Physiological Roles of Hippo Signaling Pathway and Autophagy in Dementia

Page: [112 - 124] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Background: Dementia is a neurocognitive disorder associated with the aging brain and mainly affects the hippocampus and cerebral cortex. The Hippo signaling pathway and autophagy proteins have been found to be perturbed in the brain affected by dementia processes.

Objective: This systematic review aims to elaborate on the involvement of the Hippo signaling pathway and autophagy in modulating the progression and severity of dementia in aging.

Methods: Searches were conducted on MEDLINE, Google Scholar, Scopus, and Web of Science databases.

Results: The Hippo signaling pathway is dependent upon the transcriptional co-activator YAP/TAZ, which forms complexes with TEAD in the nucleus in order to maintain cell homeostasis. When the expression YAP/TAZ is reduced, transcriptional repression-induced atypical cell death, ballooning cell death, and necrosis will consequently occur in the neurons. Moreover, the autophagic proteins, such as LC3, ATG proteins, and Beclin, are reduced, resulting in the disruption of autophagosome formation and accumulation and the spread of misfolded proteins in the brain suffering from dementia.

Conclusion: The impairment of the Hippo signaling pathway and autophagy in the dementia process in aging should be considered since it might predict the severity, treatment, and prevention of dementia.

Graphical Abstract

[1]
Mota C, Taipa R, das Neves SP, et al. Structural and molecular correlates of cognitive aging in the rat. Sci Rep 2019; 9(1): 2005.
[http://dx.doi.org/10.1038/s41598-019-39645-w] [PMID: 30765864]
[2]
Yu Y, Feng L, Li J, et al. The alteration of autophagy and apoptosis in the hippocampus of rats with natural aging-dependent cognitive deficits. Behav Brain Res 2017; 334: 155-62.
[http://dx.doi.org/10.1016/j.bbr.2017.07.003] [PMID: 28688896]
[3]
Toepper M. Dissociating normal aging from Alzheimer’s disease: A view from cognitive neuroscience. J Alzheimers Dis 2017; 57(2): 331-52.
[http://dx.doi.org/10.3233/JAD-161099] [PMID: 28269778]
[4]
Matthews KA, Xu W, Gaglioti AH, et al. Racial and ethnic estimates of Alzheimer’s disease and related dementias in the United States (2015–2060) in adults aged ≥ 65 years. Alzheimers Dement 2019; 15(1): 17-24.
[http://dx.doi.org/10.1016/j.jalz.2018.06.3063] [PMID: 30243772]
[5]
Podcasy JL, Epperson CN. Considering sex and gender in Alzheimer disease and other dementias. Dialogues Clin Neurosci 2016; 18(4): 437-46.
[http://dx.doi.org/10.31887/DCNS.2016.18.4/cepperson] [PMID: 28179815]
[6]
Silva MVF, Loures CMG, Alves LCV, de Souza LC, Borges KBG, Carvalho MG. Alzheimer’s disease: Risk factors and potentially protective measures. J Biomed Sci 2019; 26(1): 33.
[http://dx.doi.org/10.1186/s12929-019-0524-y] [PMID: 31072403]
[7]
Long Z, Chen J, Zhao Y, et al. Dynamic changes of autophagic flux induced by Abeta in the brain of postmortem Alzheimer’s disease patients, animal models and cell models. Aging (Albany NY) 2020; 12(11): 10912-30.
[http://dx.doi.org/10.18632/aging.103305] [PMID: 32535554]
[8]
Xu J, Patassini S, Rustogi N, et al. Regional protein expression in human Alzheimer’s brain correlates with disease severity. Commun Biol 2019; 2(1): 43.
[http://dx.doi.org/10.1038/s42003-018-0254-9] [PMID: 30729181]
[9]
Xu M, Zhang DF, Luo R, et al. A systematic integrated analysis of brain expression profiles reveals YAP1 and other prioritized hub genes as important upstream regulators in Alzheimer’s disease. Alzheimers Dement 2018; 14(2): 215-29.
[http://dx.doi.org/10.1016/j.jalz.2017.08.012] [PMID: 28923553]
[10]
Meng Z, Moroishi T, Guan KL. Mechanisms of Hippo pathway regulation. Genes Dev 2016; 30(1): 1-17.
