4-Nerolidylcatechol (4-NC) and Docetaxel Synergize in Controlling Androgen- independent Prostate Cancer Cells

Page: [943 - 955] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Background: Effective cancer treatment still challenges medicine since the strategies employed so far are not sufficiently safe and capable of specifically eliminating tumor cells. Prostate cancer (PCa) is a highly incident malignant neoplasm, and the outcome of patients, especially those with advanced castration-resistant PCa (CRPC), depends directly on the efficacy of the therapeutic agents, such as docetaxel (DOC).

Objectives: This study investigated the synergistic potentiation of 4-nerolidylcatechol (4-NC) with DOC in inhibiting androgen-independent PCa cells.

Methods: The cytotoxic effect of 4-NC was evaluated against non-tumorigenic (RWPE-01) and PCa cell lines (LNCaP and PC-3), and the antiproliferative potential of 4-NC was assessed by flow cytometry and colony formation. The Chou-Talalay method was applied to detect the synergistic effect of 4-NC and DOC, and the mechanism of anticancer activities of this combination was investigated by analyzing players in epithelial-mesenchymal transition (EMT).

Results: 4-NC significantly reduced the viability of PC-3 cells in a dose-dependent manner, decreasing colony formation and proliferation. The combination of 4-NC and DOC was synergistic in the androgen-independent cells and allowed the reduction of DOC concentration, with increased cytotoxicity and induction of apoptosis when compared to compounds alone. Furthermore, when 4- NC was co-administered with DOC, higher expression levels of proteins associated with the epithelial phenotype were observed, controlling EMT in PC-3 cells.

Conclusion: Collectively, these data demonstrated, for the first time, that the combination of 4-NC with reduced doses of DOC could be especially valuable in the suppression of oncogenic mechanisms of androgen-independent PCa cells.

Graphical Abstract

[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Kissel, M.; Créhange, G.; Graff, P. Stereotactic radiation therapy versus brachytherapy: relative strengths of two highly efficient options for the treatment of localized prostate cancer. Cancers (Basel), 2022, 14(9), 2226.
[http://dx.doi.org/10.3390/cancers14092226] [PMID: 35565355]
[3]
Vernooij, R.W.M.; Lancee, M.; Cleves, A.; Dahm, P.; Bangma, C.H.; Aben, K.K.H. Radical prostatectomy versus deferred treatment for localised prostate cancer. Cochrane Libr., 2020, 2020(6), CD006590.
[http://dx.doi.org/10.1002/14651858.CD006590.pub3] [PMID: 32495338]
[4]
Gamat, M.; McNeel, D.G. Androgen deprivation and immunotherapy for the treatment of prostate cancer. Endocr. Relat. Cancer, 2017, 24(12), T297-T310.
[http://dx.doi.org/10.1530/ERC-17-0145] [PMID: 28814451]
[5]
Litwin, M.S.; Tan, H.J. The diagnosis and treatment of prostate cancer. JAMA, 2017, 317(24), 2532-2542.
[http://dx.doi.org/10.1001/jama.2017.7248] [PMID: 28655021]
[6]
Schiewer, M.J.; Knudsen, K.E. DNA damage response in prostate cancer. Cold Spring Harb. Perspect. Med., 2019, 9(1), a030486.
[http://dx.doi.org/10.1101/cshperspect.a030486] [PMID: 29530944]
[7]
Choi, E.; Buie, J.D.; Camacho, J.; Sharma, P.; de Riese, W.T.W. Evolution of Androgen Deprivation Therapy (ADT) and its new emerging modalities in prostate cancer: An update for practicing urologists, clinicians and medical providers. Res. Rep. Urol., 2022, 14, 87-108.
[http://dx.doi.org/10.2147/RRU.S303215] [PMID: 35386270]
[8]
Davies, A.H.; Beltran, H.; Zoubeidi, A. Cellular plasticity and the neuroendocrine phenotype in prostate cancer. Nat. Rev. Urol., 2018, 15(5), 271-286.
[http://dx.doi.org/10.1038/nrurol.2018.22] [PMID: 29460922]
[9]
Barbieri, C.E.; Bangma, C.H.; Bjartell, A.; Catto, J.W.F.; Culig, Z.; Grönberg, H.; Luo, J.; Visakorpi, T.; Rubin, M.A. The mutational landscape of prostate cancer. Eur. Urol., 2013, 64(4), 567-576.
