Characterization of Dicaffeoylspermidine Derivatives from Wolfberry as Potent and Selective Inhibitors of Human Cytochrome P450 46A1 In vitro

Page: [124 - 130] Pages: 7

  • * (Excluding Mailing and Handling)

Abstract

Background: Cytochrome P450 (CYP) 46A1 enzyme is a neuro-specific metabolic enzyme that converts cholesterol to 24-hydroxycholesterol. Inhibition of CYP46A1 activity is of great significance to improve neurodegenerative disorder.

Objective: The present study aimed to investigate the inhibitory effect of wolfberry dicaffeoylspermidine derivatives on CYP46A1.

Methods: The inhibitory effect of six wolfberry dicaffeoylspermidine derivatives on CYP46A1 activity was investigated using cholesterol as a substrate in vitro. Molecular docking was used to simulate the interactions between wolfberry dicaffeoylspermidine derivatives and CYP46A1.

Results: Of these spermidines, lycibarbarspermidines D (1) and A (2) showed highly-selective and strong inhibitory effects on CYP46A1 but not on other human CYP isoforms. Both 1 and 2 exhibit mixed partial competitive inhibition of CYP46A1, with Ki values of 106 nM and 258 nM, respectively. Notably, 1 and 2 had excellent orientations within the active cavity of CYP46A1, and both formed three water-hydrogen bonds with W732 and W765, located near the heme of CYP46A1.

Conclusion: Compounds 1 and 2 showed a highly-selective and nanomolar affinity for CYP46A1 in vitro. These findings suggested that compounds 1 and 2 could be used as potent inhibitors of CYP46A1 in vitro.

