Application of Cell Membrane-Coated Nanomaterials for Tumor Treatment

Page: [1535 - 1559] Pages: 25

  • * (Excluding Mailing and Handling)

Abstract

Tumors are a major cause of human mortality worldwide, and the rapid development of nanomaterials (NMs) for tumor therapy and drug delivery has provided new treatment methods. However, NMs’ high immunogenicity, short circulation time, and low specificity limit their application in tumor therapy. In recent years, bionanomaterials using cell membranes have emerged to overcome the shortcomings of monomeric NMs. Cell membrane-encapsulated NMs extracted from multiple cells not only retain the physicochemical properties of NMs but also inherit the biological functions of the source cells, aiding in drug delivery. The combination of the cell membrane and drug-loading NMs offers an efficient and targeted drug delivery system tailored to the tumor microenvironment. The research and application of this method have been widely carried out in the academic field of tumor diagnosis and treatment. This review presents the recent research progress of cell membrane-coated NMs as drug carriers in tumor therapy, including cell membrane extraction methods, encapsulation strategies, and the applications of cell membrane-encapsulated NMs in tumor therapy. We believe that biomimetic nanomaterials will be a promising and novel anticancer strategy in the future, and their wide application will certainly bring vitality to the field of tumor diagnosis and treatment. The combination of membrane and drug-loading nanomaterials embodies a highly efficient and target drug delivery system tailored to the tumor microenvironment, which broadens a new path of drug delivery for future cancer treatment. Meanwhile, it is also a perfect combination and application of biomedical nanomaterials, which is of great significance.

Graphical Abstract

[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Peer, D.; Karp, J.M.; Hong, S.; Farokhzad, O.C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. In: Nano-Enabled Medical Applications; , 2020; pp. 61-91.
[http://dx.doi.org/10.1201/9780429399039-2]
[3]
He, C.; Lu, J.; Lin, W. Hybrid nanoparticles for combination therapy of cancer. J. Control. Release, 2015, 219, 224-236.
[http://dx.doi.org/10.1016/j.jconrel.2015.09.029] [PMID: 26387745]
[4]
Sarkar, F.; Banerjee, S.; Li, Y. Pancreatic cancer: Pathogenesis, prevention and treatment. Toxicol. Appl. Pharmacol., 2007, 224(3), 326-336.
[http://dx.doi.org/10.1016/j.taap.2006.11.007] [PMID: 17174370]
[5]
Lauber, K.; Brix, N.; Ernst, A.; Hennel, R.; Krombach, J.; Anders, H.; Belka, C. Targeting the heat shock response in combination with radiotherapy: Sensitizing cancer cells to irradiation-induced cell death and heating up their immunogenicity. Cancer Lett., 2015, 368(2), 209-229.
[http://dx.doi.org/10.1016/j.canlet.2015.02.047] [PMID: 25754814]
[6]
Bernardes, S.S.; de Souza-Neto, F.P.; Ramalho, L.N.Z.; Derossi, D.R.; Guarnier, F.A.; da Silva, C.F.N.; Melo, G.P.; Simão, A.N.C.; Cecchini, R.; Cecchini, A.L. Systemic oxidative profile after tumor removal and the tumor microenvironment in melanoma patients. Cancer Lett., 2015, 361(2), 226-232.
[http://dx.doi.org/10.1016/j.canlet.2015.03.007] [PMID: 25772650]
[7]
Shabaruddin, F.H.; Chen, L.C.; Elliott, R.A.; Payne, K. A systematic review of utility values for chemotherapy-related adverse events. PharmacoEconomics, 2013, 31(4), 277-288.
[http://dx.doi.org/10.1007/s40273-013-0033-x] [PMID: 23529208]
[8]
Bruheim, K.; Guren, M.G.; Skovlund, E.; Hjermstad, M.J.; Dahl, O.; Frykholm, G.; Carlsen, E.; Tveit, K.M. Late side effects and quality of life after radiotherapy for rectal cancer. Int. J. Radiat. Oncol., 2010, 76(4), 1005-1011.
[9]
Lutz, H.; Hu, S.; Dinh, P.U.; Cheng, K. Cells and cell derivatives as drug carriers for targeted delivery. Med. Drug Discov., 2019, 3, 100014.
[http://dx.doi.org/10.1016/j.medidd.2020.100014]
[10]
Choi, B.; Park, W.; Park, S.B.; Rhim, W.K.; Han, D.K. Recent trends in cell membrane-cloaked nanoparticles for therapeutic applications. Methods, 2020, 177, 2-14.
[http://dx.doi.org/10.1016/j.ymeth.2019.12.004] [PMID: 31874237]
[11]
Wang, R.; Yang, H.; Fu, R.; Su, Y.; Lin, X.; Jin, X.; Du, W.; Shan, X.; Huang, G. Biomimetic upconversion nanoparticles and gold nanoparticles for novel simultaneous dual-modal imaging-guided photothermal therapy of cancer. Cancers, 2020, 12(11), 3136.
[http://dx.doi.org/10.3390/cancers12113136] [PMID: 33120892]
[12]
Shaker, M.A.; Shaaban, M.I. Synthesis of silver nanoparticles with antimicrobial and anti-adherence activities against multidrug-resistant isolates from Acinetobacter baumannii. J. Taibah Univ. Med. Sci., 2017, 12(4), 291-297.
[http://dx.doi.org/10.1016/j.jtumed.2017.02.008] [PMID: 31435254]
[13]
Wiemann, M.; Vennemann, A.; Sauer, U.G.; Wiench, K.; Ma-Hock, L.; Landsiedel, R. An in vitro alveolar macrophage assay for predicting the short-term inhalation toxicity of nanomaterials. J. Nanobiotechnol., 2016, 14(1), 16.
[http://dx.doi.org/10.1186/s12951-016-0164-2] [PMID: 26944705]
[14]
Granitzer, P.; Rumpf, K.; Roca, A.G.; Morales, M.P.; Poelt, P.; Albu, M. Investigation of a mesoporous silicon based ferromagnetic nanocomposite. Nanoscale Res. Lett., 2010, 5(2), 374-378.
[http://dx.doi.org/10.1007/s11671-009-9491-7] [PMID: 20672039]
[15]
Fischer, H.C.; Chan, W.C.W. Nanotoxicity: the growing need for in vivo study. Curr. Opin. Biotechnol., 2007, 18(6), 565-571.