[http://dx.doi.org/10.1016/j.eururo.2013.05.029] [PMID: 23759327]
[10]
Makino, T.; Izumi, K.; Mizokami, A. Undesirable status of prostate cancer cells after intensive inhibition of AR signaling: Post-AR Era of CRPC treatment. Biomedicines, 2021, 9, 414.
[http://dx.doi.org/10.3390/biomedicines9040414]
[11]
Lombard, A.P.; Liu, L.; Cucchiara, V.; Liu, C.; Armstrong, C.M.; Zhao, R.; Yang, J.C.; Lou, W.; Evans, C.P.; Gao, A.C. Intra versus inter cross-resistance determines treatment sequence between taxane and ar-targeting therapies in advanced prostate cancer. Mol. Cancer Ther., 2018, 17(10), 2197-2205.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-1269] [PMID: 29891490]
[12]
Quinn, D.I.; Sandler, H.M.; Horvath, L.G.; Goldkorn, A.; Eastham, J.A. The evolution of chemotherapy for the treatment of prostate cancer. Ann. Oncol., 2017, 28(11), 2658-2669.
[http://dx.doi.org/10.1093/annonc/mdx348] [PMID: 29045523]
[13]
Sumanasuriya, S.; De Bono, J. Treatment of advanced prostate cancer-a review of current therapies and future promise. Cold Spring Harb. Perspect. Med., 2018, 8(6), a030635.
[http://dx.doi.org/10.1101/cshperspect.a030635] [PMID: 29101113]
[14]
Conteduca, V.; Gurioli, G.; Brighi, N.; Lolli, C.; Schepisi, G.; Casadei, C. Plasma androgen receptor in prostate cancer. Cancers, 2019, 11(11), 1719.
[http://dx.doi.org/10.3390/cancers11111719]
[15]
Varnai, R.; Koskinen, L.M.; Mäntylä, L.E.; Szabo, I.; FitzGerald, L.M.; Sipeky, C. Pharmacogenomic biomarkers in docetaxel treatment of prostate cancer: From discovery to implementation. Genes (Basel), 2019, 10(8), 599.
[http://dx.doi.org/10.3390/genes10080599] [PMID: 31398933]
[16]
Rice, M.A.; Malhotra, S.V.; Stoyanova, T. Second-generation antiandrogens: From discovery to standard of care in castration resistant prostate cancer. Front. Neurol., 2019, 10, 801.
[http://dx.doi.org/10.3389/FONC.2019.00801/BIBTEX]
[17]
Contreras, H.R.; Orellana-Serradell, O.; Herrera, D.; Castellón, E.A. The transcription factor ZEB1 promotes chemoresistance in prostate cancer cell lines. Asian J. Androl., 2019, 21(5), 460-467.
[http://dx.doi.org/10.4103/aja.aja_1_19] [PMID: 30880686]
[18]
Crawford, E.D.; Schellhammer, P.F.; McLeod, D.G.; Moul, J.W.; Higano, C.S.; Shore, N.; Denis, L.; Iversen, P.; Eisenberger, M.A.; Labrie, F. Androgen receptor targeted treatments of prostate cancer: 35 years of progress with antiandrogens. J. Urol., 2018, 200(5), 956-966.
[http://dx.doi.org/10.1016/j.juro.2018.04.083] [PMID: 29730201]
[19]
Shafi, A.A.; Yen, A.E.; Weigel, N.L. Androgen receptors in hormone-dependent and castration-resistant prostate cancer. Pharmacol. Ther., 2013, 140(3), 223-238.
[http://dx.doi.org/10.1016/j.pharmthera.2013.07.003] [PMID: 23859952]
[20]
Chou, T.C. Preclinical versus clinical drug combination studies. Leuk. Lymphoma, 2008, 49(11), 2059-2080.
[http://dx.doi.org/10.1080/10428190802353591] [PMID: 19021049]
[21]
Ashton, J.C. Drug combination studies and their synergy quantification using the Chou-Talalay method--letter. Cancer Res., 2015, 75(11), 2400.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-3763] [PMID: 25977339]
[22]
Trendowski, M. Recent advances in the development of antineoplastic agents derived from natural products. Drugs, 2015, 75, 1993-2016.
