Extracellular Vesicles Derived from Plasmodium-infected Hosts as Stimuli of “Trained” Innate Immunity

Page: [4450 - 4465] Pages: 16

  • * (Excluding Mailing and Handling)

Abstract

Although the burden of malaria has been successfully controlled globally, this disease remains a major public health issue. To date, neither existing drugs nor vaccines against malaria are sufficient in eliminating malaria worldwide. To achieve the eradication of malaria by 2040, effective interventions targeting all Plasmodium species are urgently needed. As the cornerstone of vaccine design, immune memory serves a significant role in the host's defense against Plasmodium infections. It has long been considered that innate immunity is non-specific and lacks immunologic memory. However, emerging evidence has suggested that innate immunity can be trained following exposure of the body to infectious agents, such as Plasmodium or its products, which, in turn, promotes the onset of a type of memory in innate immune cells. The above “trained” innate immune cells, whose phenotype is modified in response to epigenetic modifications, metabolic recombination, or cytokine secretion, exhibit differential pathophysiology after the exposure of the body to a pathogen. In addition, Plasmodium-infected red blood cells and other host cells can secrete exosomes that contain conserved parasite-specific information, such as proteins, RNA, non-coding RNA molecules, and nucleic acids. These molecules can act as stimuli for promoting the establishment of “trained” innate immunity against malaria, thereby altering the onset and progression of the parasitic disease. A deeper understanding of the role of exosomes in the development of “trained” innate immunity during Plasmodium infection could provide novel therapeutic and prevention strategies against malaria infections.

[1]
World Health Organization. World malaria report., 2020. Available from: http://www.who.int/teams/global-malaria- programme/reports/world-malaria-report-2021
[2]
Ashley, E.A.; Poespoprodjo, J.R. Treatment and prevention of malaria in children. Lancet Child Adolesc. Health, 2020, 4(10), 775-789.
[http://dx.doi.org/10.1016/S2352-4642(20)30127-9] [PMID: 32946831]
[3]
Bruneel, F. Human cerebral malaria: 2019 mini review. Rev. Neurol. (Paris), 2019, 175(7-8), 445-450.
[http://dx.doi.org/10.1016/j.neurol.2019.07.008] [PMID: 31375284]
[4]
Luzolo, A.L.; Ngoyi, D.M. Cerebral malaria. Brain Res. Bull., 2019, 145, 53-58.
[http://dx.doi.org/10.1016/j.brainresbull.2019.01.010] [PMID: 30658131]
[5]
Postels, D.G.; Birbeck, G.L. Cerebral malaria. Handb. Clin. Neurol., 2013, 114, 91-102.
[http://dx.doi.org/10.1016/B978-0-444-53490-3.00006-6] [PMID: 23829902]
[6]
Sibley, C.H. Tracking artemisinin resistance in Plasmodium falciparum. Lancet Infect. Dis., 2013, 13(12), 999-1000.
[http://dx.doi.org/10.1016/S1473-3099(13)70260-3] [PMID: 24035557]
[7]
Balikagala, B.; Fukuda, N.; Ikeda, M.; Katuro, O.T.; Tachibana, S.I.; Yamauchi, M.; Opio, W.; Emoto, S.; Anywar, D.A.; Kimura, E.; Palacpac, N.M.Q.; Odongo-Aginya, E.I.; Ogwang, M.; Horii, T.; Mita, T. Evidence of artemisinin-resistant malaria in Africa. N. Engl. J. Med., 2021, 385(13), 1163-1171.
[http://dx.doi.org/10.1056/NEJMoa2101746] [PMID: 34551228]
[8]
Frimpong, A.; Kusi, K.A.; Ofori, M.F. Novel strategies for malaria vaccine design. Front. Immunol., 2018, 9, 2769.
[http://dx.doi.org/10.3389/fimmu.2018.02769]
[9]
Montes de Oca, M.; Good, M.F.; McCarthy, J.S.; Engwerda, C.R. The impact of established immunoregulatory networks on vaccine efficacy and the development of immunity to malaria. J. Immunol., 2016, 197(12), 4518-4526.
[http://dx.doi.org/10.4049/jimmunol.1600619] [PMID: 27913644]
[10]
Engwerda, C.R.; Ng, S.S.; Bunn, P.T. The regulation of CD4(+) T cell responses during protozoan infections. Front Immunol, 2014, 5, 498.
[http://dx.doi.org/10.3389/fimmu.2014.00498]
[11]
Zak, D.E.; Aderem, A. Systems integration of innate and adaptive immunity. Vaccine, 2015, 33(40), 5241-5248.
[http://dx.doi.org/10.1016/j.vaccine.2015.05.098] [PMID: 26102534]
[12]
Obermoser, G.; Presnell, S.; Domico, K.; Xu, H.; Wang, Y.; Anguiano, E.; Thompson-Snipes, L.; Ranganathan, R.; Zeitner, B.; Bjork, A.; Anderson, D.; Speake, C.; Ruchaud, E.; Skinner, J.; Alsina, L.; Sharma, M.; Dutartre, H.; Cepika, A.; Israelsson, E.; Nguyen, P.; Nguyen, Q.A.; Harrod, A.C.; Zurawski, S.M.; Pascual, V.; Ueno, H.; Nepom, G.T.; Quinn, C.; Blankenship, D.; Palucka, K.; Banchereau, J.; Chaussabel, D. Systems scale interactive exploration reveals quantitative and qualitative differences in response to influenza and pneumococcal vaccines. Immunity, 2013, 38(4), 831-844.
[http://dx.doi.org/10.1016/j.immuni.2012.12.008] [PMID: 23601689]
[13]
Li, S.; Rouphael, N.; Duraisingham, S.; Romero-Steiner, S.; Presnell, S.; Davis, C.; Schmidt, D.S.; Johnson, S.E.; Milton, A.; Rajam, G.; Kasturi, S.; Carlone, G.M.; Quinn, C.; Chaussabel, D.; Palucka, A.K.; Mulligan, M.J.; Ahmed, R.; Stephens, D.S.; Nakaya, H.I.; Pulendran, B. Molecular signatures of antibody responses derived from a systems biology study of five human vaccines. Nat. Immunol., 2014, 15(2), 195-204.
[http://dx.doi.org/10.1038/ni.2789] [PMID: 24336226]
[14]
Lanier, L.L.; Sun, J.C. Do the terms innate and adaptive immunity create conceptual barriers? Nat. Rev. Immunol., 2009, 9(5), 302-303.
[http://dx.doi.org/10.1038/nri2547] [PMID: 19396937]
[15]
Wu, J.; Chen, Z.J. Innate immune sensing and signaling of cytosolic nucleic acids. Annu. Rev. Immunol., 2014, 32(1), 461-488.