[http://dx.doi.org/10.1016/j.copbio.2007.11.008] [PMID: 18160274]
[16]
Ahsan, F.; Rivas, I.P.; Khan, M.A.; Torres Suarez, A.I. Targeting to macrophages: role of physicochemical properties of particulate carriers-liposomes and microspheres-on the phagocytosis by macrophages. J. Control. Release, 2002, 79(1-3), 29-40.
[http://dx.doi.org/10.1016/S0168-3659(01)00549-1] [PMID: 11853916]
[17]
Chithrani, B.D.; Ghazani, A.A.; Chan, W.C.W. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett., 2006, 6(4), 662-668.
[http://dx.doi.org/10.1021/nl052396o] [PMID: 16608261]
[18]
Champion, J.A.; Katare, Y.K.; Mitragotri, S. Particle shape: A new design parameter for micro- and nanoscale drug delivery carriers. J. Control. Release, 2007, 121(1-2), 3-9.
[http://dx.doi.org/10.1016/j.jconrel.2007.03.022] [PMID: 17544538]
[19]
Kaewsaneha, C.; Tangboriboonrat, P.; Polpanich, D.; Eissa, M.; Elaissari, A. Janus colloidal particles: preparation, properties, and biomedical applications. ACS Appl. Mater. Interfaces, 2013, 5(6), 1857-1869.
[http://dx.doi.org/10.1021/am302528g] [PMID: 23394306]
[20]
van der Meel, R.; Sulheim, E.; Shi, Y.; Kiessling, F.; Mulder, W.J.M.; Lammers, T. Smart cancer nanomedicine. Nat. Nanotechnol., 2019, 14(11), 1007-1017.
[http://dx.doi.org/10.1038/s41565-019-0567-y] [PMID: 31695150]
[21]
Farokhzad, O.; Langer, R. Nanomedicine: Developing smarter therapeutic and diagnostic modalities. Adv. Drug Deliv. Rev., 2006, 58(14), 1456-1459.
[http://dx.doi.org/10.1016/j.addr.2006.09.011] [PMID: 17070960]
[22]
Manolova, V.; Flace, A.; Bauer, M.; Schwarz, K.; Saudan, P.; Bachmann, M.F. Nanoparticles target distinct dendritic cell populations according to their size. Eur. J. Immunol., 2008, 38(5), 1404-1413.
[http://dx.doi.org/10.1002/eji.200737984] [PMID: 18389478]
[23]
Cheong, A.; Rasmussen, L.; Robinson, T.; Maliki, R.; Cutts, S.M. Observation of non-glandular gastritis associated with Doxil chemotherapy treatment in NSG™ mice. Lab. Anim., 2021, 55(4), 367-374.
[http://dx.doi.org/10.1177/00236772211009338] [PMID: 33874818]
[24]
Barenholz, Y.C. Doxil® — The first FDA-approved nano-drug: Lessons learned. J. Control. Release, 2012, 160(2), 117-134.
[http://dx.doi.org/10.1016/j.jconrel.2012.03.020] [PMID: 22484195]
[25]
Miele, E.; Spinelli, G.P.; Miele, E.; Tomao, F.; Tomao, S. Albumin-bound formulation of paclitaxel (Abraxane ABI-007) in the treatment of breast cancer. Int. J. Nanomedicine, 2009, 4, 99-105.
[PMID: 19516888]
[26]
Toosi, H.; Moeini, A.; Hajirasouliha, I. BAMSE: Bayesian model selection for tumor phylogeny inference among multiple samples. BMC Bioinformatics, 2019, 20(Suppl. 11), 282.
[http://dx.doi.org/10.1186/s12859-019-2824-3] [PMID: 31167637]
[27]
El-Sawy, H.S.; Al-Abd, A.M.; Ahmed, T.A.; El-Say, K.M.; Torchilin, V.P. Stimuli-responsive nano-architecture drug-delivery systems to solid tumor micromilieu: Past, present, and future perspectives. ACS Nano, 2018, 12(11), 10636-10664.
[http://dx.doi.org/10.1021/acsnano.8b06104] [PMID: 30335963]
[28]
Pietras, K.; Östman, A. Hallmarks of cancer: Interactions with the tumor stroma. Exp. Cell Res., 2010, 316(8), 1324-1331.
[http://dx.doi.org/10.1016/j.yexcr.2010.02.045] [PMID: 20211171]
[29]
Rao, L.; Bu, L.L.; Xu, J.H.; Cai, B.; Yu, G.T.; Yu, X.; He, Z.; Huang, Q.; Li, A.; Guo, S.S.; Zhang, W.F.; Liu, W.; Sun, Z.J.; Wang, H.; Wang, T.H.; Zhao, X.Z. Red blood cell membrane as a biomimetic nanocoating for prolonged circulation time and reduced accelerated blood clearance. Small, 2015, 11(46), 6225-6236.
[http://dx.doi.org/10.1002/smll.201502388] [PMID: 26488923]
[30]
Ren, K.; Liu, Y.; Wu, J.; Zhang, Y.; Zhu, J.; Yang, M.; Ju, H. A DNA dual lock-and-key strategy for cell-subtype-specific siRNA delivery. Nat. Commun., 2016, 7(1), 13580.
[http://dx.doi.org/10.1038/ncomms13580] [PMID: 27882923]
[31]
Zarrin, A.; Foroozesh, M.; Hamidi, M. Carrier erythrocytes: recent advances, present status, current trends and future horizons. Expert Opin. Drug Deliv., 2014, 11(3), 433-447.
[http://dx.doi.org/10.1517/17425247.2014.880422] [PMID: 24456118]
[32]
Li, J.; Ai, Y.; Wang, L.; Bu, P.; Sharkey, C.C.; Wu, Q.; Wun, B.; Roy, S.; Shen, X.; King, M.R. Targeted drug delivery to circulating tumor cells via platelet membrane-functionalized particles. Biomaterials, 2016, 76, 52-65.
[http://dx.doi.org/10.1016/j.biomaterials.2015.10.046] [PMID: 26519648]
[33]
Zhang, Y.; Cai, K.; Li, C.; Guo, Q.; Chen, Q.; He, X.; Liu, L.; Zhang, Y.; Lu, Y.; Chen, X.; Sun, T.; Huang, Y.; Cheng, J.; Jiang, C. Macrophage-membrane-coated nanoparticles for tumor-targeted chemotherapy. Nano Lett., 2018, 18(3), 1908-1915.