[http://dx.doi.org/10.1007/s40265-015-0489-4]
[23]
Mapoung, S.; Suzuki, S.; Fuji, S.; Naiki-Ito, A.; Kato, H.; Yodkeeree, S.; Ovatlarnporn, C.; Takahashi, S.; Limtrakul Dejkriengkraikul, P. Cyclohexanone curcumin analogs inhibit the progression of castration-resistant prostate cancer in vitro and in vivo. Cancer Sci., 2019, 110(2), 596-607.
[http://dx.doi.org/10.1111/cas.13897] [PMID: 30499149]
[24]
Wilson, B.A.P.; Thornburg, C.C.; Henrich, C.J.; Grkovic, T.; O’Keefe, B.R. Creating and screening natural product libraries. Nat. Prod. Rep., 2020, 37(7), 893-918.
[http://dx.doi.org/10.1039/C9NP00068B] [PMID: 32186299]
[25]
Wang, K.; Liu, W.; Xu, Q.; Gu, C.; Hu, D. Tenacissoside G synergistically potentiates inhibitory effects of 5-fluorouracil to human colorectal cancer. Phytomedicine, 2021, 86, 153553.
[http://dx.doi.org/10.1016/j.phymed.2021.153553] [PMID: 33906076]
[26]
Iksen, P.S.; Pothongsrisit, S.; Pongrakhananon, V. Targeting the PI3K/AKT/mTOR signaling pathway in lung cancer: an update regarding potential drugs and natural products. Molecules, 2021, 26(13), 4100.
[http://dx.doi.org/10.3390/molecules26134100] [PMID: 34279440]
[27]
Cortez, A.P.; de Ávila, R.I.; da Cunha, C.R.M.; Santos, A.P.; Menegatti, R.; Rezende, K.R.; Valadares, M.C. 4-Nerolidylcatechol analogues as promising anticancer agents. Eur. J. Pharmacol., 2015, 765, 517-524.
[http://dx.doi.org/10.1016/j.ejphar.2015.08.024] [PMID: 26297972]
[28]
Valadares, M.C.; Rezende, K.R.; Pereira, E.R.T.; Sousa, M.C.; Gonçalves, B.; de Assis, J.C.; Kato, M.J. Protective effects of 4-nerolidylcatechol against genotoxicity induced by cyclophosphamide. Food Chem. Toxicol., 2007, 45(10), 1975-1978.
[http://dx.doi.org/10.1016/j.fct.2007.04.016] [PMID: 17574317]
[29]
Garcia, L.F.R.; França, S.C.; Sponchiado, E.C.; Pereira, J.V.; Marques, A.A.F. In vitro assessment of antimicrobial activity of Pothomorphe umbellata extracts against Enterococcus faecalis. Indian J. Dent. Res., 2014, 25(1), 64-68.
[http://dx.doi.org/10.4103/0970-9290.131129] [PMID: 24748302]
[30]
Lopes, A.P.; Bagatela, B.S.; Rosa, P.C.P.; Nanayakkara, D.N.P.; Carlos Tavares Carvalho, J.; Maistro, E.L.; Bastos, J.K.; Perazzo, F.F. Antioxidant and cytotoxic effects of crude extract, fractions and 4-nerolidylcathecol from aerial parts of Pothomorphe umbellata L. (Piperaceae). BioMed Res. Int., 2013, 2013, 1-5.
[http://dx.doi.org/10.1155/2013/206581] [PMID: 23509690]
[31]
Sacoman, J.L.; Monteiro, K.M.; Possenti, A.; Figueira, G.M.; Foglio, M.A.; Carvalho, J.E. Cytotoxicity and antitumoral activity of dichloromethane extract and its fractions from Pothomorphe umbellata. Braz. J. Med. Biol. Res., 2008, 41(5), 411-415.
[http://dx.doi.org/10.1590/S0100-879X2008000500010] [PMID: 18545814]
[32]
Benfica, P.L.; Ávila, R.I.; Rodrigues, B.S.; Cortez, A.P.; Batista, A.C.; Gaeti, M.P.N.; Lima, E.M.; Rezende, K.R.; Valadares, M.C. 4-Nerolidylcatechol: apoptosis by mitochondrial mechanisms with reduction in cyclin D1 at G0/G1 stage of the chronic myelogenous K562 cell line. Pharm. Biol., 2017, 55(1), 1899-1908.