[http://dx.doi.org/10.1101/gad.274027.115] [PMID: 26728553]
[11]
Tanaka H, Homma H, Fujita K, et al. YAP-dependent necrosis occurs in early stages of Alzheimer’s disease and regulates mouse model pathology. Nat Commun 2020; 11(1): 507.
[http://dx.doi.org/10.1038/s41467-020-14353-6] [PMID: 31980612]
[12]
Qing J, Liu X, Wu Q, et al. Hippo/YAP pathway plays a critical role in effect of GDNF against Aβ-induced inflammation in microglial cells. DNA Cell Biol 2020; 39(6): 1064-71.
[http://dx.doi.org/10.1089/dna.2019.5308] [PMID: 32255663]
[13]
Xu X, Shen X, Wang J, et al. YAP prevents premature senescence of astrocytes and cognitive decline of Alzheimer’s disease through regulating CDK6 signaling. Aging Cell 2021; 20(9): e13465.
[http://dx.doi.org/10.1111/acel.13465] [PMID: 34415667]
[14]
Irwin M, Tare M, Singh A, et al. A positive feedback loop of hippo- and c-jun-amino-terminal kinase signaling pathways regulates amyloid-beta-mediated neurodegeneration. Front Cell Dev Biol 2020; 8: 117.
[http://dx.doi.org/10.3389/fcell.2020.00117] [PMID: 32232042]
[15]
Bhat R, Crowe EP, Bitto A, et al. Astrocyte senescence as a component of Alzheimer’s disease. PLoS One 2012; 7(9): e45069.
[http://dx.doi.org/10.1371/journal.pone.0045069] [PMID: 22984612]
[16]
Han X, Zhang T, Liu H, Mi Y, Gou X. Astrocyte senescence and Alzheimer’s disease: A review. Front Aging Neurosci 2020; 12: 148.
[http://dx.doi.org/10.3389/fnagi.2020.00148] [PMID: 32581763]
[17]
Chen ML, Hong CG, Yue T, et al. Inhibition of miR-331-3p and miR-9-5p ameliorates Alzheimer’s disease by enhancing autophagy. Theranostics 2021; 11(5): 2395-409.
[http://dx.doi.org/10.7150/thno.47408] [PMID: 33500732]
[18]
Manczak M, Kandimalla R, Yin X, Reddy PH. Hippocampal mutant APP and amyloid beta-induced cognitive decline, dendritic spine loss, defective autophagy, mitophagy and mitochondrial abnormalities in a mouse model of Alzheimer’s disease. Hum Mol Genet 2018; 27(8): 1332-42.
[http://dx.doi.org/10.1093/hmg/ddy042] [PMID: 29408999]
[19]
Reddy PH, Yin X, Manczak M, et al. Mutant APP and amyloid beta-induced defective autophagy, mitophagy, mitochondrial structural and functional changes and synaptic damage in hippocampal neurons from Alzheimer’s disease. Hum Mol Genet 2018; 27(14): 2502-16.
[http://dx.doi.org/10.1093/hmg/ddy154] [PMID: 29701781]
[20]
Wang D, He J, Huang B, Liu S, Zhu H, Xu T. Emerging role of the Hippo pathway in autophagy. Cell Death Dis 2020; 11(10): 880.
[http://dx.doi.org/10.1038/s41419-020-03069-6] [PMID: 33082313]
[21]
Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021; 372: n71.
[http://dx.doi.org/10.1136/bmj.n71] [PMID: 33782057]
[22]
Singh A, Gogia N, Chimata AV, Deshpande P, Singh A. Hippo signaling: Bridging the gap between cancer and neurodegenerative disorders. Neural Regen Res 2021; 16(4): 643-52.
[http://dx.doi.org/10.4103/1673-5374.295273] [PMID: 33063715]
[23]
Dubey SK, Tapadia MG. Yorkie regulates neurodegeneration through canonical pathway and innate immune response. Mol Neurobiol 2018; 55(2): 1193-207.
[http://dx.doi.org/10.1007/s12035-017-0388-7] [PMID: 28102471]
[24]
Mueller KA, Glajch KE, Huizenga MN, et al. Hippo signaling pathway dysregulation in human Huntington’s disease brain and neuronal stem cells. Sci Rep 2018; 8(1): 11355.