[http://dx.doi.org/10.1021/acs.nanolett.7b05263] [PMID: 29473753]
[34]
Li, X.; Liu, R.; Su, X.; Pan, Y.; Han, X.; Shao, C.; Shi, Y. Harnessing tumor-associated macrophages as aids for cancer immunotherapy. Mol. Cancer, 2019, 18(1), 177.
[http://dx.doi.org/10.1186/s12943-019-1102-3] [PMID: 31805946]
[35]
Fang, R.H.; Hu, C.M.J.; Luk, B.T.; Gao, W.; Copp, J.A.; Tai, Y.; O’Connor, D.E.; Zhang, L. Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery. Nano Lett., 2014, 14(4), 2181-2188.
[http://dx.doi.org/10.1021/nl500618u] [PMID: 24673373]
[36]
Loos, M. Processing of Polymer Matrix Composites Containing CNTs. Carbon Nanotube Reinforced Composites; William Andrew Publishing: Oxford, 2015.
[37]
Ong, S.; Chitneni, M.; Lee, K.; Ming, L.; Yuen, K. Evaluation of extrusion technique for nanosizing liposomes. Pharmaceutics, 2016, 8(4), 36.
[http://dx.doi.org/10.3390/pharmaceutics8040036] [PMID: 28009829]
[38]
Liu, B.; Wang, W.; Fan, J.; Long, Y.; Xiao, F.; Daniyal, M.; Tong, C.; Xie, Q.; Jian, Y.; Li, B.; Ma, X.; Wang, W. RBC membrane camouflaged prussian blue nanoparticles for gamabutolin loading and combined chemo/photothermal therapy of breast cancer. Biomaterials, 2019, 217, 119301.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119301] [PMID: 31279101]
[39]
Gagne, F. Biochemical ecotoxicology: principles and methods; Elsevier, 2014.
[40]
Sun, H.; Su, J.; Meng, Q.; Yin, Q.; Chen, L.; Gu, W.; Zhang, P.; Zhang, Z.; Yu, H.; Wang, S.; Li, Y. Cancer‐cell‐biomimetic nanoparticles for targeted therapy of homotypic tumors Adv. Mater., 2016, 28(43), 9581-9588.
[http://dx.doi.org/10.1002/adma.201602173] [PMID: 27628433]
[41]
Chu, Y.; Zhang, J.; Pan, H.; Shi, J.; Wang, J.; Chen, L. Preparation and evaluation of long circulating erythrocyte membrane-cloaked anti-cancer drug delivery system. Drug Deliv. Transl. Res., 2020, 10(5), 1278-1287.
[http://dx.doi.org/10.1007/s13346-020-00780-x] [PMID: 32399603]
[42]
Liu, Y.; Luo, J.; Chen, X.; Liu, W.; Chen, T. Cell membrane coating technology: A promising strategy for biomedical applications. Nano-Micro Lett., 2019, 11(1), 100.
[http://dx.doi.org/10.1007/s40820-019-0330-9] [PMID: 34138027]
[43]
Bang, K.H.; Na, Y.G.; Huh, H.W.; Hwang, S.J.; Kim, M.S.; Kim, M.; Lee, H.K.; Cho, C.W. The delivery strategy of paclitaxel nanostructured lipid carrier coated with platelet membrane. Cancers, 2019, 11(6), 807.
[http://dx.doi.org/10.3390/cancers11060807] [PMID: 31212681]
[44]
Luo, G.F.; Chen, W.H.; Zeng, X.; Zhang, X.Z. Cell primitive-based biomimetic functional materials for enhanced cancer therapy. Chem. Soc. Rev., 2021, 50(2), 945-985.
[http://dx.doi.org/10.1039/D0CS00152J] [PMID: 33226037]
[45]
Rao, L.; Cai, B.; Bu, L.L.; Liao, Q.Q.; Guo, S.S.; Zhao, X.Z.; Dong, W.F.; Liu, W. Microfluidic electroporation-facilitated synthesis of erythrocyte membrane-coated magnetic nanoparticles for enhanced imaging-guided cancer therapy. ACS Nano, 2017, 11(4), 3496-3505.
[http://dx.doi.org/10.1021/acsnano.7b00133] [PMID: 28272874]
[46]
Wang, X.; Wang, X.; Bai, X.; Yan, L.; Liu, T.; Wang, M.; Song, Y.; Hu, G.; Gu, Z.; Miao, Q.; Chen, C. Nanoparticle ligand exchange and its effects at the nanoparticle–cell membrane interface. Nano Lett., 2019, 19(1), 8-18.
[http://dx.doi.org/10.1021/acs.nanolett.8b02638] [PMID: 30335394]
[47]
van Weerd, J.; Karperien, M.; Jonkheijm, P. Supported lipid bilayers for the generation of dynamic cell–material interfaces. Adv. Healthc. Mater., 2015, 4(18), 2743-2779.
[http://dx.doi.org/10.1002/adhm.201500398] [PMID: 26573989]
[48]
Fan, Z.; Li, P.Y.; Deng, J.; Bady, S.C.; Cheng, H. Cell membrane coating for reducing nanoparticle-induced inflammatory responses to scaffold constructs. Nano Res., 2018, 11(10), 5573-5583.
[http://dx.doi.org/10.1007/s12274-018-2084-y] [PMID: 31656553]
[49]
Xia, Q.; Zhang, Y.; Li, Z.; Hou, X.; Feng, N. Red blood cell membrane-camouflaged nanoparticles: a novel drug delivery system for antitumor application. Acta Pharm. Sin. B, 2019, 9(4), 675-689.
[http://dx.doi.org/10.1016/j.apsb.2019.01.011] [PMID: 31384529]
[50]
Ren, X.; Zheng, R.; Fang, X.; Wang, X.; Zhang, X.; Yang, W.; Sha, X. Red blood cell membrane camouflaged magnetic nanoclusters for imaging-guided photothermal therapy. Biomaterials, 2016, 92, 13-24.
[http://dx.doi.org/10.1016/j.biomaterials.2016.03.026] [PMID: 27031929]
[51]
Zhai, Y.; Su, J.; Ran, W.; Zhang, P.; Yin, Q.; Zhang, Z.; Yu, H.; Li, Y. Preparation and application of cell membrane-camouflaged nanoparticles for cancer therapy. Theranostics, 2017, 7(10), 2575-2592.