[http://dx.doi.org/10.1080/13880209.2017.1311351] [PMID: 28644062]
[33]
Brohem, C.A.; Sawada, T.C.H.; Massaro, R.R.; Almeida, R.L.; Rivelli, D.P.; Ropke, C.D.; da Silva, V.V.; de Lima, T.M.; Curi, R.; Barros, S.B.M.; Maria-Engler, S.S. Apoptosis induction by 4-nerolidylcatechol in melanoma cell lines. Toxicol. In Vitro, 2009, 23(1), 111-119.
[http://dx.doi.org/10.1016/j.tiv.2008.11.004] [PMID: 19059332]
[34]
Alves-Fernandes, D.K.; Oliveira, É.A.; Faião-Flores, F.; Alicea-Rebecca, G.; Weeraratna, A.T.; Smalley, K.S.M.; Barros, S.B.M.; Maria-Engler, S.S. ER stress promotes antitumor effects in BRAFi/MEKi resistant human melanoma induced by natural compound 4-nerolidylcathecol (4-NC). Pharmacol. Res., 2019, 141, 63-72.
[http://dx.doi.org/10.1016/j.phrs.2018.12.006] [PMID: 30550954]
[35]
Dashek, W.V. Methods in plant biochemistry and molecular biology, 1st ed; CRC Press: Boca Raton, 1997.
[http://dx.doi.org/10.1201/9781351074483]
[36]
Chou, T.C. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res., 2010, 70(2), 440-446.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-1947] [PMID: 20068163]
[37]
Mota, S.T.S.; Vecchi, L.; Alves, D.A.; Cordeiro, A.O.; Guimarães, G.S.; Campos-Fernández, E.; Maia, Y.C.P.; Dornelas, B.C.; Bezerra, S.M.; de Andrade, V.P.; Goulart, L.R.; Araújo, T.G. Annexin A1 promotes the nuclear localization of the epidermal growth factor receptor in castration-resistant prostate cancer. Int. J. Biochem. Cell Biol., 2020, 127, 105838.
[http://dx.doi.org/10.1016/j.biocel.2020.105838] [PMID: 32858191]
[38]
Chou, T.C. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol. Rev., 2006, 58(3), 621-681.
[http://dx.doi.org/10.1124/pr.58.3.10] [PMID: 16968952]
[39]
Kijjoa, A.; Giesbrecht, A.; Akisue, M.; Gottlieb, O.; Gottlieb, H. Kijjoa A.E.A. 4-Nerodyl-cathechol from Pothomorphe umbellata. Planta Med., 1980, 39(5), 85-87.
[http://dx.doi.org/10.1055/s-2008-1074908]
[40]
Caesar, L.K.; Cech, N.B.; Kubanek, J.; Linington, R.; Luesch, H. Synergy and antagonism in natural product extracts: when 1 + 1 does not equal 2. Nat. Prod. Rep., 2019, 36(6), 869-888.
[http://dx.doi.org/10.1039/C9NP00011A] [PMID: 31187844]
[41]
Chandrasekar, T.; Yang, J.C.; Gao, A.C.; Evans, C.P. Mechanisms of resistance in castration-resistant prostate cancer (CRPC). Transl. Androl. Urol., 2015, 4(3), 365-380.
[http://dx.doi.org/10.3978/J.ISSN.2223-4683.2015.05.02] [PMID: 26814148]
[42]
Liu, C.H.; Tang, W.C.; Sia, P.; Huang, C.C.; Yang, P.M.; Wu, M.H.; Lai, I.L.; Lee, K.H. Berberine inhibits the metastatic ability of prostate cancer cells by suppressing epithelial-to-mesenchymal transition (EMT)-associated genes with predictive and prognostic relevance. Int. J. Med. Sci., 2015, 12(1), 63-71.
[http://dx.doi.org/10.7150/ijms.9982] [PMID: 25552920]
[43]
Beutler, J.A. Natural products as a foundation for drug discovery. Curr. Protocols Pharmacol., 2019, 86(1), e67.
[http://dx.doi.org/10.1002/cpph.67] [PMID: 31539923]
[44]
Li, J.W.H.; Vederas, J.C. Drug discovery and natural products: end of an era or an endless frontier? Science, 2009, 325(5937), 161-165.