Graphical Abstract

[1]
Moutinho, M.; Nunes, M.J.; Rodrigues, E. Cholesterol 24-hydroxylase: Brain cholesterol metabolism and beyond. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2016, 1861(12), 1911-1920.
[http://dx.doi.org/10.1016/j.bbalip.2016.09.011] [PMID: 27663182]
[2]
Petrov, A.M.; Pikuleva, I.A. Cholesterol 24-Hydroxylation by CYP46A1: Benefits of modulation for brain diseases. Neurotherapeutics, 2019, 16(3), 635-648.
[http://dx.doi.org/10.1007/s13311-019-00731-6] [PMID: 31001737]
[3]
Mast, N.; Saadane, A.; Valencia-Olvera, A.; Constans, J.; Maxfield, E.; Arakawa, H.; Li, Y.; Landreth, G.; Pikuleva, I.A. Cholesterol-metabolizing enzyme cytochrome P450 46A1 as a pharmacologic target for Alzheimer’s disease. Neuropharmacology, 2017, 123, 465-476.
[http://dx.doi.org/10.1016/j.neuropharm.2017.06.026] [PMID: 28655608]
[4]
Hudry, E.; Van, D.D.; Kulik, W.; De, D.P.; Stet, F.; Ahouansou, O. Adeno-associated virus gene therapy with cholesterol 24-hydroxylase reduces the amyloid pathology before or after the onset of amyloid plaques in mouse models of Alzheimer’s disease. Mol. Ther., 2010, 18(1), 44-53.
[5]
Djelti, F.; Braudeau, J.; Hudry, E.; Dhenain, M.; Varin, J.; Bièche, I.; Marquer, C.; Chali, F.; Ayciriex, S.; Auzeil, N.; Alves, S.; Langui, D.; Potier, M.C.; Laprevote, O.; Vidaud, M.; Duyckaerts, C.; Miles, R.; Aubourg, P.; Cartier, N. CYP46A1 inhibition, brain cholesterol accumulation and neurodegeneration pave the way for Alzheimer’s disease. Brain, 2015, 138(8), 2383-2398.
[http://dx.doi.org/10.1093/brain/awv166] [PMID: 26141492]
[6]
Chali, F.; Djelti, F.; Eugene, E.; Valderrama, M.; Marquer, C.; Aubourg, P.; Duykaerts, C.; Miles, R.; Cartier, N.; Navarro, V. Inhibiting cholesterol degradation induces neuronal sclerosis and epileptic activity in mouse hippocampus. Eur. J. Neurosci., 2015, 41(10), 1345-1355.
[http://dx.doi.org/10.1111/ejn.12911] [PMID: 25847620]
[7]
Boussicault, L.; Alves, S.; Lamazière, A.; Planques, A.; Heck, N.; Moumné, L.; Despres, G.; Bolte, S.; Hu, A.; Pagès, C.; Galvan, L.; Piguet, F.; Aubourg, P.; Cartier, N.; Caboche, J.; Betuing, S. CYP46A1, the rate-limiting enzyme for cholesterol degradation, is neuroprotective in Huntington’s disease. Brain, 2016, 139(3), 953-970.
[http://dx.doi.org/10.1093/brain/awv384] [PMID: 26912634]
[8]
Sun, M.Y.; Linsenbardt, A.J.; Emnett, C.M.; Eisenman, L.N.; Izumi, Y.; Zorumski, C.F.; Mennerick, S. 24(S)-Hydroxycholesterol as a modulator of neuronal signaling and survival. Neuroscientist, 2016, 22(2), 132-144.
[http://dx.doi.org/10.1177/1073858414568122] [PMID: 25628343]
[9]
Nishi, T.; Kondo, S.; Miyamoto, M.; Watanabe, S.; Hasegawa, S.; Kondo, S.; Yano, J.; Watanabe, E.; Ishi, T.; Yoshikawa, M.; Ando, H.K.; Farnaby, W.; Fujimoto, S.; Sunahara, E.; Ohori, M.; During, M.J.; Kuroita, T.; Koike, T. Soticlestat, a novel cholesterol 24-hydroxylase inhibitor shows a therapeutic potential for neural hyperexcitation in mice. Sci. Rep., 2020, 10(1), 17081.
[http://dx.doi.org/10.1038/s41598-020-74036-6] [PMID: 33051477]
[10]
Hawkins, N.A.; Jurado, M.; Thaxton, T.T.; Duarte, S.E.; Barse, L.; Tatsukawa, T.; Yamakawa, K.; Nishi, T.; Kondo, S.; Miyamoto, M.; Abrahams, B.S.; During, M.J.; Kearney, J.A. Soticlestat, a novel cholesterol 24‐hydroxylase inhibitor, reduces seizures and premature death in Dravet syndrome mice. Epilepsia, 2021, 62(11), 2845-2857.
[http://dx.doi.org/10.1111/epi.17062] [PMID: 34510432]
[11]