[http://dx.doi.org/10.1146/annurev-immunol-032713-120156] [PMID: 24655297]
[16]
Vijay, K. Toll-like receptors in immunity and inflammatory diseases: Past, present, and future. Int. Immunopharmacol., 2018, 59, 391-412.
[http://dx.doi.org/10.1016/j.intimp.2018.03.002] [PMID: 29730580]
[17]
Clark, I.A.; Alleva, L.M.; Budd, A.C.; Cowden, W.B. Understanding the role of inflammatory cytokines in malaria and related diseases. Travel Med. Infect. Dis., 2008, 6(1-2), 67-81.
[http://dx.doi.org/10.1016/j.tmaid.2007.07.002] [PMID: 18342278]
[18]
Gowda, DC. Parasite recognition and signaling mechanisms in innate immune responses to malaria. Front. Immunol., 2018, 9, 3006.
[http://dx.doi.org/10.3389/fimmu.2018.03006]
[19]
Deroost, K.; Pham, T.T.; Opdenakker, G.; Van den Steen, P.E. The immunological balance between host and parasite in malaria. FEMS Microbiol. Rev., 2016, 40(2), 208-257.
[http://dx.doi.org/10.1093/femsre/fuv046] [PMID: 26657789]
[20]
Smith, T.G.; Ayi, K.; Serghides, L.; Mcallister, C.D.; Kain, K.C. Innate immunity to malaria caused by Plasmodium falciparum. Clin. Invest. Med., 2002, 25(6), 262-272.
[PMID: 12516999]
[21]
Urban, B.C.; Ing, R.; Stevenson, M.M. Early interactions between blood-stage plasmodium parasites and the immune system. Curr. Top. Microbiol. Immunol., 2005, 297, 25-70.
[http://dx.doi.org/10.1007/3-540-29967-X_2] [PMID: 16265902]
[22]
Walther, M.; Woodruff, J.; Edele, F.; Jeffries, D.; Tongren, J.E.; King, E.; Andrews, L.; Bejon, P.; Gilbert, S.C.; De Souza, J.B.; Sinden, R.; Hill, A.V.S.; Riley, E.M. Innate immune responses to human malaria: Heterogeneous cytokine responses to blood-stage Plasmodium falciparum correlate with parasitological and clinical outcomes. J. Immunol., 2006, 177(8), 5736-5745.
[http://dx.doi.org/10.4049/jimmunol.177.8.5736] [PMID: 17015763]
[23]
Dobbs, K.R.; Crabtree, J.N.; Dent, A.E. Innate immunity to malaria-The role of monocytes. Immunol. Rev., 2020, 293(1), 8-24.
[http://dx.doi.org/10.1111/imr.12830] [PMID: 31840836]
[24]
Gazzinelli, R.T.; Kalantari, P.; Fitzgerald, K.A.; Golenbock, D.T. Innate sensing of malaria parasites. Nat. Rev. Immunol., 2014, 14(11), 744-757.
[http://dx.doi.org/10.1038/nri3742] [PMID: 25324127]
[25]
Karunaweera, N.D.; Wijesekera, S.K.; Wanasekera, D.; Mendis, K.N.; Carter, R. The paroxysm of Plasmodium vivax malaria. Trends Parasitol., 2003, 19(4), 188-193.
[http://dx.doi.org/10.1016/S1471-4922(03)00036-9] [PMID: 12689650]
[26]
Liehl, P.; Zuzarte-Luís, V.; Chan, J.; Zillinger, T.; Baptista, F.; Carapau, D.; Konert, M.; Hanson, K.K.; Carret, C.; Lassnig, C.; Müller, M.; Kalinke, U.; Saeed, M.; Chora, A.F.; Golenbock, D.T.; Strobl, B.; Prudêncio, M.; Coelho, L.P.; Kappe, S.H.; Superti-Furga, G.; Pichlmair, A.; Vigário, A.M.; Rice, C.M.; Fitzgerald, K.A.; Barchet, W.; Mota, M.M. Host-cell sensors for Plasmodium activate innate immunity against liver-stage infection. Nat. Med., 2014, 20(1), 47-53.
[http://dx.doi.org/10.1038/nm.3424] [PMID: 24362933]
[27]
Miller, J.L.; Sack, B.K.; Baldwin, M.; Vaughan, A.M.; Kappe, S.H.I. Interferon-mediated innate immune responses against malaria parasite liver stages. Cell Rep., 2014, 7(2), 436-447.
[http://dx.doi.org/10.1016/j.celrep.2014.03.018] [PMID: 24703850]
[28]
Antonelli, L.R.; Junqueira, C.; Vinetz, J.M.; Golenbock, D.T.; Ferreira, M.U.; Gazzinelli, R.T. The immunology of Plasmodium vivax malaria. Immunol. Rev., 2020, 293(1), 163-189.
[http://dx.doi.org/10.1111/imr.12816] [PMID: 31642531]
[29]
Yazdani, S.; Mukherjee, P.; Chauhan, V.; Chitnis, C. Immune responses to asexual blood-stages of malaria parasites. Curr. Mol. Med., 2006, 6(2), 187-203.
[http://dx.doi.org/10.2174/156652406776055212] [PMID: 16515510]
[30]
Wu, X.; Gowda, N.M.; Gowda, D.C. Phagosomal acidification prevents macrophage inflammatory cytokine production to malaria, and dendritic cells are the major source at the early stages of infection: Implication for malaria protective immunity development. J. Biol. Chem., 2015, 290(38), 23135-23147.
[http://dx.doi.org/10.1074/jbc.M115.671065] [PMID: 26240140]
[31]
Schwarzer, E.; Turrini, F.; Ulliers, D.; Giribaldi, G.; Ginsburg, H.; Arese, P. Impairment of macrophage functions after ingestion of Plasmodium falciparum-infected erythrocytes or isolated malarial pigment. J. Exp. Med., 1992, 176(4), 1033-1041.
[http://dx.doi.org/10.1084/jem.176.4.1033] [PMID: 1402649]
[32]
Schwarzer, E.; Bellomo, G.; Giribaldi, G.; Ulliers, D.; Arese, P. Phagocytosis of malarial pigment haemozoin by human monocytes: a confocal microscopy study. Parasitology, 2001, 123(2), 125-131.
[http://dx.doi.org/10.1017/S0031182001008216] [PMID: 11510677]
[33]
Skorokhod, O.A.; Alessio, M.; Mordmüller, B.; Arese, P.; Schwarzer, E. Hemozoin (malarial pigment) inhibits differentiation and maturation of human monocyte-derived dendritic cells: A peroxisome proliferator-activated receptor-gamma-mediated effect. J. Immunol., 2004, 173(6), 4066-4074.
[http://dx.doi.org/10.4049/jimmunol.173.6.4066] [PMID: 15356156]
[34]
Schwarzer, E.; Alessio, M.; Ulliers, D.; Arese, P. Phagocytosis of the malarial pigment, hemozoin, impairs expression of major histocompatibility complex class II antigen, CD54, and CD11c in human monocytes. Infect. Immun., 1998, 66(4), 1601-1606.
