[1]
Saikrushna, J.; Ram, S. Isolation, synthesis, and medicinal applications of heparin. Chem. Biol. Lett., 2021, 8(2), 59-66.
[9]
Zhang, Z. The structural characterization of low molecular weight heparin. Chin. J. New Drugs, 2014, 23(8), 901-905+939.
[72]
William, D.; James, M.D.; Dirk, M.; Elston, M.D.; James, R.; Treat, M.D.; Misha, A.; Rosenbach, M.D.; Isaac, M.; Neuhaus, M.D. Viral Diseases. In: Andrews' Diseases of the Skin; Elsevier, Amsterdam, 2020; 19, pp. 362-420.
[73]
Walker, S.L.; Grayson, W. Human immunodeficiency virus (HIV) and acquired immunodeficiency syndrome (AIDS)-associated cutaneous diseases. In: McKee's Pathology of the Skin, 5th ed.; Elsevier, Amsterdam, 2020; pp. 976-989.e5.
[93]
Mycroft-West, C.; Su, D.; Elli, S.; Li, Y.; Guimond, S.; Miller, G.; Turnbull, J.; Yates, E.; Guerrini, M.; Fernig, D.; Lima, M.; Skidmore, M. The 2019 coronavirus (SARS-CoV-2) surface protein (Spike) S1Receptor Binding Domain undergoes conformational change upon heparin binding. bioRxiv, 2020, 2020, 971093v2.
[96]
Liu, L.; Chopra, P.; Li, X.R.; Wolfert, M.A.; Tompkins, S.M.; Boons, G-J. SARS-CoV-2 spike protein binds heparan sulfate in a length- and sequence-dependent manner. bioRxiv, 2020, 2020, 087288.
[97]
Paiardi, G.; Richter, S.; Oreste, P.; Urbinati, C.; Rusnati, M.; Wade, R.C. Three-fold mechanism of inhibition of SARS-CoV-2 infection by the interaction of the spike glycoprotein with heparin. arXiv, 2021, 2103, 07722.
[104]
Guimond, S.E.; Mycroft-West, C.J.; Gandhi, N.S.; Tree, J.A.; Le, T.T.; Spalluto, C.M.; Humbert, M.V.; Buttigieg, K.R.; Coombes, N.; Elmore, M.J.; Nyström, K.; Said, J.; Setoh, Y.X.; Amarilla, A.A.; Modhiran, N.; Sng, J.D.J.; Chhabra, M.; Young, P.R.; Lima, M.A.; Yates, A.E; Karlsson, R; Miller, R.L; Chen, Y.-H; Bagdonaite, I.; Yang, Z.; Stewart, J.; Hammond, E.; Dredge, K.; Wilkinson, T.M.A.; Watterson, D.; Khromykh, A.A.; Suhrbier, A.; Carroll, M.W.; Trybala, E.; Bergström, T.; Ferro, V.; Skidmore, M.A.; Turnbull, J.E. Pixatimod (PG545), a clinical-stage heparan sulfate mimetic, is a potent inhibitor of the SARS1-CoV-2 virus. bioRxiv, 2021, 2021, 169334.
[105]
Guimond, S.E.; Mycroft-West, C.J.; Gandhi, N.S.; Tree, J.A.; Le, T.T.; Spalluto, C.M.; Humbert, M.V.; Buttigieg, K.R.; Coombes, N.; Elmore, M.J.; Nyström, K.; Said, J.; Setoh, Y.X.; Amarilla, A.A.; Modhiran, N.; Sng, J.D.J.; Chhabra, M.; Young, P.R.; Lima, M.A.; Yates, A.; Karlsson, R; Miller, R.L; Chen, Y.-H; Bagdonaite, I.; Yang, Z.; Stewart, J.; Hammond, E.; Dredge, K.; Wilkinson, T.M.A.; Watterson, D.; Khromykh, A.A.; Suhrbier, A.; Carroll, M.W.; Trybala, E.; Bergström, T.; Ferro, V.; Skidmore, M.A.; Turnbull, J.E. Synthetic heparan sulfate mimetic pixatimod (PG545) potently inhibits SARS-CoV-2 by disrupting the spike-ACE2 interaction. bioRxiv, 2020, 2020, 169334.
[117]
Richards, K. F.; Bienkowska-Haba, M.; Dasgupta, J.; Chen, X. S.; Sapp, M. Multiple heparan sulfate binding site engagements are required for the infectious entry of human papillomavirus type 16. J. Virol., 2013, 87(21), 11426-37.