[http://dx.doi.org/10.1038/s41598-018-29319-4] [PMID: 30054496]
[25]
Mao Y, Chen X, Xu M, et al. Targeting TEAD/YAP-transcription-dependent necrosis, TRIAD, ameliorates Huntington’s disease pathology. Hum Mol Genet 2016; 25(21): ddw303.
[http://dx.doi.org/10.1093/hmg/ddw303] [PMID: 28171658]
[26]
Khan M, Rutten BPF, Kim MO. MST1 regulates neuronal cell death via JNK/casp3 signaling pathway in HFD mouse brain and HT22 cells. Int J Mol Sci 2019; 20(10): 2504.
[http://dx.doi.org/10.3390/ijms20102504] [PMID: 31117242]
[27]
Tavares IA, Touma D, Lynham S, et al. Prostate-derived sterile 20-like kinases (PSKs/TAOKs) phosphorylate tau protein and are activated in tangle-bearing neurons in Alzheimer disease. J Biol Chem 2013; 288(21): 15418-29.
[http://dx.doi.org/10.1074/jbc.M112.448183] [PMID: 23585562]
[28]
de Duve C. The lysosome concept. In: de Duve AVS, Cameron MP, Eds. Novartis Foundation Symposia. Chichester, UK: John Wiley & Sons, Ltd. 1963; pp. 1-35.
[http://dx.doi.org/10.1002/9780470715314.ch1]
[29]
Masaki R, Yamamoto A, Tashiro Y. Cytochrome P-450 and NADPH-cytochrome P-450 reductase are degraded in the autolysosomes in rat liver. J Cell Biol 1987; 104(5): 1207-15.
[http://dx.doi.org/10.1083/jcb.104.5.1207] [PMID: 3106362]
[30]
Parzych KR, Klionsky DJ. An overview of autophagy: Morphology, mechanism, and regulation. Antioxid Redox Signal 2014; 20(3): 460-73.
[http://dx.doi.org/10.1089/ars.2013.5371] [PMID: 23725295]
[31]
Marzella L, Ahlberg J, Glaumann H. Autophagy, heterophagy, microautophagy and crinophagy as the means for intracellular degradation. Virchows Arch B Cell Pathol Incl Mol Pathol 1981; 36(1): 219-34.
[http://dx.doi.org/10.1007/BF02912068] [PMID: 6116336]
[32]
Sahu R, Kaushik S, Clement CC, et al. Microautophagy of cytosolic proteins by late endosomes. Dev Cell 2011; 20(1): 131-9.
[http://dx.doi.org/10.1016/j.devcel.2010.12.003] [PMID: 21238931]
[33]
Novak I, Kirkin V, McEwan DG, et al. Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep 2010; 11(1): 45-51.
[http://dx.doi.org/10.1038/embor.2009.256] [PMID: 20010802]
[34]
Gao F, Chen D, Si J, et al. The mitochondrial protein BNIP3L is the substrate of PARK2 and mediates mitophagy in PINK1/PARK2 pathway. Hum Mol Genet 2015; 24(9): 2528-38.
[http://dx.doi.org/10.1093/hmg/ddv017] [PMID: 25612572]
[35]
Trempe JF, Fon EA. Structure and function of parkin, PINK1, and DJ-1, the three musketeers of neuroprotection. Front Neurol 2013; 4: 38.
[http://dx.doi.org/10.3389/fneur.2013.00038] [PMID: 23626584]
[36]
Castellazzi M, Patergnani S, Donadio M, et al. Autophagy and mitophagy biomarkers are reduced in sera of patients with Alzheimer’s disease and mild cognitive impairment. Sci Rep 2019; 9(1): 20009.
[http://dx.doi.org/10.1038/s41598-019-56614-5] [PMID: 31882960]
[37]
Inoue K, Rispoli J, Kaphzan H, et al. Macroautophagy deficiency mediates age-dependent neurodegeneration through a phospho-tau pathway. Mol Neurodegener 2012; 7(1): 48.