[http://dx.doi.org/10.1128/IAI.66.4.1601-1606.1998] [PMID: 9529087]
[35]
Wu, X.; Gowda, N.M.; Kumar, S.; Gowda, D.C. Protein-DNA complex is the exclusive malaria parasite component that activates dendritic cells and triggers innate immune responses. J. Immunol., 2010, 184(8), 4338-4348.
[http://dx.doi.org/10.4049/jimmunol.0903824] [PMID: 20231693]
[36]
Stevenson, M.M.; Urban, B.C. Antigen presentation and dendritic cell biology in malaria. Parasite Immunol., 2006, 28(1-2), 5-14.
[http://dx.doi.org/10.1111/j.1365-3024.2006.00772.x] [PMID: 16438671]
[37]
Todryk, S.M.; Urban, B.C. Dendritic cells in Plasmodium infection. Future Microbiol., 2008, 3(3), 279-286.
[http://dx.doi.org/10.2217/17460913.3.3.279] [PMID: 18505394]
[38]
Amorim, K.N.S.; Chagas, D.C.G.; Sulczewski, F.B.; Boscardin, S.B. Dendritic cells and their multiple roles during malaria infection. J. Immunol. Res., 2016, 2016, 1-11.
[http://dx.doi.org/10.1155/2016/2926436] [PMID: 27110574]
[39]
McNab, F.; Mayer-Barber, K.; Sher, A.; Wack, A.; O’Garra, A. Type I interferons in infectious disease. Nat. Rev. Immunol., 2015, 15(2), 87-103.
[http://dx.doi.org/10.1038/nri3787] [PMID: 25614319]
[40]
Dunst, J.; Kamena, F.; Matuschewski, K. Cytokines and chemokines in cerebral malaria pathogenesis. Front. Cell. Infect. Microbiol., 2017, 7, 324.
[http://dx.doi.org/10.3389/fcimb.2017.00324]
[41]
Perry, J.A.; Olver, C.S.; Burnett, R.C.; Avery, A.C. Cutting edge: The acquisition of TLR tolerance during malaria infection impacts T cell activation. J. Immunol., 2005, 174(10), 5921-5925.
[http://dx.doi.org/10.4049/jimmunol.174.10.5921] [PMID: 15879082]
[42]
Sponaas, A.M.; Cadman, E.T.; Voisine, C.; Harrison, V.; Boonstra, A.; O’Garra, A.; Langhorne, J. Malaria infection changes the ability of splenic dendritic cell populations to stimulate antigen-specific T cells. J. Exp. Med., 2006, 203(6), 1427-1433.
[http://dx.doi.org/10.1084/jem.20052450] [PMID: 16754719]
[43]
Rochford, R.; Kazura, J. Introduction: Immunity to malaria. Immunol. Rev., 2020, 293(1), 5-7.
[http://dx.doi.org/10.1111/imr.12831] [PMID: 31863482]
[44]
Pérez-Mazliah, D.; Ndungu, F.M.; Aye, R.; Langhorne, J. B-cell memory in malaria: Myths and realities. Immunol. Rev., 2020, 293(1), 57-69.
[http://dx.doi.org/10.1111/imr.12822] [PMID: 31733075]
[45]
Ly, A.; Hansen, D.S. Development of B cell memory in malaria. Front Immunol, 2019, 10, 559.
[http://dx.doi.org/10.3389/fimmu.2019.00559]
[46]
Kumar, R.; Loughland, J.R.; Ng, S.S.; Boyle, M.J.; Engwerda, C.R. The regulation of CD4 + T cells during malaria. Immunol. Rev., 2020, 293(1), 70-87.
[http://dx.doi.org/10.1111/imr.12804] [PMID: 31674682]
[47]
Pack, A.D.; Schwartzhoff, P.V.; Zacharias, Z.R.; Fernandez-Ruiz, D.; Heath, W.R.; Gurung, P.; Legge, K.L.; Janse, C.J.; Butler, N.S. Hemozoin-mediated inflammasome activation limits long-lived anti-malarial immunity. Cell Rep., 2021, 36(8), 109586.
[http://dx.doi.org/10.1016/j.celrep.2021.109586] [PMID: 34433049]
[48]
Phu, N.H.; Day, N.; Diep, P.T.; Ferguson, D.J.P.; White, N.J. Intraleucocytic malaria pigment and prognosis in severe malaria. Trans. R. Soc. Trop. Med. Hyg., 1995, 89(2), 200-204.
[http://dx.doi.org/10.1016/0035-9203(95)90496-4] [PMID: 7778149]
[49]
Amodu, O.K.; Adeyemo, A.A.; Olumese, P.E.; Gbadegesin, R.A. Intraleucocytic malaria pigment and clinical severity of malaria in children. Trans. R. Soc. Trop. Med. Hyg., 1998, 92(1), 54-56.
[http://dx.doi.org/10.1016/S0035-9203(98)90952-X] [PMID: 9692152]
[50]
Olivier, M.; Van Den Ham, K.; Shio, M.T.; Kassa, F.A.; Fougeray, S. Malarial pigment hemozoin and the innate inflammatory response. Front Immunol, 2014, 5, 25.
[http://dx.doi.org/10.3389/fimmu.2014.00025]
[51]
Pham, T.T.; Lamb, T.J.; Deroost, K.; Opdenakker, G.; Van den Steen, P.E. Hemozoin in malarial complications: More questions than answers. Trends Parasitol., 2021, 37(3), 226-239.
[http://dx.doi.org/10.1016/j.pt.2020.09.016] [PMID: 33223096]
[52]
Parroche, P.; Lauw, F.N.; Goutagny, N.; Latz, E.; Monks, B.G.; Visintin, A.; Halmen, K.A.; Lamphier, M.; Olivier, M.; Bartholomeu, D.C.; Gazzinelli, R.T.; Golenbock, D.T. Malaria hemozoin is immunologically inert but radically enhances innate responses by presenting malaria DNA to Toll-like receptor 9. Proc. Natl. Acad. Sci. USA, 2007, 104(6), 1919-1924.
[http://dx.doi.org/10.1073/pnas.0608745104] [PMID: 17261807]
[53]
Kalantari, P.; DeOliveira, R.B.; Chan, J.; Corbett, Y.; Rathinam, V.; Stutz, A.; Latz, E.; Gazzinelli, R.T.; Golenbock, D.T.; Fitzgerald, K.A. Dual engagement of the NLRP3 and AIM2 inflammasomes by plasmodium-derived hemozoin and DNA during malaria. Cell Rep., 2014, 6(1), 196-210.