[http://dx.doi.org/10.7150/thno.20118] [PMID: 28819448]
[52]
Dehaini, D.; Wei, X.; Fang, R.H.; Masson, S.; Angsantikul, P.; Luk, B.T.; Zhang, Y.; Ying, M.; Jiang, Y.; Kroll, A.V.; Gao, W.; Zhang, L. Erythrocyte–platelet hybrid membrane coating for enhanced nanoparticle functionalization. Adv. Mater., 2017, 29(16), 1606209.
[http://dx.doi.org/10.1002/adma.201606209] [PMID: 28199033]
[53]
Kang, T.; Zhu, Q.; Wei, D.; Feng, J.; Yao, J.; Jiang, T.; Song, Q.; Wei, X.; Chen, H.; Gao, X.; Chen, J. Nanoparticles coated with neutrophil membranes can effectively treat cancer metastasis. ACS Nano, 2017, 11(2), 1397-1411.
[http://dx.doi.org/10.1021/acsnano.6b06477] [PMID: 28075552]
[54]
Wu, L.; Zhang, F.; Wei, Z.; Li, X.; Zhao, H.; Lv, H.; Ge, R.; Ma, H.; Zhang, H.; Yang, B.; Li, J.; Jiang, J. Magnetic delivery of Fe 3 O 4 @polydopamine nanoparticle-loaded natural killer cells suggest a promising anticancer treatment. Biomater. Sci., 2018, 6(10), 2714-2725.
[http://dx.doi.org/10.1039/C8BM00588E] [PMID: 30151523]
[55]
Guo, Y.; Wang, D.; Song, Q.; Wu, T.; Zhuang, X.; Bao, Y.; Kong, M.; Qi, Y.; Tan, S.; Zhang, Z. Erythrocyte membrane-enveloped polymeric nanoparticles as nanovaccine for induction of antitumor immunity against melanoma. ACS Nano, 2015, 9(7), 6918-6933.
[http://dx.doi.org/10.1021/acsnano.5b01042] [PMID: 26153897]
[56]
Xuan, M.; Shao, J.; Dai, L.; He, Q.; Li, J. Macrophage cell membrane camouflaged mesoporous silica nanocapsules for in vivo cancer therapy. Adv. Healthc. Mater., 2015, 4(11), 1645-1652.
[http://dx.doi.org/10.1002/adhm.201500129] [PMID: 25960053]
[57]
Zhang, F.; Wu, L.; Nie, W.; Huang, L.; Zhang, J.; Li, F.; Xie, H.Y. Biomimetic microfluidic system for fast and specific detection of circulating tumor cells. Anal. Chem., 2019, 91(24), 15726-15731.
[http://dx.doi.org/10.1021/acs.analchem.9b03920] [PMID: 31729220]
[58]
He, W.; Frueh, J.; Wu, Z.; He, Q. Leucocyte membrane-coated janus microcapsules for enhanced photothermal cancer treatment. Langmuir, 2016, 32(15), 3637-3644.
[http://dx.doi.org/10.1021/acs.langmuir.5b04762] [PMID: 27023433]
[59]
Wei, X.; Ying, M.; Dehaini, D.; Su, Y.; Kroll, A.V.; Zhou, J.; Gao, W.; Fang, R.H.; Chien, S.; Zhang, L. Nanoparticle functionalization with platelet membrane enables multifactored biological targeting and detection of atherosclerosis. ACS Nano, 2018, 12(1), 109-116.
[http://dx.doi.org/10.1021/acsnano.7b07720] [PMID: 29216423]
[60]
Hu, Q.; Sun, W.; Qian, C.; Wang, C.; Bomba, H.N.; Gu, Z. Anticancer platelet‐mimicking nanovehicles. Adv. Mater., 2015, 27(44), 7043-7050.
[http://dx.doi.org/10.1002/adma.201503323] [PMID: 26416431]
[61]
Rao, L.; Bu, L.L.; Cai, B.; Xu, J.H.; Li, A.; Zhang, W.F.; Sun, Z.J.; Guo, S.S.; Liu, W.; Wang, T.H.; Zhao, X.Z. Cancer cell membrane-coated upconversion nanoprobes for highly specific tumor imaging. Adv. Mater., 2016, 28(18), 3460-3466.
[http://dx.doi.org/10.1002/adma.201506086] [PMID: 26970518]
[62]
Liu, C.M.; Chen, G.B.; Chen, H.H.; Zhang, J.B.; Li, H.Z.; Sheng, M.X.; Weng, W.B.; Guo, S.M. Cancer cell membrane-cloaked mesoporous silica nanoparticles with a pH-sensitive gatekeeper for cancer treatment. Colloids Surf. B Biointerfaces, 2019, 175, 477-486.
[http://dx.doi.org/10.1016/j.colsurfb.2018.12.038] [PMID: 30572156]
[63]
Wan, F.Z.; Chen, K.H.; Sun, Y.C.; Chen, X.C.; Liang, R.B.; Chen, L.; Zhu, X.D. Exosomes overexpressing miR-34c inhibit malignant behavior and reverse the radioresistance of nasopharyngeal carcinoma. J. Transl. Med., 2020, 18(1), 12.
[http://dx.doi.org/10.1186/s12967-019-02203-z] [PMID: 31915008]
[64]
Zhang, M.; Zhang, F.; Liu, T.; Shao, P.; Duan, L.; Yan, J.; Mu, X.; Jiang, J. Polydopamine nanoparticles camouflaged by stem cell membranes for synergistic chemo-photothermal therapy of malignant bone tumors. Int. J. Nanomed., 2020, 15, 10183-10197.
[http://dx.doi.org/10.2147/IJN.S282931] [PMID: 33363374]
[65]
Pierigè, F.; Serafini, S.; Rossi, L.; Magnani, M. Cell-based drug delivery. Adv. Drug Deliv. Rev., 2008, 60(2), 286-295.
[http://dx.doi.org/10.1016/j.addr.2007.08.029] [PMID: 17997501]
[66]
Sun, Y.; Su, J.; Liu, G.; Chen, J.; Zhang, X.; Zhang, R.; Jiang, M.; Qiu, M. Advances of blood cell-based drug delivery systems. Eur. J. Pharm. Sci., 2017, 96, 115-128.