[http://dx.doi.org/10.1186/1750-1326-7-48] [PMID: 22998728]
[38]
Omata Y, Lim YM, Akao Y, Tsuda L. Age-induced reduction of autophagy-related gene expression is associated with onset of Alzheimer’s disease. Am J Neurodegener Dis 2014; 3(3): 134-42.
[PMID: 25628964]
[39]
Lachance V, Wang Q, Sweet E, et al. Autophagy protein NRBF2 has reduced expression in Alzheimer’s brains and modulates memory and amyloid-beta homeostasis in mice. Mol Neurodegener 2019; 14(1): 43.
[http://dx.doi.org/10.1186/s13024-019-0342-4] [PMID: 31775806]
[40]
Tsakiri EN, Gumeni S, Manola MS, Trougakos IP. Amyloid toxicity in a Drosophila Alzheimer’s model is ameliorated by autophagy activation. Neurobiol Aging 2021; 105: 137-47.
[http://dx.doi.org/10.1016/j.neurobiolaging.2021.04.017] [PMID: 34062489]
[41]
Pomilio C, Pavia P, Gorojod RM, et al. Glial alterations from early to late stages in a model of Alzheimer’s disease: Evidence of autophagy involvement in Aβ internalization. Hippocampus 2016; 26(2): 194-210.
[http://dx.doi.org/10.1002/hipo.22503] [PMID: 26235241]
[42]
Pomilio C, Gorojod RM, Riudavets M, et al. Microglial autophagy is impaired by prolonged exposure to β-amyloid peptides: Evidence from experimental models and Alzheimer’s disease patients. Geroscience 2020; 42(2): 613-32.
[http://dx.doi.org/10.1007/s11357-020-00161-9] [PMID: 31975051]
[43]
Ling D, Salvaterra PM. Brain aging and Aβ1-42 neurotoxicity converge via deterioration in autophagy-lysosomal system: A conditional Drosophila model linking Alzheimer’s neurodegeneration with aging. Acta Neuropathol 2011; 121(2): 183-91.
[http://dx.doi.org/10.1007/s00401-010-0772-0] [PMID: 21076961]
[44]
Xu Y, Propson NE, Du S, Xiong W, Zheng H. Autophagy deficiency modulates microglial lipid homeostasis and aggravates tau pathology and spreading. Proc Natl Acad Sci USA 2021; 118(27): e2023418118.
[http://dx.doi.org/10.1073/pnas.2023418118] [PMID: 34187889]
[45]
Carvalho C, Santos MS, Oliveira CR, Moreira PI. Alzheimer’s disease and type 2 diabetes-related alterations in brain mitochondria, autophagy and synaptic markers. Biochim Biophys Acta Mol Basis Dis 2015; 1852(8): 1665-75.
[http://dx.doi.org/10.1016/j.bbadis.2015.05.001] [PMID: 25960150]
[46]
Ma Q, Qiang J, Gu P, Wang Y, Geng Y, Wang M. Age-related autophagy alterations in the brain of senescence accelerated mouse prone 8 (SAMP8) mice. Exp Gerontol 2011; 46(7): 533-41.
[http://dx.doi.org/10.1016/j.exger.2011.02.006] [PMID: 21385605]
[47]
Villamil-Ortiz JG, Cardona-Gomez GP. Comparative analysis of autophagy and tauopathy related markers in cerebral ischemia and Alzheimer’s disease animal models. Front Aging Neurosci 2015; 7: 84.
[PMID: 26042033]
[48]
Joshi G, Gan KA, Johnson DA, Johnson JA. Increased Alzheimer’s disease–like pathology in the APP/PS1ΔE9 mouse model lacking Nrf2 through modulation of autophagy. Neurobiol Aging 2015; 36(2): 664-79.
[http://dx.doi.org/10.1016/j.neurobiolaging.2014.09.004] [PMID: 25316599]
[49]
Fang EF, Hou Y, Palikaras K, et al. Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of Alzheimer’s disease. Nat Neurosci 2019; 22(3): 401-12.
[http://dx.doi.org/10.1038/s41593-018-0332-9] [PMID: 30742114]
[50]
Martín-Maestro P, Gargini R, García E, Simón D, Avila J, García-Escudero V. Mitophagy failure in app and tau overexpression model of Alzheimer’s disease. J Alzheimers Dis 2019; 70(2): 525-40.
