.
[http://dx.doi.org/10.1055/s-0030-1250119] [PMID: 20645242]