[http://dx.doi.org/10.1126/science.1168243] [PMID: 19589993]
[45]
Harvey, A.L.; Edrada-Ebel, R.; Quinn, R.J. The re-emergence of natural products for drug discovery in the genomics era. Nat. Rev. Drug Discov., 2015, 14(2), 111-129.
[http://dx.doi.org/10.1038/nrd4510] [PMID: 25614221]
[46]
Buenz, E.J.; Verpoorte, R.; Bauer, B.A. The Ethnopharmacologic Contribution to Bioprospecting Natural Products. Annu. Rev. Pharmacol. Toxicol., 2018, 58, 509-530.
[http://dx.doi.org/10.1146/annurev-pharmtox-010617-052703]
[47]
Saeidnia, S.; Gohari, A.R.; Manayi, A. Reverse pharmacognosy and reverse pharmacology; two closely related approaches for drug discovery development. Curr. Pharm. Biotechnol., 2016, 17(11), 1016-1022.
[http://dx.doi.org/10.2174/1389201017666160709200208] [PMID: 27396403]
[48]
Chen, Y.; de Bruyn Kops, C.; Kirchmair, J. Data resources for the computer-guided discovery of bioactive natural products. J. Chem. Inf. Model., 2017, 57(9), 2099-2111.
[http://dx.doi.org/10.1021/acs.jcim.7b00341] [PMID: 28853576]
[49]
da Silva, V.V.; Ropke, C.D.; Miranda, D.V.; de Almeida, R.L.; Sawada, T.C.H.; Rivelli, D.P. Photoprotective effect of Pothomorphe umbellata on UVB radiation-induced biomarkers involved in carcinogenesis of hairless mouse epidermis. Cutan. Ocul. Toxicol., 2009, 28(2), 54-60.
[http://dx.doi.org/10.1080/15569520902784014]
[50]
Hii, L.W.; Lim, S.H.E.; Leong, C.O.; Chin, S.Y.; Tan, N.P.; Lai, K.S.; Mai, C.W. The synergism of Clinacanthus nutans Lindau extracts with gemcitabine: downregulation of anti-apoptotic markers in squamous pancreatic ductal adenocarcinoma. BMC Complement. Altern. Med., 2019, 19(1), 257.
[http://dx.doi.org/10.1186/s12906-019-2663-9] [PMID: 31521140]
[51]
Duarte, D.; Vale, N. Evaluation of synergism in drug combinations and reference models for future orientations in oncology. Curr. Res. Pharmacol. Drug Discov., 2022, 3, 100110.
[http://dx.doi.org/10.1016/j.crphar.2022.100110] [PMID: 35620200]
[52]
Papatsoris, A.G.; Karamouzis, M.V.; Papavassiliou, A.G. Novel insights into the implication of the IGF-1 network in prostate cancer. Trends Mol. Med., 2005, 11(2), 52-55.
[http://dx.doi.org/10.1016/j.molmed.2004.12.005] [PMID: 15694866]
[53]
Siech, C.; Rutz, J.; Maxeiner, S.; Grein, T.; Sonnenburg, M.; Tsaur, I.; Chun, F.K.H.; Blaheta, R.A. Insulin-like growth factor-1 influences prostate cancer cell growth and invasion through an integrin α3, α5, αv, and β1 dependent mechanism. Cancers (Basel), 2022, 14(2), 363.
[http://dx.doi.org/10.3390/cancers14020363] [PMID: 35053528]
[54]
Goldin, A.; Mantel, N. The employment of combinations of drugs in the chemotherapy of neoplasia: a review. Cancer Res., 1957, 17(7), 635-654.
[PMID: 13460966]
[55]
Baker, J.; Ajani, J.; Scotté, F.; Winther, D.; Martin, M.; Aapro, M.S.; von Minckwitz, G. Docetaxel-related side effects and their management. Eur. J. Oncol. Nurs., 2009, 13(1), 49-59.
[http://dx.doi.org/10.1016/j.ejon.2008.10.003] [PMID: 19201649]
[56]
Hamdan, D.; Leboeuf, C.; Le Foll, C.; Bousquet, G.; Janin, A. Re‐exploring immune‐related side effects of docetaxel in an observational study: Blood hypereosinophilia. Cancer Med., 2019, 8(5), 2005-2012.