[http://dx.doi.org/10.1016/j.celrep.2013.12.014] [PMID: 24388751]
[54]
Kho, S.; Barber, B.E.; Johar, E.; Andries, B.; Poespoprodjo, J.R.; Kenangalem, E.; Piera, K.A.; Ehmann, A.; Price, R.N.; William, T.; Woodberry, T.; Foote, S.; Minigo, G.; Yeo, T.W.; Grigg, M.J.; Anstey, N.M.; McMorran, B.J. Platelets kill circulating parasites of all major Plasmodium species in human malaria. Blood, 2018, 132(12), 1332-1344.
[http://dx.doi.org/10.1182/blood-2018-05-849307] [PMID: 30026183]
[55]
Essien, E.M.; Emagha, U.T. Blood platelet: a review of its characteristics and function in acute malaria infection. Afr. J. Med. Med. Sci., 2014, 43(4), 287-294.
[PMID: 26234116]
[56]
Gowda, N.M.; Wu, X.; Gowda, D.C. The nucleosome (histone-DNA complex) is the TLR9-specific immunostimulatory component of Plasmodium falciparum that activates DCs. PLoS One, 2011, 6(6), e20398.
[http://dx.doi.org/10.1371/journal.pone.0020398] [PMID: 21687712]
[57]
Sisquella, X.; Ofir-Birin, Y.; Pimentel, M.A.; Cheng, L.; Abou Karam, P.; Sampaio, N.G.; Penington, J.S.; Connolly, D.; Giladi, T.; Scicluna, B.J.; Sharples, R.A.; Waltmann, A.; Avni, D.; Schwartz, E.; Schofield, L.; Porat, Z.; Hansen, D.S.; Papenfuss, A.T.; Eriksson, E.M.; Gerlic, M.; Hill, A.F.; Bowie, A.G.; Regev-Rudzki, N. Malaria parasite DNA-harbouring vesicles activate cytosolic immune sensors. Nat. Commun., 2017, 8(1), 1985.
[http://dx.doi.org/10.1038/s41467-017-02083-1] [PMID: 29215015]
[58]
Babatunde, K.A.; Yesodha Subramanian, B.; Ahouidi, A.D.; Martinez Murillo, P.; Walch, M.; Mantel, P.Y. Role of extracellular vesicles in cellular cross talk in malaria. Front. Immunol., 2020, 11, 22.
[http://dx.doi.org/10.3389/fimmu.2020.00022] [PMID: 32082312]
[59]
Rani, A.; Nawaz, S.K.; Arshad, M.; Irfan, S.; Walch, M.; Mantel, P.Y. Role of rs4986790 polymorphism of TLR4 gene in susceptibility towards malaria infection in the pakistani population. Iran. J. Public Health, 2018, 47(5), 735-741.
[PMID: 29922617]
[60]
Sun, Y.; Cheng, Y. STING or sting: cGAS-STING-mediated immune response to protozoan parasites. Trends Parasitol., 2020, 36(9), 773-784.
[http://dx.doi.org/10.1016/j.pt.2020.07.001] [PMID: 32736985]
[61]
Nebl, T.; De Veer, M.J.; Schofield, L. Stimulation of innate immune responses by malarial glycosylphosphatidylinositol via pattern recognition receptors. Parasitology, 2005, 130(S1), S45-S62.
[http://dx.doi.org/10.1017/S0031182005008152] [PMID: 16281992]
[62]
Aldridge, J.R.; Vogel, I.A. Macrophage biology and their activation by protozoan-derived glycosylphosphatidylinositol anchors and hemozoin. J. Parasitol., 2014, 100(6), 737-742.
[http://dx.doi.org/10.1645/14-646.1] [PMID: 25265042]
[63]
Dunst, J.; Azzouz, N.; Liu, X.; Tsukita, S.; Seeberger, P.H.; Kamena, F. Interaction between Plasmodium glycosylphosphatidylinositol and the host protein moesin has no implication in malaria pathology. Front. Cell. Infect. Microbiol., 2017, 7, 183.
[http://dx.doi.org/10.3389/fcimb.2017.00183] [PMID: 28560184]
[64]
Mbengue, B.; Niang, B.; Niang, M.S.; Varela, M.L.; Fall, B.; Fall, M.M.; Diallo, R.N.; Diatta, B.; Gowda, D.C.; Dieye, A.; Perraut, R. Inflammatory cytokine and humoral responses to Plasmodium falciparum glycosylphosphatidylinositols correlates with malaria immunity and pathogenesis. Immun. Inflamm. Dis., 2016, 4(1), 24-34.
[http://dx.doi.org/10.1002/iid3.89] [PMID: 27042299]
[65]
Vijaykumar, M.; Naik, R.S.; Gowda, D.C. Plasmodium falciparum glycosylphosphatidylinositol-induced TNF-alpha secretion by macrophages is mediated without membrane insertion or endocytosis. J. Biol. Chem., 2001, 276(10), 6909-6912.
[http://dx.doi.org/10.1074/jbc.C100007200] [PMID: 11152670]
[66]
Denning, N.L.; Aziz, M.; Gurien, S.D.; Wang, P. DAMPs and NETs in Sepsis. Front. Immunol., 2019, 10, 2536.
[http://dx.doi.org/10.3389/fimmu.2019.02536] [PMID: 31736963]
[67]
Krysko, O.; Løve Aaes, T.; Bachert, C.; Vandenabeele, P.; Krysko, D.V. Many faces of DAMPs in cancer therapy. Cell Death Dis., 2013, 4(5), e631.
[http://dx.doi.org/10.1038/cddis.2013.156] [PMID: 23681226]
[68]
Aziz, M.; Brenner, M.; Wang, P. Extracellular CIRP (eCIRP) and inflammation. J. Leukoc. Biol., 2019, 106(1), 133-146.
[http://dx.doi.org/10.1002/JLB.3MIR1118-443R] [PMID: 30645013]
[69]
Abu, N.; Rus Bakarurraini, N.A.A.; Nasir, S.N. Extracellular vesicles and DAMPs in cancer: A mini-review. Front. Immunol., 2021, 12, 740548.
[http://dx.doi.org/10.3389/fimmu.2021.740548] [PMID: 34721407]
[70]
Mendonça, R.; Silveira, A.A.A.; Conran, N. Red cell DAMPs and inflammation. Inflamm. Res., 2016, 65(9), 665-678.
[http://dx.doi.org/10.1007/s00011-016-0955-9] [PMID: 27251171]
[71]
Jeney, V. Pro-inflammatory actions of red blood cell-derived DAMPs. Experientia Suppl., 2018, 108, 211-233.
[http://dx.doi.org/10.1007/978-3-319-89390-7_9] [PMID: 30536173]
[72]
Bolívar, B.E.; Brown-Suedel, A.N.; Rohrman, B.A.; Charendoff, C.I.; Yazdani, V.; Belcher, J.D.; Vercellotti, G.M.; Flanagan, J.M.; Bouchier-Hayes, L. Noncanonical roles of caspase-4 and caspase-5 in heme-driven IL-1β release and cell death. J. Immunol., 2021, 206(8), 1878-1889.