[http://dx.doi.org/10.1016/j.ejps.2016.07.021] [PMID: 27496050]
[67]
Gao, M.; Liang, C.; Song, X.; Chen, Q.; Jin, Q.; Wang, C.; Liu, Z. Erythrocyte‐membrane‐enveloped perfluorocarbon as nanoscale artificial red blood cells to relieve tumor hypoxia and enhance cancer radiotherapy Adv. Mater., 2017, 29(35), 1701429.
[http://dx.doi.org/10.1002/adma.201701429] [PMID: 28722140]
[68]
Jensen, F.B. The dual roles of red blood cells in tissue oxygen delivery: Oxygen carriers and regulators of local blood flow. J. Exp. Biol., 2009, 212(21), 3387-3393.
[http://dx.doi.org/10.1242/jeb.023697] [PMID: 19837879]
[69]
Pasto, A.; Giordano, F.; Evangelopoulos, M.; Amadori, A.; Tasciotti, E. Cell membrane protein functionalization of nanoparticles as a new tumor‐targeting strategy. Clin. Transl. Med., 2019, 8(1), 8.
[http://dx.doi.org/10.1186/s40169-019-0224-y] [PMID: 30877412]
[70]
Hu, C.M.J.; Fang, R.H.; Luk, B.T.; Chen, K.N.H.; Carpenter, C.; Gao, W.; Zhang, K.; Zhang, L. ‘Marker-of-self’ functionalization of nanoscale particles through a top-down cellular membrane coating approach. Nanoscale, 2013, 5(7), 2664-2668.
[http://dx.doi.org/10.1039/c3nr00015j] [PMID: 23462967]
[71]
Hu, C.M.J.; Zhang, L.; Aryal, S.; Cheung, C.; Fang, R.H.; Zhang, L. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc. Natl. Acad. Sci. USA, 2011, 108(27), 10980-10985.
[http://dx.doi.org/10.1073/pnas.1106634108] [PMID: 21690347]
[72]
Zheng, D.; Yu, P.; Wei, Z.; Zhong, C.; Wu, M.; Liu, X. RBC membrane camouflaged semiconducting polymer nanoparticles for near-infrared photoacoustic imaging and photothermal therapy. Nano-Micro Lett., 2020, 12(1), 94.
[http://dx.doi.org/10.1007/s40820-020-00429-x] [PMID: 34138120]
[73]
Sun, X.; Wang, C.; Gao, M.; Hu, A.; Liu, Z. Remotely controlled red blood cell carriers for cancer targeting and near‐infrared lighttriggered drug release in combined photothermal–chemotherapy. Adv. Funct. Mater., 2015, 25(16), 2386-2394.
[http://dx.doi.org/10.1002/adfm.201500061]
[74]
Pei, Q.; Hu, X.; Zheng, X.; Liu, S.; Li, Y.; Jing, X.; Xie, Z. Light-activatable red blood cell membrane-camouflaged dimeric prodrug nanoparticles for synergistic photodynamic/chemotherapy. ACS Nano, 2018, 12(2), 1630-1641.
[http://dx.doi.org/10.1021/acsnano.7b08219] [PMID: 29346736]
[75]
Yang, Z.; Wang, J.; Ai, S.; Sun, J.; Mai, X.; Guan, W. Self-generating oxygen enhanced mitochondrion-targeted photodynamic therapy for tumor treatment with hypoxia scavenging. Theranostics, 2019, 9(23), 6809-6823.
[http://dx.doi.org/10.7150/thno.36988] [PMID: 31660070]
[76]
Li, Z.; Fallon, J.; Mandeli, J.; Wetmur, J.; Woo, S.L.C. The oncopathic potency of Clostridium perfringens is independent of its α-toxin gene. Hum. Gene Ther., 2009, 20(7), 751-758.
[http://dx.doi.org/10.1089/hum.2008.145] [PMID: 19298132]
[77]
Li, C.; Yang, X.Q.; An, J.; Cheng, K.; Hou, X.L.; Zhang, X.S.; Hu, Y.G.; Liu, B.; Zhao, Y.D. Red blood cell membrane-enveloped O 2 self-supplementing biomimetic nanoparticles for tumor imaging-guided enhanced sonodynamic therapy. Theranostics, 2020, 10(2), 867-879.
[http://dx.doi.org/10.7150/thno.37930] [PMID: 31903156]
[78]
Liu, W.L.; Liu, T.; Zou, M.Z.; Yu, W.Y.; Li, C.X.; He, Z.Y.; Zhang, M.K.; Liu, M.D.; Li, Z.H.; Feng, J.; Zhang, X.Z. Aggressive man‐made red blood cells for hypoxia‐resistant photodynamic therapy Adv. Mater., 2018, 30(35), 1802006.
[http://dx.doi.org/10.1002/adma.201802006] [PMID: 30015997]
[79]
Wang, S.; Yuan, J.; Yang, J.; Li, N.; Liu, R.; Luan, J.; Ye, D. Advancement of platelet-inspired nanomedicine. Platelets, 2018, 29(7), 690-694.
[http://dx.doi.org/10.1080/09537104.2018.1475633] [PMID: 29883255]
[80]
Li, Z.; Hu, S.; Cheng, K. Platelets and their biomimetics for regenerative medicine and cancer therapies. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(45), 7354-7365.
[http://dx.doi.org/10.1039/C8TB02301H] [PMID: 31372220]
[81]
Gay, L.J.; Felding-Habermann, B. Contribution of platelets to tumour metastasis. Nat. Rev. Cancer, 2011, 11(2), 123-134.
[http://dx.doi.org/10.1038/nrc3004] [PMID: 21258396]
[82]
Katsuno, Y.; Lamouille, S.; Derynck, R. TGF-β signaling and epithelial–mesenchymal transition in cancer progression. Curr. Opin. Oncol., 2013, 25(1), 76-84.
[http://dx.doi.org/10.1097/CCO.0b013e32835b6371] [PMID: 23197193]
[83]
Menter, D.G.; Tucker, S.C.; Kopetz, S.; Sood, A.K.; Crissman, J.D.; Honn, K.V. Platelets and cancer: a casual or causal relationship: revisited. Cancer Metastasis Rev., 2014, 33(1), 231-269.