Hahn, C.D.; Jiang, Y.; Villanueva, V.; Zolnowska, M.; Arkilo, D.; Hsiao, S.; Asgharnejad, M.; Dlugos, D. A phase 2, randomized, double‐blind, placebo‐controlled study to evaluate the efficacy and safety of soticlestat as adjunctive therapy in pediatric patients with Dravet syndrome or Lennox–Gastaut syndrome (ELEKTRA). Epilepsia, 2022, 63(10), 2671-2683.
[http://dx.doi.org/10.1111/epi.17367] [PMID: 35841234]
[12]
Petrov, A.M.; Lam, M.; Mast, N.; Moon, J.; Li, Y.; Maxfield, E.; Pikuleva, I.A. CYP46A1 activation by efavirenz leads to behavioral improvement without significant changes in amyloid plaque load in the brain of 5XFAD mice. Neurotherapeutics, 2019, 16(3), 710-724.
[http://dx.doi.org/10.1007/s13311-019-00737-0] [PMID: 31062296]
[13]
Zhou, Z.Q.; Fan, H.X.; He, R.R.; Xiao, J.; Tsoi, B.; Lan, K.H.; Kurihara, H.; So, K.F.; Yao, X.S.; Gao, H. Lycibarbarspermidines A-O, new dicaffeoylspermidine derivatives from wolfberry, with activities against Alzheimer’s disease and oxidation. J. Agric. Food Chem., 2016, 64(11), 2223-2237.
[http://dx.doi.org/10.1021/acs.jafc.5b05274] [PMID: 26953624]
[14]
Gao, K.; Ma, D.; Cheng, Y.; Tian, X.; Lu, Y.; Du, X.; Tang, H.; Chen, J. Three new dimers and two monomers of phenolic amides from the fruits of Lycium barbarum and their antioxidant activities. J. Agric. Food Chem., 2015, 63(4), 1067-1075.
[http://dx.doi.org/10.1021/jf5049222] [PMID: 25603493]
[15]
Ho, Y.S.; Yu, M.S.; Lai, C.S.W.; So, K.F.; Yuen, W.H.; Chang, R.C.C. Characterizing the neuroprotective effects of alkaline extract of Lycium barbarum on β-amyloid peptide neurotoxicity. Brain Res., 2007, 1158, 123-134.
[http://dx.doi.org/10.1016/j.brainres.2007.04.075] [PMID: 17568570]
[16]
Ho, Y.S.; Yu, M.S.; Yang, X.F.; So, K.F.; Yuen, W.H.; Chang, R.C.C. Neuroprotective effects of polysaccharides from wolfberry, the fruits of Lycium barbarum, against homocysteine-induced toxicity in rat cortical neurons. J. Alzheimers Dis., 2010, 19(3), 813-827.
[http://dx.doi.org/10.3233/JAD-2010-1280] [PMID: 20157238]
[17]
Mast, N.; White, M.A.; Bjorkhem, I.; Johnson, E.F.; Stout, C.D.; Pikuleva, I.A. Crystal structures of substrate-bound and substrate-free cytochrome P450 46A1, the principal cholesterol hydroxylase in the brain. Proc. Natl. Acad. Sci. USA, 2008, 105(28), 9546-9551.
[http://dx.doi.org/10.1073/pnas.0803717105] [PMID: 18621681]
[18]
Wu, J.; Cao, Y.; Zhang, Y.; Liu, Y.; Hong, J.Y.; Zhu, L.; Ge, G.; Yang, L. Deoxyschizandrin, a naturally occurring lignan, is a specific probe substrate of human cytochrome P450 3A. Drug Metab. Dispos., 2014, 42(1), 94-104.
[http://dx.doi.org/10.1124/dmd.113.053884] [PMID: 24131672]
[19]
Wu, J.J.; Cao, Y.F.; Feng, L.; He, Y.Q.; Hong, J.Y.; Dou, T.Y.; Wang, P.; Hao, D.C.; Ge, G.B.; Yang, L. A naturally occurring isoform-specific probe for highly selective and sensitive detection of human cytochrome P450 3A5. J. Med. Chem., 2017, 60(9), 3804-3813.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00001] [PMID: 28441491]
[20]
Wu, J.; Guan, X.; Dai, Z.; He, R.; Ding, X.; Yang, L.; Ge, G. Molecular probes for human cytochrome P450 enzymes: Recent progress and future perspectives. Coord. Chem. Rev., 2021, 427, 213600.
[http://dx.doi.org/10.1016/j.ccr.2020.213600]
[21]
Walsky, R.L.; Obach, R.S. Validated assays for human cytochrome P450 activities. Drug Metab. Dispos., 2004, 32(6), 647-660.
[http://dx.doi.org/10.1124/dmd.32.6.647] [PMID: 15155557]
[22]
Wang, S.; Wang, X.; Wang, Z.; Wang, Z.; Jiang, L.; Liu, J.; Wu, J.; Liu, Y. Highly sensitive and selective detection of cytochrome P450 46A1 activity by a ultra‐high‐performance liquid chromatography–tandem mass spectrometry method. Biomed. Chromatogr., 2022, 36(3), e5291.