[http://dx.doi.org/10.4049/jimmunol.2000226] [PMID: 33741688]
[73]
Bozza, M.T.; Jeney, V. Pro-inflammatory actions of heme and other hemoglobin-derived DAMPs. Front. Immunol., 2020, 11, 1323.
[http://dx.doi.org/10.3389/fimmu.2020.01323] [PMID: 32695110]
[74]
Gallego-Delgado, J.; Ty, M.; Orengo, J.M.; van de Hoef, D.; Rodriguez, A. A surprising role for uric acid: the inflammatory malaria response. Curr. Rheumatol. Rep., 2014, 16(2), 401.
[http://dx.doi.org/10.1007/s11926-013-0401-8] [PMID: 24390755]
[75]
Patel, S. Danger-associated molecular patterns (DAMPs): The derivatives and triggers of inflammation. Curr. Allergy Asthma Rep., 2018, 18(11), 63.
[http://dx.doi.org/10.1007/s11882-018-0817-3] [PMID: 30267163]
[76]
Fischer, S. Pattern recognition receptors and control of innate immunity: Role of nucleic acids. Curr. Pharm. Biotechnol., 2019, 19(15), 1203-1209.
[http://dx.doi.org/10.2174/138920112804583087] [PMID: 30636600]
[77]
Maher, J.J. DAMPs ramp up drug toxicity. J. Clin. Invest., 2009, 119(2), 246-249.
[http://dx.doi.org/10.1172/JCI38178] [PMID: 19244605]
[78]
Varjú, I.; Longstaff, C.; Szabó, L.; Farkas, Á.Z.; Varga-Szabó, V.J.; Tanka-Salamon, A.; Machovich, R.; Kolev, K. DNA, histones and neutrophil extracellular traps exert anti-fibrinolytic effects in a plasma environment. Thromb. Haemost., 2015, 113(6), 1289-1298.
[http://dx.doi.org/10.1160/TH14-08-0669] [PMID: 25789443]
[79]
Korkmaz, B.; Horwitz, M.S.; Jenne, D.E.; Gauthier, F. Neutrophil elastase, proteinase 3, and cathepsin G as therapeutic targets in human diseases. Pharmacol. Rev., 2010, 62(4), 726-759.
[http://dx.doi.org/10.1124/pr.110.002733] [PMID: 21079042]
[80]
Murao, A.; Aziz, M.; Wang, H.; Brenner, M.; Wang, P. Release mechanisms of major DAMPs. Apoptosis, 2021, 26(3-4), 152-162.
[http://dx.doi.org/10.1007/s10495-021-01663-3] [PMID: 33713214]
[81]
Murao, A.; Brenner, M.; Aziz, M.; Wang, P. Exosomes in Sepsis. Front. Immunol., 2020, 11, 2140.
[http://dx.doi.org/10.3389/fimmu.2020.02140] [PMID: 33013905]
[82]
Kalra, H.; Simpson, R.J.; Ji, H.; Aikawa, E.; Altevogt, P.; Askenase, P.; Bond, V.C.; Borràs, F.E.; Breakefield, X.; Budnik, V.; Buzas, E.; Camussi, G.; Clayton, A.; Cocucci, E.; Falcon-Perez, J.M.; Gabrielsson, S.; Gho, Y.S.; Gupta, D.; Harsha, H.C.; Hendrix, A.; Hill, A.F.; Inal, J.M.; Jenster, G.; Krämer-Albers, E.M.; Lim, S.K.; Llorente, A.; Lötvall, J.; Marcilla, A.; Mincheva-Nilsson, L.; Nazarenko, I.; Nieuwland, R.; Nolte-’t Hoen, E.N.M.; Pandey, A.; Patel, T.; Piper, M.G.; Pluchino, S.; Prasad, T.S.K.; Rajendran, L.; Raposo, G.; Record, M.; Reid, G.E.; Sánchez-Madrid, F.; Schiffelers, R.M.; Siljander, P.; Stensballe, A.; Stoorvogel, W.; Taylor, D.; Thery, C.; Valadi, H.; van Balkom, B.W.M.; Vázquez, J.; Vidal, M.; Wauben, M.H.M.; Yáñez-Mó, M.; Zoeller, M.; Mathivanan, S. Vesiclepedia: A compendium for extracellular vesicles with continuous community annotation. PLoS Biol., 2012, 10(12), e1001450.
[http://dx.doi.org/10.1371/journal.pbio.1001450] [PMID: 23271954]
[83]
Chanteloup, G.; Cordonnier, M.; Isambert, N.; Bertaut, A.; Hervieu, A.; Hennequin, A.; Luu, M.; Zanetta, S.; Coudert, B.; Bengrine, L.; Desmoulins, I.; Favier, L.; Lagrange, A.; Pages, P.B.; Gutierrez, I.; Lherminier, J.; Avoscan, L.; Jankowski, C.; Rébé, C.; Chevriaux, A.; Padeano, M.M.; Coutant, C.; Ladoire, S.; Causeret, S.; Arnould, L.; Charon-Barra, C.; Cottet, V.; Blanc, J.; Binquet, C.; Bardou, M.; Garrido, C.; Gobbo, J. Monitoring HSP70 exosomes in cancer patients’ follow up: A clinical prospective pilot study. J. Extracell. Vesicles, 2020, 9(1), 1766192.
[http://dx.doi.org/10.1080/20013078.2020.1766192] [PMID: 32595915]
[84]
Chanteloup, G.; Cordonnier, M.; Isambert, N.; Bertaut, A.; Marcion, G.; Garrido, C.; Gobbo, J. Membrane-bound exosomal HSP70 as a biomarker for detection and monitoring of malignant solid tumours: A pilot study. Pilot Feasibility Stud., 2020, 6(1), 35.
[http://dx.doi.org/10.1186/s40814-020-00577-2] [PMID: 32161659]
[85]
Taha, E.A.; Ono, K.; Eguchi, T. Roles of extracellular HSPs as biomarkers in immune surveillance and immune evasion. Int. J. Mol. Sci., 2019, 20(18), 4588.
[http://dx.doi.org/10.3390/ijms20184588] [PMID: 31533245]
[86]
Prieto, D.; Sotelo, N.; Seija, N.; Sernbo, S.; Abreu, C.; Durán, R.; Gil, M.; Sicco, E.; Irigoin, V.; Oliver, C.; Landoni, A.I.; Gabus, R.; Dighiero, G.; Oppezzo, P. S100-A9 protein in exosomes from chronic lymphocytic leukemia cells promotes NF-κB activity during disease progression. Blood, 2017, 130(6), 777-788.