[http://dx.doi.org/10.1007/s10555-014-9498-0] [PMID: 24696047]
[84]
Xu, P.; Zuo, H.; Chen, B.; Wang, R.; Ahmed, A.; Hu, Y.; Ouyang, J. Doxorubicin-loaded platelets as a smart drug delivery system: An improved therapy for lymphoma. Sci. Rep., 2017, 7(1), 42632.
[http://dx.doi.org/10.1038/srep42632] [PMID: 28127051]
[85]
Wang, X.; Liang, G.F.; Hao, X.Q.; Feng, S.Y.; Dai, L.; An, J.L.; Li, J.H.; Shi, H.; Feng, W.P.; Zhang, X. Bioinspired drug delivery carrier for enhanced tumor-targeting in melanoma mice model. J. Biomed. Nanotechnol., 2019, 15(7), 1482-1491.
[http://dx.doi.org/10.1166/jbn.2019.2786] [PMID: 31196352]
[86]
Zhang, X.; Wang, J.; Chen, Z.; Hu, Q.; Wang, C.; Yan, J.; Dotti, G.; Huang, P.; Gu, Z. Engineering PD-1-presenting platelets for cancer immunotherapy. Nano Lett., 2018, 18(9), 5716-5725.
[http://dx.doi.org/10.1021/acs.nanolett.8b02321] [PMID: 30063143]
[87]
Rao, L.; Bu, L.L.; Ma, L.; Wang, W.; Liu, H.; Wan, D.; Liu, J.F.; Li, A.; Guo, S.S.; Zhang, L.; Zhang, W.F.; Zhao, X.Z.; Sun, Z.J.; Liu, W. Platelet‐facilitated photothermal therapy of head and neck squamous cell carcinoma. Angew. Chem. Int. Ed., 2018, 57(4), 986-991.
[http://dx.doi.org/10.1002/anie.201709457] [PMID: 29193651]
[88]
Chen, Y.; Zhao, G.; Wang, S.; He, Y.; Han, S.; Du, C.; Li, S.; Fan, Z.; Wang, C.; Wang, J. Platelet-membrane-camouflaged bismuth sulfide nanorods for synergistic radio-photothermal therapy against cancer. Biomater. Sci., 2019, 7(8), 3450-3459.
[http://dx.doi.org/10.1039/C9BM00599D] [PMID: 31268067]
[89]
Shi, Y.; Du, L.; Lin, L.; Wang, Y. Tumour-associated mesenchymal stem/stromal cells: Emerging therapeutic targets. Nat. Rev. Drug Discov., 2017, 16(1), 35-52.
[http://dx.doi.org/10.1038/nrd.2016.193] [PMID: 27811929]
[90]
Zhen, X.; Cheng, P.; Pu, K. Recent advances in cell membrane–camouflaged nanoparticles for cancer phototherapy. Small, 2019, 15(1), 1804105.
[http://dx.doi.org/10.1002/smll.201804105] [PMID: 30457701]
[91]
Yang, N.; Ding, Y.; Zhang, Y.; Wang, B.; Zhao, X.; Cheng, K.; Huang, Y.; Taleb, M.; Zhao, J.; Dong, W.F.; Zhang, L.; Nie, G. Surface functionalization of polymeric nanoparticles with umbilical cord-derived mesenchymal stem cell membrane for tumor-targeted therapy. ACS Appl. Mater. Interfaces, 2018, 10(27), 22963-22973.
[http://dx.doi.org/10.1021/acsami.8b05363] [PMID: 29905067]
[92]
Mu, X.; Zhang, M.; Wei, A.; Yin, F.; Wang, Y.; Hu, K.; Jiang, J. Doxorubicin and PD-L1 siRNA co-delivery with stem cell membrane-coated polydopamine nanoparticles for the targeted chemoimmunotherapy of PCa bone metastases. Nanoscale, 2021, 13(19), 8998-9008.
[http://dx.doi.org/10.1039/D0NR08024A] [PMID: 33973580]
[93]
Feng, Q.; Yang, X.; Hao, Y.; Wang, N.; Feng, X.; Hou, L.; Zhang, Z. Cancer cell membrane-biomimetic nanoplatform for enhanced sonodynamic therapy on breast cancer via autophagy regulation strategy. ACS Appl. Mater. Interfaces, 2019, 11(36), 32729-32738.
[http://dx.doi.org/10.1021/acsami.9b10948] [PMID: 31415145]
[94]
Ohannesian, D.W.; Lotan, D.; Thomas, P.; Jessup, J.M.; Fukuda, M.; Gabius, H-J.; Lotan, R. Carcinoembryonic antigen and other glycoconjugates act as ligands for galectin-3 in human colon carcinoma cells. Cancer Res., 1995, 55(10), 2191-2199.
[PMID: 7743523]
[95]
Wu, K.L.; Huang, E.Y.; Yeh, W.L.; Hsiao, C.C.; Kuo, C.M. Synergistic interaction between galectin-3 and carcinoembryonic antigen promotes colorectal cancer metastasis. Oncotarget, 2017, 8(37), 61935-61943.
[http://dx.doi.org/10.18632/oncotarget.18721] [PMID: 28977916]
[96]
Harris, J.C.; Scully, M.A.; Day, E.S. Cancer cell membrane-coated nanoparticles for cancer management. Cancers, 2019, 11(12), 1836.
[http://dx.doi.org/10.3390/cancers11121836] [PMID: 31766360]
[97]
Peng, M.; Mo, Y.; Wang, Y.; Wu, P.; Zhang, Y.; Xiong, F.; Guo, C.; Wu, X.; Li, Y.; Li, X.; Li, G.; Xiong, W.; Zeng, Z. Neoantigen vaccine: an emerging tumor immunotherapy. Mol. Cancer, 2019, 18(1), 128.
[http://dx.doi.org/10.1186/s12943-019-1055-6] [PMID: 31443694]
[98]
Shemesh, C.S.; Hsu, J.C.; Hosseini, I.; Shen, B.Q.; Rotte, A.; Twomey, P.; Girish, S.; Wu, B. Personalized cancer vaccines: clinical landscape, challenges, and opportunities. Mol. Ther., 2021, 29(2), 555-570.
[http://dx.doi.org/10.1016/j.ymthe.2020.09.038] [PMID: 33038322]
[99]
Finn, O. J. Cancer vaccines: Between the idea and the reality. Nat. Rev. Immunol., 2003, 3(8), 630-641.