[http://dx.doi.org/10.3233/JAD-190086] [PMID: 31256128]
[51]
Lonskaya I, Shekoyan AR, Hebron ML, Desforges N, Algarzae NK, Moussa CEH. Diminished parkin solubility and co-localization with intraneuronal amyloid-β are associated with autophagic defects in Alzheimer’s disease. J Alzheimers Dis 2012; 33(1): 231-47.
[http://dx.doi.org/10.3233/JAD-2012-121141] [PMID: 22954671]
[52]
Hou X, Watzlawik JO, Cook C, et al. Mitophagy alterations in Alzheimer’s disease are associated with granulovacuolar degeneration and early tau pathology. Alzheimers Dement 2021; 17(3): 417-30.
[http://dx.doi.org/10.1002/alz.12198] [PMID: 33090691]
[53]
Liu B, Tang J, Zhang J, Li S, Yuan M, Wang R. Autophagy activation aggravates neuronal injury in the hippocampus of vascular dementia rats. Neural Regen Res 2014; 9(13): 1288-96.
[http://dx.doi.org/10.4103/1673-5374.137576] [PMID: 25221581]
[54]
Liu B, Liu J, Zhang J, Mao W, Li S. Effects of autophagy on synaptic-plasticity-related protein expression in the hippocampus CA1 of a rat model of vascular dementia. Neurosci Lett 2019; 707(73): 134312.
[http://dx.doi.org/10.1016/j.neulet.2019.134312] [PMID: 31163225]
[55]
Xu J, Qi Q, Lv P, Dong Y, Jiang X, Liu Z. Oxiracetam ameliorates cognitive deficits in vascular dementia rats by regulating the expression of neuronal apoptosis/autophagy-related genes associated with the activation of the Akt/mTOR signaling pathway. Braz J Med Biol Res 2019; 52(11): e8371.
[http://dx.doi.org/10.1590/1414-431x20198371] [PMID: 31721903]
[56]
Tanji K, Mori F, Kakita A, Takahashi H, Wakabayashi K. Alteration of autophagosomal proteins (LC3, GABARAP and GATE-16) in Lewy body disease. Neurobiol Dis 2011; 43(3): 690-7.
[http://dx.doi.org/10.1016/j.nbd.2011.05.022] [PMID: 21684337]
[57]
Evans T, Kok WL, Cowan K, Hefford M, Anichtchik O. Accumulation of beta-synuclein in cortical neurons is associated with autophagy attenuation in the brains of dementia with Lewy body patients. Brain Res 2018; 1681: 1-13.
[http://dx.doi.org/10.1016/j.brainres.2017.12.026] [PMID: 29278715]
[58]
Miki Y, Tanji K, Mori F, et al. Autophagy mediators (FOXO1, SESN3 and TSC2) in Lewy body disease and aging. Neurosci Lett 2018; 684: 35-41.
[http://dx.doi.org/10.1016/j.neulet.2018.06.052] [PMID: 29966750]
[59]
Mattson MP, Arumugam TV. Hallmarks of brain aging: Adaptive and pathological modification by metabolic states. Cell Metab 2018; 27(6): 1176-99.
[http://dx.doi.org/10.1016/j.cmet.2018.05.011] [PMID: 29874566]
[60]
López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell 2013; 153(6): 1194-217.
[http://dx.doi.org/10.1016/j.cell.2013.05.039] [PMID: 23746838]
[61]
Kwiatkowski D, Czarny P, Toma M, et al. Associations between DNA damage, DNA base excision repair gene variability and Alzheimer’s disease risk. Dement Geriatr Cogn Disord 2016; 41(3-4): 152-71.
[http://dx.doi.org/10.1159/000443953] [PMID: 27011006]
[62]
Pao PC, Patnaik D, Watson LA, et al. HDAC1 modulates OGG1-initiated oxidative DNA damage repair in the aging brain and Alzheimer’s disease. Nat Commun 2020; 11(1): 2484.
[http://dx.doi.org/10.1038/s41467-020-16361-y] [PMID: 32424276]
[63]
Yu H, Harrison FE, Xia F. Altered DNA repair; an early pathogenic pathway in Alzheimer’s disease and obesity. Sci Rep 2018; 8(1): 5600.