[http://dx.doi.org/10.1182/blood-2017-02-769851] [PMID: 28596424]
[87]
Li, H.; Huang, X.; Chang, X.; Yao, J.; He, Q.; Shen, Z.; Ji, Y.; Wang, K. S100-A9 protein in exosomes derived from follicular fluid promotes inflammation via activation of NF-κB pathway in polycystic ovary syndrome. J. Cell. Mol. Med., 2020, 24(1), 114-125.
[http://dx.doi.org/10.1111/jcmm.14642] [PMID: 31568644]
[88]
Luo, Z.; Ji, Y.; Gao, H.; Gomes Dos Reis, F.C.; Bandyopadhyay, G.; Jin, Z.; Ly, C.; Chang, Y.; Zhang, D.; Kumar, D.; Ying, W. CRIg+ macrophages prevent gut microbial DNA–containing extracellular vesicle–induced tissue inflammation and insulin resistance. Gastroenterology, 2021, 160(3), 863-874.
[http://dx.doi.org/10.1053/j.gastro.2020.10.042] [PMID: 33152356]
[89]
Elzanowska, J.; Semira, C.; Costa-Silva, B. DNA in extracellular vesicles: Biological and clinical aspects. Mol. Oncol., 2021, 15(6), 1701-1714.
[http://dx.doi.org/10.1002/1878-0261.12777] [PMID: 32767659]
[90]
Kim, S.J.; Chen, Z.; Essani, A.B.; Elshabrawy, H.A.; Volin, M.V.; Volkov, S.; Swedler, W.; Arami, S.; Sweiss, N.; Shahrara, S. Identification of a novel toll-like receptor 7 endogenous ligand in rheumatoid arthritis synovial fluid that can provoke arthritic joint inflammation. Arthritis Rheumatol., 2016, 68(5), 1099-1110.
[http://dx.doi.org/10.1002/art.39544] [PMID: 26662519]
[91]
Babatunde, K.A.; Mbagwu, S.; Hernández-Castañeda, M.A.; Adapa, S.R.; Walch, M.; Filgueira, L.; Falquet, L.; Jiang, R.H.Y.; Ghiran, I.; Mantel, P.Y. Malaria infected red blood cells release small regulatory RNAs through extracellular vesicles. Sci. Rep., 2018, 8(1), 884.
[http://dx.doi.org/10.1038/s41598-018-19149-9] [PMID: 29343745]
[92]
Netea, M.G.; Schlitzer, A.; Placek, K.; Joosten, L.A.B.; Schultze, J.L. Innate and adaptive immune memory: An evolutionary continuum in the host’s response to pathogens. Cell Host Microbe, 2019, 25(1), 13-26.
[http://dx.doi.org/10.1016/j.chom.2018.12.006] [PMID: 30629914]
[93]
Uhr, J.W. The heterogeneity of the immune response. Science, 1964, 145(3631), 457-464.
[http://dx.doi.org/10.1126/science.145.3631.457] [PMID: 14163764]
[94]
Danilova, N. The evolution of adaptive immunity. Adv. Exp. Med. Biol., 2012, 738, 218-235.
[http://dx.doi.org/10.1007/978-1-4614-1680-7_13] [PMID: 22399382]
[95]
Rusek, P.; Wala, M.; Druszczyńska, M.; Fol, M. Infectious agents as stimuli of trained innate immunity. Int. J. Mol. Sci., 2018, 19(2), 456.
[http://dx.doi.org/10.3390/ijms19020456] [PMID: 29401667]
[96]
Levy, O.; Netea, M.G. Innate immune memory: Implications for development of pediatric immunomodulatory agents and adjuvanted vaccines. Pediatr. Res., 2014, 75(1-2), 184-188.
[http://dx.doi.org/10.1038/pr.2013.214] [PMID: 24352476]
[97]
Quintin, J.; Cheng, S.C.; van der Meer, J.W.M.; Netea, M.G. Innate immune memory: Towards a better understanding of host defense mechanisms. Curr. Opin. Immunol., 2014, 29, 1-7.
[http://dx.doi.org/10.1016/j.coi.2014.02.006] [PMID: 24637148]
[98]
Netea, M.G.; Quintin, J.; van der Meer, J.W.M. Trained immunity: A memory for innate host defense. Cell Host Microbe, 2011, 9(5), 355-361.
[http://dx.doi.org/10.1016/j.chom.2011.04.006] [PMID: 21575907]
[99]
Netea, M.G.; van der Meer, J.W.M. Trained immunity: An ancient way of remembering. Cell Host Microbe, 2017, 21(3), 297-300.
[http://dx.doi.org/10.1016/j.chom.2017.02.003] [PMID: 28279335]
[100]
Netea, M.G. Training innate immunity: The changing concept of immunological memory in innate host defence. Eur. J. Clin. Invest., 2013, 43(8), 881-884.
[http://dx.doi.org/10.1111/eci.12132] [PMID: 23869409]
[101]
Schrum, J.E.; Crabtree, J.N.; Dobbs, K.R.; Kiritsy, M.C.; Reed, G.W.; Gazzinelli, R.T.; Netea, M.G.; Kazura, J.W.; Dent, A.E.; Fitzgerald, K.A.; Golenbock, D.T. Cutting edge: Plasmodium falciparum induces trained innate immunity. J. Immunol., 2018, 200(4), 1243-1248.
[http://dx.doi.org/10.4049/jimmunol.1701010] [PMID: 29330325]
[102]
Penet, M.F.; Kober, F.; Confort-Gouny, S.; Le Fur, Y.; Dalmasso, C.; Coltel, N.; Liprandi, A.; Gulian, J.M.; Grau, G.E.; Cozzone, P.J.; Viola, A. Magnetic resonance spectroscopy reveals an impaired brain metabolic profile in mice resistant to cerebral malaria infected with Plasmodium berghei ANKA. J. Biol. Chem., 2007, 282(19), 14505-14514.
[http://dx.doi.org/10.1074/jbc.M608035200] [PMID: 17369263]
[103]
Gramaglia, I.; Velez, J.; Combes, V.; Grau, G.E.R.; Wree, M.; van der Heyde, H.C. Platelets activate a pathogenic response to blood-stage Plasmodium infection but not a protective immune response. Blood, 2017, 129(12), 1669-1679.
[http://dx.doi.org/10.1182/blood-2016-08-733519] [PMID: 28096086]
[104]
Netea, M.G.; Joosten, L.A.B.; Latz, E.; Mills, K.H.G.; Natoli, G.; Stunnenberg, H.G.; O’Neill, L.A.J.; Xavier, R.J. Trained immunity: A program of innate immune memory in health and disease. Science, 2016, 352(6284), aaf1098.