[http://dx.doi.org/10.1002/cam4.2062] [PMID: 30854809]
[57]
Galsky, M.D.; Vogelzang, N.J. Docetaxel-based combination therapy for castration-resistant prostate cancer. Ann. Oncol., 2010, 21(11), 2135-2144.
[http://dx.doi.org/10.1093/annonc/mdq050] [PMID: 20351071]
[58]
Rushworth, L.K.; Hewit, K.; Munnings-Tomes, S.; Somani, S.; James, D.; Shanks, E.; Dufès, C.; Straube, A.; Patel, R.; Leung, H.Y. Repurposing screen identifies mebendazole as a clinical candidate to synergise with docetaxel for prostate cancer treatment. Br. J. Cancer, 2020, 122(4), 517-527.
[http://dx.doi.org/10.1038/s41416-019-0681-5] [PMID: 31844184]
[59]
Lu, X.; Yang, F.; Chen, D.; Zhao, Q.; Chen, D.; Ping, H.; Xing, N. Quercetin reverses docetaxel resistance in prostate cancer via androgen receptor and PI3K/Akt signaling pathways. Int. J. Biol. Sci., 2020, 16(7), 1121-1134.
[http://dx.doi.org/10.7150/ijbs.41686] [PMID: 32174789]
[60]
Lin, A.M.; Rini, B.I.; Derynck, M.K.; Weinberg, V.; Park, M.; Ryan, C.J.; Rosenberg, J.E.; Bubley, G.; Small, E.J. A phase I trial of docetaxel/estramustine/imatinib in patients with hormone-refractory prostate cancer. Clin. Genitourin. Cancer, 2007, 5(5), 323-328.
[http://dx.doi.org/10.3816/CGC.2007.n.011] [PMID: 17645829]
[61]
Mathema, V.B.; Koh, Y.S.; Thakuri, B.C.; Sillanpää, M. Parthenolide, a sesquiterpene lactone, expresses multiple anti-cancer and anti-inflammatory activities. Inflammation, 2012, 35(2), 560-565.
[http://dx.doi.org/10.1007/s10753-011-9346-0] [PMID: 21603970]
[62]
Di Lorenzo, G.; Figg, W.D.; Fossa, S.D.; Mirone, V.; Autorino, R.; Longo, N.; Imbimbo, C.; Perdonà, S.; Giordano, A.; Giuliano, M.; Labianca, R.; De Placido, S. Combination of bevacizumab and docetaxel in docetaxel-pretreated hormone-refractory prostate cancer: a phase 2 study. Eur. Urol., 2008, 54(5), 1089-1096.
[http://dx.doi.org/10.1016/j.eururo.2008.01.082] [PMID: 18276061]
[63]
Picus, J.; Halabi, S.; Kelly, W.K.; Vogelzang, N.J.; Whang, Y.E.; Kaplan, E.B.; Stadler, W.M.; Small, E.J. A phase 2 study of estramustine, docetaxel, and bevacizumab in men with castrate-resistant prostate cancer. Cancer, 2011, 117(3), 526-533.
[http://dx.doi.org/10.1002/cncr.25421] [PMID: 20862750]
[64]
Chi, K.N.; Hotte, S.J.; Yu, E.; Tu, D.; Eigl, B.; Tannock, I.; Saad, F.; North, S.; Powers, J.; Eisenhauer, E. Mature results of a randomized phase II study of OGX-011 in combination with docetaxel/prednisone versus docetaxel/prednisone in patients with metastatic castration-resistant prostate cancer. J. Clin. Oncol., 2009, 27(15)(Suppl.), 5012-5012.
[http://dx.doi.org/10.1200/jco.2009.27.15_suppl.5012]
[65]
Liu, G.; Kelly, W.K.; Wilding, G.; Leopold, L.; Brill, K.; Somer, B. An open-label, multicenter, phase I/II study of single-agent AT-101 in men with castrate-resistant prostate cancer. Clin. Cancer Res., 2009, 15(9), 3172-3176.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-2985] [PMID: 19366825]
[66]
Banerjee, P.; Chatterjee, M. Antiproliferative role of vitamin D and its analogs--a brief overview. Mol. Cell. Biochem., 2003, 253(1/2), 247-254.