[http://dx.doi.org/10.1038/s41598-018-23644-4] [PMID: 29618789]
[64]
Lillenes MS, Rabano A, Støen M, et al. Altered DNA base excision repair profile in brain tissue and blood in Alzheimer’s disease. Mol Brain 2016; 9(1): 61.
[http://dx.doi.org/10.1186/s13041-016-0237-z] [PMID: 27234294]
[65]
Regier M, Liang J, Choi A, Verma K, Libien J, Hernández AI. Evidence for decreased nucleolar PARP-1 as an early marker of cognitive impairment. Neural Plast 2019; 2019: 4383258.
[http://dx.doi.org/10.1155/2019/4383258] [PMID: 31827497]
[66]
Zeng J, Libien J, Shaik F, Wolk J, Hernández AI. Nucleolar PARP-1 expression is decreased in Alzheimer’s disease: Consequences for epigenetic regulation of rDNA and cognition. Neural Plast 2016; 2016: 8987928.
[http://dx.doi.org/10.1155/2016/8987928] [PMID: 27034851]
[67]
Bradley-Whitman MA, Lovell MA. Epigenetic changes in the progression of Alzheimer’s disease. Mech Ageing Dev 2013; 134(10): 486-95.
[http://dx.doi.org/10.1016/j.mad.2013.08.005] [PMID: 24012631]
[68]
Coppieters N, Dieriks BV, Lill C, Faull RLM, Curtis MA, Dragunow M. Global changes in DNA methylation and hydroxymethylation in Alzheimer’s disease human brain. Neurobiol Aging 2014; 35(6): 1334-44.
[http://dx.doi.org/10.1016/j.neurobiolaging.2013.11.031] [PMID: 24387984]
[69]
Anderson KW, Mast N, Pikuleva IA, Turko IV. Histone H3 Ser57 and Thr58 phosphorylation in the brain of 5XFAD mice. FEBS Open Bio 2015; 5(1): 550-6.
[http://dx.doi.org/10.1016/j.fob.2015.06.009] [PMID: 26199864]
[70]
Nativio R, Donahue G, Berson A, et al. Publisher correction: Dysregulation of the epigenetic landscape of normal aging in Alzheimer’s disease. Nat Neurosci 2018; 21(7): 1018.
[http://dx.doi.org/10.1038/s41593-018-0124-2] [PMID: 29556027]
[71]
Fani L, Hilal S, Sedaghat S, et al. Telomere length and the risk of Alzheimer’s disease: The rotterdam study. J Alzheimers Dis 2020; 73(2): 707-14.
[http://dx.doi.org/10.3233/JAD-190759] [PMID: 31839608]
[72]
Liu M, Huo YR, Wang J, et al. Telomere shortening in alzheimer’s disease patients. Ann Clin Lab Sci 2016; 46(3): 260-5.
[PMID: 27312549]
[73]
Hackenhaar FS, Josefsson M, Adolfsson AN, et al. Short leukocyte telomeres predict 25-year Alzheimer’s disease incidence in non-APOE ε4-carriers. Alzheimers Res Ther 2021; 13(1): 130.
[http://dx.doi.org/10.1186/s13195-021-00871-y] [PMID: 33397495]
[74]
Ishikawa S, Ishikawa F. Proteostasis failure and cellular senescence in long-term cultured postmitotic rat neurons. Aging Cell 2020; 19(1): e13071.
[http://dx.doi.org/10.1111/acel.13071] [PMID: 31762159]
[75]
Kundra R, Ciryam P, Morimoto RI, Dobson CM, Vendruscolo M. Protein homeostasis of a metastable subproteome associated with Alzheimer’s disease. Proc Natl Acad Sci USA 2017; 114(28): E5703-11.
[http://dx.doi.org/10.1073/pnas.1618417114] [PMID: 28652376]
[76]
Manavalan A, Mishra M, Feng L, Sze SK, Akatsu H, Heese K. Brain site-specific proteome changes in aging-related dementia. Exp Mol Med 2013; 45(9): e39.
[http://dx.doi.org/10.1038/emm.2013.76] [PMID: 24008896]
[77]
Ma K, Chen G, Li W, Kepp O, Zhu Y, Chen Q. Mitophagy, mitochondrial homeostasis, and cell fate. Front Cell Dev Biol 2020; 8: 467.