[http://dx.doi.org/10.1126/science.aaf1098] [PMID: 27102489]
[105]
Netea, M.G.; Domínguez-Andrés, J.; Barreiro, L.B.; Chavakis, T.; Divangahi, M.; Fuchs, E.; Joosten, L.A.B.; van der Meer, J.W.M.; Mhlanga, M.M.; Mulder, W.J.M.; Riksen, N.P.; Schlitzer, A.; Schultze, J.L.; Stabell Benn, C.; Sun, J.C.; Xavier, R.J.; Latz, E. Defining trained immunity and its role in health and disease. Nat. Rev. Immunol., 2020, 20(6), 375-388.
[http://dx.doi.org/10.1038/s41577-020-0285-6] [PMID: 32132681]
[106]
Xing, Z.; Afkhami, S.; Bavananthasivam, J.; Fritz, D.K.; D’Agostino, M.R.; Vaseghi-Shanjani, M.; Yao, Y.; Jeyanathan, M. Innate immune memory of tissue-resident macrophages and trained innate immunity: Re-vamping vaccine concept and strategies. J. Leukoc. Biol., 2020, 108(3), 825-834.
[http://dx.doi.org/10.1002/JLB.4MR0220-446R] [PMID: 32125045]
[107]
van der Meer, J.W.M.; Joosten, L.A.B.; Riksen, N.; Netea, M.G. Trained immunity: A smart way to enhance innate immune defence. Mol. Immunol., 2015, 68(1), 40-44.
[http://dx.doi.org/10.1016/j.molimm.2015.06.019] [PMID: 26597205]
[108]
Zaborowski, M.P.; Balaj, L.; Breakefield, X.O.; Lai, C.P. Extracellular vesicles: Composition, biological relevance, and methods of study. Bioscience, 2015, 65(8), 783-797.
[http://dx.doi.org/10.1093/biosci/biv084] [PMID: 26955082]
[109]
Fleshner, M.; Crane, C.R. Exosomes, DAMPs and miRNA: Features of stress physiology and immune homeostasis. Trends Immunol., 2017, 38(10), 768-776.
[http://dx.doi.org/10.1016/j.it.2017.08.002] [PMID: 28838855]
[110]
Chen, G.; Liu, S.; Fan, X.; Jin, Y.; Li, X.; Du, Y. Plasmodium manipulates the expression of host long non-coding RNA during red blood cell intracellular infection. Parasit. Vectors, 2022, 15(1), 182.
[http://dx.doi.org/10.1186/s13071-022-05298-4] [PMID: 35643541]
[111]
Duan, W.; Zhang, W.; Jia, J.; Lu, Q.; Eric Gershwin, M. Exosomal microRNA in autoimmunity. Cell. Mol. Immunol., 2019, 16(12), 932-934.
[http://dx.doi.org/10.1038/s41423-019-0319-9] [PMID: 31664221]
[112]
Ohshima, K.; Inoue, K.; Fujiwara, A.; Hatakeyama, K.; Kanto, K.; Watanabe, Y.; Muramatsu, K.; Fukuda, Y.; Ogura, S.; Yamaguchi, K.; Mochizuki, T. Let-7 microRNA family is selectively secreted into the extracellular environment via exosomes in a metastatic gastric cancer cell line. PLoS One, 2010, 5(10), e13247.
[http://dx.doi.org/10.1371/journal.pone.0013247] [PMID: 20949044]
[113]
Zhao, K.; Liang, G.; Sun, X.; Guan, L.L. Comparative miRNAome analysis revealed different miRNA expression profiles in bovine sera and exosomes. BMC Genomics, 2016, 17(1), 630.
[http://dx.doi.org/10.1186/s12864-016-2962-1] [PMID: 27519500]
[114]
Zhou, Y.; Ming, J.; Li, Y.; Li, B.; Deng, M.; Ma, Y.; Chen, Z.; Zhang, Y.; Li, J.; Liu, S. Exosomes derived from miR-126-3p-overexpressing synovial fibroblasts suppress chondrocyte inflammation and cartilage degradation in a rat model of osteoarthritis. Cell Death Discov., 2021, 7(1), 37.
[http://dx.doi.org/10.1038/s41420-021-00418-y] [PMID: 33627637]
[115]
Mi, X.; Xu, R.; Hong, S.; Xu, T.; Zhang, W.; Liu, M. M2 macrophage-derived exosomal lncRNA AFAP1-AS1 and MicroRNA-26a affect cell migration and metastasis in esophageal cancer. Mol. Ther. Nucleic Acids, 2020, 22, 779-790.
[http://dx.doi.org/10.1016/j.omtn.2020.09.035] [PMID: 33230475]
[116]
Li, X.; Lei, Y.; Wu, M.; Li, N. Regulation of macrophage activation and polarization by HCC-derived exosomal lncRNA TUC339. Int. J. Mol. Sci., 2018, 19(10), 2958.
[http://dx.doi.org/10.3390/ijms19102958] [PMID: 30274167]
[117]
Ni, C.; Fang, Q.Q.; Chen, W.Z.; Jiang, J.X.; Jiang, Z.; Ye, J.; Zhang, T.; Yang, L.; Meng, F.B.; Xia, W.J.; Zhong, M.; Huang, J. Breast cancer-derived exosomes transmit lncRNA SNHG16 to induce CD73+γδ1 Treg cells. Signal. Transduct. Target. Ther., 2020, 5(1), 41.
[http://dx.doi.org/10.1038/s41392-020-0129-7] [PMID: 32345959]
[118]
Contreras, G.M.; Walshe, E.; Steketee, P.C.; Paxton, E.; Lopez-Vidal, J.; Pearce, M.C. Comparative sensitivity and specificity of the 7SL sRNA diagnostic test for animal trypanosomiasis. Front. Vet. Sci, 2022, 9, 868912.
[http://dx.doi.org/10.3389/fvets.2022.868912]
[119]
Karimi, T.; Sharifi, I.; Aflatoonian, M.R.; Aflatoonian, B.; Mohammadi, M.A.; Salarkia, E.; Babaei, Z.; Zarinkar, F.; Sharifi, F.; Hatami, N.; Khosravi, A.; Eskandari, A.; Solimani, E.; Shafiee, M.; Mozaffari, M.; Heshmatkhah, A.; Amiri, R.; Farajzadeh, S.; Kyhani, A.; Aghaei Afshar, A.; Jafarzadeh, A.; Bamorovat, M. A long-lasting emerging epidemic of anthroponotic cutaneous leishmaniasis in southeastern Iran: Population movement and peri-urban settlements as a major risk factor. Parasit. Vectors, 2021, 14(1), 122.
[http://dx.doi.org/10.1186/s13071-021-04619-3] [PMID: 33627184]
[120]
Lai, H.; Li, Y.; Zhang, H.; Hu, J.; Liao, J.; Su, Y.; Li, Q.; Chen, B.; Li, C.; Wang, Z.; Li, Y.; Wang, J.; Meng, Z.; Huang, Z.; Huang, S. exoRBase 2.0: An atlas of mRNA, lncRNA and circRNA in extracellular vesicles from human biofluids. Nucleic Acids Res., 2022, 50(D1), D118-D128.