[http://dx.doi.org/10.1023/A:1026072118217] [PMID: 14619976]
[67]
Sánchez, B.G.; Bort, A.; Mateos-Gómez, P.A.; Rodríguez-Henche, N.; Díaz-Laviada, I. Combination of the natural product capsaicin and docetaxel synergistically kills human prostate cancer cells through the metabolic regulator AMP-activated kinase. Cancer Cell Int., 2019, 19(1), 54.
[http://dx.doi.org/10.1186/s12935-019-0769-2] [PMID: 30899201]
[68]
Mahammedi, H.; Planchat, E.; Pouget, M.; Durando, X.; Curé, H.; Guy, L.; Van-Praagh, I.; Savareux, L.; Atger, M.; Bayet-Robert, M.; Gadea, E.; Abrial, C.; Thivat, E.; Chollet, P.; Eymard, J.C. The new combination docetaxel, prednisone and curcumin in patients with castration-resistant prostate cancer: A pilot phase II study. Oncology, 2016, 90(2), 69-78.
[http://dx.doi.org/10.1159/000441148] [PMID: 26771576]
[69]
Bhalla, K.N. Microtubule-targeted anticancer agents and apoptosis. Oncogene, 2003, 22(56), 9075-9086.
[http://dx.doi.org/10.1038/sj.onc.1207233] [PMID: 14663486]
[70]
Ogura, T.; Tanaka, Y.; Tamaki, H.; Harada, M. Docetaxel induces Bcl-2- and pro-apoptotic caspase-independent death of human prostate cancer DU145 cells. Int. J. Oncol., 2016, 48(6), 2330-2338.
[http://dx.doi.org/10.3892/ijo.2016.3482] [PMID: 27082738]
[71]
Mikuła-Pietrasik, J.; Witucka, A.; Pakuła, M.; Uruski, P.; Begier-Krasińska, B.; Niklas, A.; Tykarski, A.; Książek, K. Comprehensive review on how platinum- and taxane-based chemotherapy of ovarian cancer affects biology of normal cells. Cell. Mol. Life Sci., 2019, 76(4), 681-697.
[http://dx.doi.org/10.1007/s00018-018-2954-1] [PMID: 30382284]
[72]
Weaver, B.A. How Taxol/paclitaxel kills cancer cells. Mol. Biol. Cell, 2014, 25(18), 2677-2681.
[http://dx.doi.org/10.1091/mbc.e14-04-0916] [PMID: 25213191]
[73]
Dong, Y.; Bai, S.; Zhang, B.Y. Impact of taxanes on androgen receptor signaling. Asian J. Androl., 2019, 21(3), 249-252.
[http://dx.doi.org/10.4103/aja.aja_37_18] [PMID: 29900882]
[74]
Martin, S.K.; Kyprianou, N. Exploitation of the androgen receptor to overcome taxane resistance in advanced prostate cancer. Adv. Cancer Res., 2015, 127, 123-158.
[http://dx.doi.org/10.1016/bs.acr.2015.03.001] [PMID: 26093899]
[75]
Elwakeel, A.; Soudan, H.; Eldoksh, A.; Shalaby, M.; Eldemellawy, M.; Ghareeb, D.; Abouseif, M.; Fayad, A.; Hassan, M.; Saeed, H. Implementation of the Chou-Talalay method for studying the in vitro pharmacodynamic interactions of binary and ternary drug combinations on MDA-MB-231 triple negative breast cancer cells. Synergy, 2019, 8, 100047.
[http://dx.doi.org/10.1016/j.synres.2019.100047]
[76]
Dongre, A.; Weinberg, R.A. New insights into the mechanisms of epithelial–mesenchymal transition and implications for cancer. Nat. Rev. Mol. Cell Biol., 2019, 20(2), 69-84.
[http://dx.doi.org/10.1038/s41580-018-0080-4] [PMID: 30459476]
[77]
Dalla Pozza, E.; Forciniti, S.; Palmieri, M.; Dando, I. Secreted molecules inducing epithelial-to-mesenchymal transition in cancer development. Semin. Cell Dev. Biol., 2018, 78, 62-72.
[http://dx.doi.org/10.1016/j.semcdb.2017.06.027] [PMID: 28673679]