[http://dx.doi.org/10.3389/fcell.2020.00467] [PMID: 32671064]
[78]
Apaijai N, Sriwichaiin S, Phrommintikul A, et al. Cognitive impairment is associated with mitochondrial dysfunction in peripheral blood mononuclear cells of elderly population. Sci Rep 2020; 10(1): 21400.
[http://dx.doi.org/10.1038/s41598-020-78551-4] [PMID: 33293556]
[79]
Morozov YM, Datta D, Paspalas CD, Arnsten AFT. Ultrastructural evidence for impaired mitochondrial fission in the aged rhesus monkey dorsolateral prefrontal cortex. Neurobiol Aging 2017; 51: 9-18.
[http://dx.doi.org/10.1016/j.neurobiolaging.2016.12.001] [PMID: 28027494]
[80]
Pollard AK, Craig EL, Chakrabarti L. Mitochondrial complex 1 activity measured by spectrophotometry is reduced across all brain regions in ageing and more specifically in neurodegeneration. PLoS One 2016; 11(6): e0157405.
[http://dx.doi.org/10.1371/journal.pone.0157405] [PMID: 27333203]
[81]
Lores-Arnaiz S, Lombardi P, Karadayian AG, Orgambide F, Cicerchia D, Bustamante J. Brain cortex mitochondrial bioenergetics in synaptosomes and non-synaptic mitochondria during aging. Neurochem Res 2016; 41(1-2): 353-63.
[http://dx.doi.org/10.1007/s11064-015-1817-5] [PMID: 26818758]
[82]
He N, Jin W-L, Lok K-H, Wang Y, Yin M, Wang Z-J. Amyloid-β1–42 oligomer accelerates senescence in adult hippocampal neural stem/progenitor cells via formylpeptide receptor 2. Cell Death Dis 2013; 4(11): e924-4.
[http://dx.doi.org/10.1038/cddis.2013.437] [PMID: 24263098]
[83]
Musi N, Valentine JM, Sickora KR, et al. Tau protein aggregation is associated with cellular senescence in the brain. Aging Cell 2018; 17(6): e12840.
[http://dx.doi.org/10.1111/acel.12840] [PMID: 30126037]
[84]
Gaikwad S, Puangmalai N, Bittar A, et al. Tau oligomer induced HMGB1 release contributes to cellular senescence and neuropathology linked to Alzheimer’s disease and frontotemporal dementia. Cell Rep 2021; 36(3): 109419.
[http://dx.doi.org/10.1016/j.celrep.2021.109419] [PMID: 34289368]
[85]
Dhurandhar EJ, Allison DB, van Groen T, Kadish I. Hunger in the absence of caloric restriction improves cognition and attenuates Alzheimer’s disease pathology in a mouse model. PLoS One 2013; 8(4): e60437.
[http://dx.doi.org/10.1371/journal.pone.0060437] [PMID: 23565247]
[86]
Cox LM, Schafer MJ, Sohn J, et al. Calorie restriction slows age-related microbiota changes in an Alzheimer’s disease model in female mice. Sci Rep 2019; 9(1): 17904.
[http://dx.doi.org/10.1038/s41598-019-54187-x] [PMID: 31784610]
[87]
Westwood AJ, Beiser A, DeCarli C, et al. Insulin-like growth factor-1 and risk of Alzheimer dementia and brain atrophy. Neurology 2014; 82(18): 1613-9.
[http://dx.doi.org/10.1212/WNL.0000000000000382] [PMID: 24706014]
[88]
Denver P, English A, McClean PL. Inflammation, insulin signaling and cognitive function in aged APP/PS1 mice. Brain Behav Immun 2018; 70: 423-34.
[http://dx.doi.org/10.1016/j.bbi.2018.03.032] [PMID: 29604345]
[89]
Caccamo A, Magrì A, Medina DX, et al. mTOR regulates tau phosphorylation and degradation: Implications for Alzheimer’s disease and other tauopathies. Aging Cell 2013; 12(3): 370-80.
[http://dx.doi.org/10.1111/acel.12057] [PMID: 23425014]
[90]
Zimmermann HR, Yang W, Kasica NP, et al. Brain-specific repression of AMPKα1 alleviates pathophysiology in Alzheimer’s model mice. J Clin Invest 2020; 130(7): 3511-27.