[http://dx.doi.org/10.1093/nar/gkab1085] [PMID: 34918744]
[121]
Sierro, F.; Grau, G.E.R. The ins and outs of cerebral malaria pathogenesis: Immunopathology, extracellular vesicles, immunometabolism, and trained immunity. Front. Immunol., 2019, 10, 830.
[http://dx.doi.org/10.3389/fimmu.2019.00830] [PMID: 31057552]
[122]
Karami Fath, M.; Azami, J.; Jaafari, N.; Akbari Oryani, M.; Jafari, N.; Karim poor, A.; Azargoonjahromi, A.; Nabi-Afjadi, M.; Payandeh, Z.; Zalpoor, H.; Shanehbandi, D. Exosome application in treatment and diagnosis of B-cell disorders: Leukemias, multiple sclerosis, and arthritis rheumatoid. Cell. Mol. Biol. Lett., 2022, 27(1), 74.
[http://dx.doi.org/10.1186/s11658-022-00377-x] [PMID: 36064322]
[123]
Qian, K.; Fu, W.; Li, T.; Zhao, J.; Lei, C.; Hu, S. The roles of small extracellular vesicles in cancer and immune regulation and translational potential in cancer therapy. J. Exp. Clin. Cancer Res., 2022, 41(1), 286.
[http://dx.doi.org/10.1186/s13046-022-02492-1] [PMID: 36167539]
[124]
Kim, S.I.; Ha, J.Y.; Choi, S.Y.; Hong, S.H.; Lee, H.J. Use of bacterial extracellular vesicles for gene delivery to host cells. Biomolecules, 2022, 12(9), 1171.
[http://dx.doi.org/10.3390/biom12091171] [PMID: 36139009]
[125]
Clinical Trials Partnership. Efficacy and safety of RTS,S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial. Lancet, 2015, 386(9988), 31-45.
[http://dx.doi.org/10.1016/S0140-6736(15)60721-8] [PMID: 25913272]
[126]
Gosling, R.; von Seidlein, L. The future of the RTS, S/AS01 malaria vaccine: an alternative development plan. PLoS Med., 2016, 13(4), e1001994.
[http://dx.doi.org/10.1371/journal.pmed.1001994] [PMID: 27070151]
[127]
Higuchi, A.; Morishita, M.; Nagata, R.; Maruoka, K.; Katsumi, H.; Yamamoto, A. Functional characterization of extracellular vesicles from baker's yeast saccharomyces cerevisiae as a novel vaccine material for immune cell maturation. J. Pharm. Sci., 2022, S0022-3549(22), 389.
[http://dx.doi.org/10.1016/j.xphs.2022.08.032]
[128]
Cortes-Serra, N.; Gualdron-Lopez, M.; Pinazo, M.J.; Torrecilhas, A.C.; Fernandez-Becerra, C. Extracellular vesicles in trypanosoma cruzi infection: immunomodulatory effects and future perspectives as potential control tools against chagas disease. J. Immunol. Res., 2022, 2022, 5230603.
[http://dx.doi.org/10.1155/2022/5230603]
[129]
Mulder, W.J.M.; Ochando, J.; Joosten, L.A.B.; Fayad, Z.A.; Netea, M.G. Therapeutic targeting of trained immunity. Nat. Rev. Drug Discov., 2019, 18(7), 553-566.
[http://dx.doi.org/10.1038/s41573-019-0025-4] [PMID: 30967658]
[130]
Franklin, B.S.; Parroche, P.; Ataíde, M.A.; Lauw, F.; Ropert, C.; de Oliveira, R.B.; Pereira, D.; Tada, M.S.; Nogueira, P.; da Silva, L.H.P.; Bjorkbacka, H.; Golenbock, D.T.; Gazzinelli, R.T. Malaria primes the innate immune response due to interferon-γ induced enhancement of toll-like receptor expression and function. Proc. Natl. Acad. Sci. USA, 2009, 106(14), 5789-5794.
[http://dx.doi.org/10.1073/pnas.0809742106] [PMID: 19297619]
[131]
Dodoo, D.; Omer, F.M.; Todd, J.; Akanmori, B.D.; Koram, K.A.; Riley, E.M. Absolute levels and ratios of proinflammatory and anti-inflammatory cytokine production in vitro predict clinical immunity to Plasmodium falciparum malaria. J. Infect. Dis., 2002, 185(7), 971-979.
[http://dx.doi.org/10.1086/339408] [PMID: 11920322]
[132]
Luty, A.J.F.; Lell, B.; Schmidt-Ott, R.; Lehman, L.G.; Luckner, D.; Greve, B.; Matousek, P.; Herbich, K.; Schmid, D.; Migot-Nabias, F.; Deloron, P.; Nussenzweig, R.S.; Kremsner, P.G. Interferon-gamma responses are associated with resistance to reinfection with Plasmodium falciparum in young African children. J. Infect. Dis., 1999, 179(4), 980-988.
[http://dx.doi.org/10.1086/314689] [PMID: 10068595]
[133]
Horowitz, A.; Hafalla, J.C.R.; King, E.; Lusingu, J.; Dekker, D.; Leach, A.; Moris, P.; Cohen, J.; Vekemans, J.; Villafana, T.; Corran, P.H.; Bejon, P.; Drakeley, C.J.; von Seidlein, L.; Riley, E.M. Antigen-specific IL-2 secretion correlates with NK cell responses after immunization of Tanzanian children with the RTS,S/AS01 malaria vaccine. J. Immunol., 2012, 188(10), 5054-5062.
[http://dx.doi.org/10.4049/jimmunol.1102710] [PMID: 22504653]
[134]
McCall, M.B.B.; Roestenberg, M.; Ploemen, I.; Teirlinck, A.; Hopman, J.; de Mast, Q.; Dolo, A.; Doumbo, O.K.; Luty, A.; van der Ven, A.J.A.M.; Hermsen, C.C.; Sauerwein, R.W. Memory-like IFN-γ response by NK cells following malaria infection reveals the crucial role of T cells in NK cell activation by P. falciparum. Eur. J. Immunol., 2010, 40(12), 3472-3477.
[http://dx.doi.org/10.1002/eji.201040587] [PMID: 21072880]
[135]
Teirlinck, A.C.; McCall, M.B.B.; Roestenberg, M.; Scholzen, A.; Woestenenk, R.; de Mast, Q.; van der Ven, A.J.A.M.; Hermsen, C.C.; Luty, A.J.F.; Sauerwein, R.W. Longevity and composition of cellular immune responses following experimental Plasmodium falciparum malaria infection in humans. PLoS Pathog., 2011, 7(12), e1002389.
[http://dx.doi.org/10.1371/journal.ppat.1002389] [PMID: 22144890]