[http://dx.doi.org/10.1002/bmc.5291] [PMID: 34854105]
[23]
Mast, N.; Zheng, W.; Stout, C.D.; Pikuleva, I.A. Antifungal Azoles: Structural insights into undesired tight binding to cholesterol-metabolizing CYP46A1. Mol. Pharmacol., 2013, 84(1), 86-94.
[http://dx.doi.org/10.1124/mol.113.085902] [PMID: 23604141]
[24]
Mast, N.; Charvet, C.; Pikuleva, I.A.; Stout, C.D. Structural basis of drug binding to CYP46A1, an enzyme that controls cholesterol turnover in the brain. J. Biol. Chem., 2010, 285(41), 31783-31795.
[http://dx.doi.org/10.1074/jbc.M110.143313] [PMID: 20667828]
[25]
Shafaati, M.; Mast, N.; Beck, O.; Nayef, R.; Heo, G.Y.; Björkhem-Bergman, L.; Lütjohann, D.; Björkhem, I.; Pikuleva, I.A. The antifungal drug voriconazole is an efficient inhibitor of brain cholesterol 24S-hydroxylase in vitro and in vivo. J. Lipid Res., 2010, 51(2), 318-323.
[http://dx.doi.org/10.1194/jlr.M900174-JLR200] [PMID: 19474457]
[26]
Mast, N.; Linger, M.; Clark, M.; Wiseman, J.; Stout, C.D.; Pikuleva, I.A. In silico and intuitive predictions of CYP46A1 inhibition by marketed drugs with subsequent enzyme crystallization in complex with fluvoxamine. Mol. Pharmacol., 2012, 82(5), 824-834.
[http://dx.doi.org/10.1124/mol.112.080424] [PMID: 22859721]
[27]
Mast, N.; Zheng, W.; Stout, C.D.; Pikuleva, I.A. Binding of a cyano- and fluoro-containing drug bicalutamide to cytochrome P450 46A1: unusual features and spectral response. J. Biol. Chem., 2013, 288(7), 4613-4624.
[http://dx.doi.org/10.1074/jbc.M112.438754] [PMID: 23288837]
[28]
Fang, Z.Z.; Zhang, Y.Y.; Wang, X.L.; Cao, Y.F.; Huo, H.; Yang, L. Bioactivation of herbal constituents: Simple alerts in the complex system. Expert Opin. Drug Metab. Toxicol., 2011, 7(8), 989-1007.
[http://dx.doi.org/10.1517/17425255.2011.586335] [PMID: 21609190]
[29]
Jeong, S.; Nguyen, P.D.; Desta, Z. Comprehensive in vitro analysis of voriconazole inhibition of eight cytochrome P450 (CYP) enzymes: major effect on CYPs 2B6, 2C9, 2C19, and 3A. Antimicrob. Agents Chemother., 2009, 53(2), 541-551.
[http://dx.doi.org/10.1128/AAC.01123-08] [PMID: 19029318]
[30]
Li, X.; Frechen, S.; Moj, D.; Lehr, T.; Taubert, M.; Hsin, C.; Mikus, G.; Neuvonen, P.J.; Olkkola, K.T.; Saari, T.I.; Fuhr, U. A Physiologically based pharmacokinetic model of voriconazole integrating time-dependent inhibition of CYP3A4, genetic polymorphisms of CYP2C19 and predictions of drug–drug interactions. Clin. Pharmacokinet., 2020, 59(6), 781-808.
[http://dx.doi.org/10.1007/s40262-019-00856-z] [PMID: 31853755]
[31]
Godamudunage, M.P.; Grech, A.M.; Scott, E.E. Comparison of antifungal azole interactions with adult cytochrome P450 3A4 versus neonatal cytochrome P450 3A7. Drug Metab. Dispos., 2018, 46(9), 1329-1337.
[http://dx.doi.org/10.1124/dmd.118.082032] [PMID: 29991575]
[32]
Uto, Y. Imidazo[1,2-a]pyridines as cholesterol 24-hydroxylase (CYP46A1) inhibitors: A patent evaluation (WO2014061676). Expert Opin. Ther. Pat., 2015, 25(3), 373-377.
[http://dx.doi.org/10.1517/13543776.2014.989214] [PMID: 25514969]
[33]
Koike, T.; Yoshikawa, M.; Nomura, I.; Ito, Y.; Kimura, E.; Hasui, T.; Ando, H.; Fukuda, H.; Nishi, T. Heterocyclic compounds. Patent WO2014061676/US 20150266872 A1, 2015.
[34]
Koike, T.; Yoshikawa, M.; Ando, H.; Farnaby, W.J. 1-arylcarbonyl-4-oxy-piperidine compounds useful for the treatment of neurodegenerative diseases. Patent US 20140228373 A1, 2014.