[http://dx.doi.org/10.1038/nri1150] [PMID: 12974478]
[100]
Hu, M.; Zhang, J.; Kong, L.; Yu, Y.; Hu, Q.; Yang, T.; Wang, Y.; Tu, K.; Qiao, Q.; Qin, X.; Zhang, Z. Immunogenic hybrid nanovesicles of liposomes and tumor-derived nanovesicles for cancer immunochemotherapy. ACS Nano, 2021, 15(2), 3123-3138.
[http://dx.doi.org/10.1021/acsnano.0c09681] [PMID: 33470095]
[101]
Syn, N.L.; Wang, L.; Chow, E.K.H.; Lim, C.T.; Goh, B.C. Exosomes in cancer nanomedicine and immunotherapy: prospects and challenges. Trends Biotechnol., 2017, 35(7), 665-676.
[http://dx.doi.org/10.1016/j.tibtech.2017.03.004] [PMID: 28365132]
[102]
Lee, E.Y.; Park, K.S.; Yoon, Y.J.; Lee, J.; Moon, H.G.; Jang, S.C.; Choi, K.H.; Kim, Y.K.; Gho, Y.S. Therapeutic effects of autologous tumor-derived nanovesicles on melanoma growth and metastasis. PLoS One, 2012, 7(3), e33330.
[http://dx.doi.org/10.1371/journal.pone.0033330] [PMID: 22438914]
[103]
Ricchi, P.; Zarrilli, R.; di Palma, A.; Acquaviva, A.M. Nonsteroidal anti-inflammatory drugs in colorectal cancer: from prevention to therapy. Br. J. Cancer, 2003, 88(6), 803-807.
[http://dx.doi.org/10.1038/sj.bjc.6600829] [PMID: 12644813]
[104]
Mantovani, A.; Allavena, P.; Sica, A.; Balkwill, F. Cancer-related inflammation. Nature, 2008, 454(7203), 436-444.
[105]
Cao, X.; Hu, Y.; Luo, S.; Wang, Y.; Gong, T.; Sun, X.; Fu, Y.; Zhang, Z. Neutrophil-mimicking therapeutic nanoparticles for targeted chemotherapy of pancreatic carcinoma. Acta Pharm. Sin. B, 2019, 9(3), 575-589.
[http://dx.doi.org/10.1016/j.apsb.2018.12.009] [PMID: 31193785]
[106]
Coffelt, S.B.; Kersten, K.; Doornebal, C.W.; Weiden, J.; Vrijland, K.; Hau, C.S.; Verstegen, N.J.M.; Ciampricotti, M.; Hawinkels, L.J.A.C.; Jonkers, J.; de Visser, K.E. IL-17-producing γδ T cells and neutrophils conspire to promote breast cancer metastasis. Nature, 2015, 522(7556), 345-348.
[http://dx.doi.org/10.1038/nature14282] [PMID: 25822788]
[107]
He, Z.; Zhang, Y.; Feng, N. Cell membrane-coated nanosized active targeted drug delivery systems homing to tumor cells: A review. Mater. Sci. Eng. C, 2020, 106, 110298.
[http://dx.doi.org/10.1016/j.msec.2019.110298] [PMID: 31753336]
[108]
Lugli, E. T-cell Differentiation: Methods and Protocols; Springer, 2017.
[http://dx.doi.org/10.1007/978-1-4939-6548-9]
[109]
Zhai, Y.; Wang, J.; Lang, T.; Kong, Y.; Rong, R.; Cai, Y.; Ran, W.; Xiong, F.; Zheng, C.; Wang, Y.; Yu, Y.; Zhu, H.H.; Zhang, P.; Li, Y. T lymphocyte membrane-decorated epigenetic nanoinducer of interferons for cancer immunotherapy. Nat. Nanotechnol., 2021, 16(11), 1271-1280.
[http://dx.doi.org/10.1038/s41565-021-00972-7] [PMID: 34580467]
[110]
Zhang, L.; Li, R.; Chen, H.; Wei, J.; Qian, H.; Su, S.; Shao, J.; Wang, L.; Qian, X.P.; Liu, B. Human cytotoxic T-lymphocyte membrane-camouflaged nanoparticles combined with low-dose irradiation: A new approach to enhance drug targeting in gastric cancer. Int. J. Nanomedicine, 2017, 12, 2129-2142.
[http://dx.doi.org/10.2147/IJN.S126016] [PMID: 28360520]
[111]
Dumont, M.; Peffault de Latour, R.; Ram-Wolff, C.; Bagot, M.; de Masson, A. Allogeneic hematopoietic stem cell transplantation in cutaneous t-cell lymphomas. Cancers, 2020, 12(10), 2856.
[http://dx.doi.org/10.3390/cancers12102856] [PMID: 33023002]
[112]
Huang, Q.; Xia, J.; Wang, L.; Wang, X.; Ma, X.; Deng, Q.; Lu, Y.; Kumar, M.; Zhou, Z.; Li, L. miR-153 suppresses IDO1 expression and enhances CAR T cell immunotherapy. J. Hematol. Oncol., 2018, 11(1), 1-12.
[PMID: 29298689]
[113]
Ma, W.; Zhu, D.; Li, J.; Chen, X.; Xie, W.; Jiang, X.; Wu, L.; Wang, G.; Xiao, Y.; Liu, Z.; Wang, F.; Li, A.; Shao, D.; Dong, W.; Liu, W.; Yuan, Y. Coating biomimetic nanoparticles with chimeric antigen receptor T cell-membrane provides high specificity for hepatocellular carcinoma photothermal therapy treatment. Theranostics, 2020, 10(3), 1281-1295.
[http://dx.doi.org/10.7150/thno.40291] [PMID: 31938065]
[114]
Granot, T.; Senda, T.; Carpenter, D.J.; Matsuoka, N.; Weiner, J.; Gordon, C.L.; Miron, M.; Kumar, B.V.; Griesemer, A.; Ho, S.H.; Lerner, H.; Thome, J.J.C.; Connors, T.; Reizis, B.; Farber, D.L. Dendritic cells display subset and tissue-specific maturation dynamics over human life. Immunity, 2017, 46(3), 504-515.
[http://dx.doi.org/10.1016/j.immuni.2017.02.019] [PMID: 28329707]
[115]
Cheng, S.; Xu, C.; Jin, Y.; Li, Y.; Zhong, C.; Ma, J.; Yang, J.; Zhang, N.; Li, Y.; Wang, C.; Yang, Z.; Wang, Y. Artificial mini dendritic cells boost T cell–based immunotherapy for ovarian cancer. Adv. Sci., 2020, 7(7), 1903301.