[http://dx.doi.org/10.1172/JCI133982] [PMID: 32213711]
[91]
Kumar R, Chaterjee P, Sharma PK, et al. Sirtuin1: A promising serum protein marker for early detection of Alzheimer’s disease. PLoS One 2013; 8(4): e61560.
[http://dx.doi.org/10.1371/journal.pone.0061560] [PMID: 23613875]
[92]
Wong SQ, Kumar AV, Mills J, Lapierre LR. Autophagy in aging and longevity. Hum Genet 2020; 139(3): 277-90.
[http://dx.doi.org/10.1007/s00439-019-02031-7] [PMID: 31144030]
[93]
Lapierre LR, Kumsta C, Sandri M, Ballabio A, Hansen M. Transcriptional and epigenetic regulation of autophagy in aging. Autophagy 2015; 11(6): 867-80.
[http://dx.doi.org/10.1080/15548627.2015.1034410] [PMID: 25836756]
[94]
Salminen A, Kaarniranta K. AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network. Ageing Res Rev 2012; 11(2): 230-41.
[http://dx.doi.org/10.1016/j.arr.2011.12.005] [PMID: 22186033]
[95]
Yeung YT, Guerrero-Castilla A, Cano M, Muñoz MF, Ayala A, Argüelles S. Dysregulation of the Hippo pathway signaling in aging and cancer. Pharmacol Res 2019; 143: 151-65.
[http://dx.doi.org/10.1016/j.phrs.2019.03.018] [PMID: 30910741]
[96]
Totaro A, Zhuang Q, Panciera T, et al. Cell phenotypic plasticity requires autophagic flux driven by YAP/TAZ mechanotransduction. Proc Natl Acad Sci USA 2019; 116(36): 17848-57.
[http://dx.doi.org/10.1073/pnas.1908228116] [PMID: 31416916]
[97]
Pavel M, Renna M, Park SJ, et al. Contact inhibition controls cell survival and proliferation via YAP/TAZ-autophagy axis. Nat Commun 2018; 9(1): 2961.
[http://dx.doi.org/10.1038/s41467-018-05388-x] [PMID: 30054475]
[98]
Wilkinson DS, Jariwala JS, Anderson E, et al. Phosphorylation of LC3 by the Hippo kinases STK3/STK4 is essential for autophagy. Mol Cell 2015; 57(1): 55-68.
[http://dx.doi.org/10.1016/j.molcel.2014.11.019] [PMID: 25544559]
[99]
Zhang M, Tao W, Yuan Z, Liu Y. Mst-1 deficiency promotes post-traumatic spinal motor neuron survival via enhancement of autophagy flux. J Neurochem 2017; 143(2): 244-56.
[http://dx.doi.org/10.1111/jnc.14154] [PMID: 28833175]
[100]
Chen M, Hu Y, Hou Y, et al. Osteogenesis regulation of mesenchymal stem cells via autophagy induced by silica-itanium composite surfaces with different mechanical moduli. J Mater Chem B Mater Biol Med 2020; 8(40): 9314-24.
[http://dx.doi.org/10.1039/D0TB01412E] [PMID: 32966545]
[101]
Jin L, Chen Y, Cheng D, et al. YAP inhibits autophagy and promotes progression of colorectal cancer via upregulating Bcl-2 expression. Cell Death Dis 2021; 12(5): 457.
[http://dx.doi.org/10.1038/s41419-021-03722-8] [PMID: 33963173]
[102]
Xu W, Zhang M, Li Y, et al. YAP manipulates proliferation via PTEN/AKT/mTOR-mediated autophagy in lung adenocarcinomas. Cancer Cell Int 2021; 21(1): 30.
[http://dx.doi.org/10.1186/s12935-020-01688-9] [PMID: 33413409]
[103]
Gogia N, Sarkar A, Mehta AS, et al. Inactivation of Hippo and cJun-N-terminal kinase (JNK) signaling mitigate FUS mediated neurodegeneration in vivo. Neurobiol Dis 2020; 140: 104837.
[http://dx.doi.org/10.1016/j.nbd.2020.104837] [PMID: 32199908]