[http://dx.doi.org/10.1002/advs.201903301] [PMID: 32274314]
[116]
Chen, F.; Geng, Z.; Wang, L.; Zhou, Y.; Liu, J. Biomimetic nanoparticles enabled by cascade cell membrane coating for direct cross‐priming of t cells. Small, 2022, 18(3), 2104402.
[http://dx.doi.org/10.1002/smll.202104402] [PMID: 34837321]
[117]
Sun, Z.; Deng, G.; Peng, X.; Xu, X.; Liu, L.; Peng, J.; Ma, Y.; Zhang, P.; Wen, A.; Wang, Y.; Yang, Z.; Gong, P.; Jiang, W.; Cai, L. Intelligent photothermal dendritic cells restart the cancer immunity cycle through enhanced immunogenic cell death. Biomaterials, 2021, 279, 121228.
[http://dx.doi.org/10.1016/j.biomaterials.2021.121228] [PMID: 34717198]
[118]
Guerra, A.D.; Yeung, O.W.H.; Qi, X.; Kao, W.J.; Man, K. The anti-tumor effects of M1 macrophage-loaded poly (ethylene glycol) and gelatin-based hydrogels on hepatocellular carcinoma. Theranostics, 2017, 7(15), 3732-3744.
[http://dx.doi.org/10.7150/thno.20251] [PMID: 29109772]
[119]
Madsen, S.J.; Hirschberg, H. Macrophages as delivery vehicles for anticancer agents. Ther. Deliv., 2019, 10(3), 189-201.
[http://dx.doi.org/10.4155/tde-2019-0004] [PMID: 30909858]
[120]
Pham, K.; Huynh, D.; Le, L.; Delitto, D.; Yang, L.; Huang, J.; Kang, Y.; Steinberg, M.B.; Li, J.; Zhang, L.; Liu, D.; Tang, M.S.; Liu, C.; Wang, H. E-cigarette promotes breast carcinoma progression and lung metastasis: Macrophage-tumor cells crosstalk and the role of CCL5 and VCAM-1. Cancer Lett., 2020, 491, 132-145.
[http://dx.doi.org/10.1016/j.canlet.2020.08.010] [PMID: 32829009]
[121]
Chen, Q.; Zhang, X.H.F.; Massagué, J. Macrophage binding to receptor VCAM-1 transmits survival signals in breast cancer cells that invade the lungs. Cancer Cell, 2011, 20(4), 538-549.
[http://dx.doi.org/10.1016/j.ccr.2011.08.025] [PMID: 22014578]
[122]
Cao, H.; Dan, Z.; He, X.; Zhang, Z.; Yu, H.; Yin, Q.; Li, Y. Liposomes coated with isolated macrophage membrane can target lung metastasis of breast cancer. ACS Nano, 2016, 10(8), 7738-7748.
[http://dx.doi.org/10.1021/acsnano.6b03148] [PMID: 27454827]
[123]
Li, Y.; Yan, T.; Chang, W.; Cao, C.; Deng, D. Fabricating an intelligent cell-like nano-prodrug via hierarchical self-assembly based on the DNA skeleton for suppressing lung metastasis of breast cancer. Biomater. Sci., 2019, 7(9), 3652-3661.
[http://dx.doi.org/10.1039/C9BM00630C] [PMID: 31169833]
[124]
Hu, W.; Wang, G.; Huang, D.; Sui, M.; Xu, Y. Cancer immunotherapy based on natural killer cells: Current progress and new opportunities. Front. Immunol., 2019, 10, 1205.
[http://dx.doi.org/10.3389/fimmu.2019.01205] [PMID: 31214177]
[125]
Deng, G.; Sun, Z.; Li, S.; Peng, X.; Li, W.; Zhou, L.; Ma, Y.; Gong, P.; Cai, L. Cell-membrane immunotherapy based on natural killer cell membrane coated nanoparticles for the effective inhibition of primary and abscopal tumor growth. ACS Nano, 2018, 12(12), 12096-12108.
[http://dx.doi.org/10.1021/acsnano.8b05292] [PMID: 30444351]
[126]
Tonn, T.; Schwabe, D.; Klingemann, H.G.; Becker, S.; Esser, R.; Koehl, U.; Suttorp, M.; Seifried, E.; Ottmann, O.G.; Bug, G. Treatment of patients with advanced cancer with the natural killer cell line NK-92. Cytotherapy, 2013, 15(12), 1563-1570.
[http://dx.doi.org/10.1016/j.jcyt.2013.06.017] [PMID: 24094496]
[127]
Pitchaimani, A.; Nguyen, T.D.T.; Aryal, S. Natural killer cell membrane infused biomimetic liposomes for targeted tumor therapy. Biomaterials, 2018, 160, 124-137.
[http://dx.doi.org/10.1016/j.biomaterials.2018.01.018] [PMID: 29407341]
[128]
Wu, Z.; Li, T.; Li, J.; Gao, W.; Xu, T.; Christianson, C.; Gao, W.; Galarnyk, M.; He, Q.; Zhang, L.; Wang, J. Turning erythrocytes into functional micromotors. ACS Nano, 2014, 8(12), 12041-12048.
[http://dx.doi.org/10.1021/nn506200x] [PMID: 25415461]
[129]
Sosale, N.G.; Spinler, K.R.; Alvey, C.; Discher, D.E. Macrophage engulfment of a cell or nanoparticle is regulated by unavoidable opsonization, a species-specific ‘Marker of Self’ CD47, and target physical properties. Curr. Opin. Immunol., 2015, 35, 107-112.
[http://dx.doi.org/10.1016/j.coi.2015.06.013] [PMID: 26172292]
[130]
Wang, D.; Dong, H.; Li, M.; Cao, Y.; Yang, F.; Zhang, K.; Dai, W.; Wang, C.; Zhang, X. Erythrocyte–cancer hybrid membrane camouflaged hollow copper sulfide nanoparticles for prolonged circulation life and homotypic-targeting photothermal/chemotherapy of melanoma. ACS Nano, 2018, 12(6), 5241-5252.
[http://dx.doi.org/10.1021/acsnano.7b08355] [PMID: 29800517]