Cognitive Benefits of Sodium-Glucose Co-Transporters-2 Inhibitors in the Diabetic Milieu

Page: [138 - 151] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Patients with diabetes are at higher risk of cognitive impairment and memory loss than the normal population. Thus, using hypoglycemic agents to improve brain function is important for diabetic patients. Sodium-glucose cotransporters-2 inhibitors (SGLT2i) are a class of therapeutic agents used in the management of diabetes that has some pharmacologic effects enabling them to fight against the onset and progress of memory deficits. Although the exact mediating pathways are not well understood, emerging evidence suggests that SGLT2 inhibition is associated with improved brain function. This study reviewed the possible mechanisms and provided evidence suggesting SGLT2 inhibitors could ameliorate cognitive deficits.

[1]
Magliano, DJ; Islam, RM; Barr, EL; Gregg, EW; Pavkov, ME; Harding, JL Trends in incidence of total or type 2 diabetes: systematic review. BMJ, 2019, 366, l5003.
[2]
Skapek, S.X.; Ferrari, A.; Gupta, A.A.; Lupo, P.J.; Butler, E.; Shipley, J.; Barr, F.G.; Hawkins, D.S. Rhabdomyosarcoma. Nat. Rev. Dis. Primers, 2019, 5(1), 1-18.
[http://dx.doi.org/10.1038/s41572-018-0051-2] [PMID: 30617281]
[3]
Kioskli, K.; Scott, W.; Winkley, K.; Kylakos, S.; McCracken, L.M. Psychosocial factors in painful diabetic neuropathy: a systematic review of treatment trials and survey studies. Pain Med., 2019, 20(9), 1756-1773.
[http://dx.doi.org/10.1093/pm/pnz071] [PMID: 30980660]
[4]
Rojas, D.R.; Kuner, R.; Agarwal, N. Metabolomic signature of type 1 diabetes-induced sensory loss and nerve damage in diabetic neuropathy. J. Mol. Med. (Berl.), 2019, 97(6), 845-854.
[http://dx.doi.org/10.1007/s00109-019-01781-1] [PMID: 30949723]
[5]
Zhang, X.; Jiang, X.; Han, S.; Liu, Q.; Zhou, J. Type 2 diabetes mellitus is associated with the risk of cognitive impairment: a meta-analysis. J. Mol. Neurosci., 2019, 68(2), 251-260.
[http://dx.doi.org/10.1007/s12031-019-01290-3] [PMID: 30949957]
[6]
Albai, O.; Frandes, M.; Timar, R.; Roman, D.; Timar, B. Risk factors for developing dementia in type 2 diabetes mellitus patients with mild cognitive impairment. Neuropsychiatr. Dis. Treat., 2019, 15, 167-175.
[http://dx.doi.org/10.2147/NDT.S189905] [PMID: 30655669]
[7]
Chaytor, N.S.; Barbosa-Leiker, C.; Ryan, C.M.; Germine, L.T.; Hirsch, I.B.; Weinstock, R.S. Clinically significant cognitive impairment in older adults with type 1 diabetes. J. Diabetes Complicat., 2019, 33(1), 91-97.
[http://dx.doi.org/10.1016/j.jdiacomp.2018.04.003] [PMID: 29728302]
[8]
Sekhon, H.; Allali, G.; Launay, C.P.; Barden, J.; Szturm, T.; Liu-Ambrose, T.; Chester, V.L.; Wong, C.H.; Beauchet, O. Motoric cognitive risk syndrome, incident cognitive impairment and morphological brain abnormalities: Systematic review and meta-analysis. Maturitas, 2019, 123, 45-54.
[http://dx.doi.org/10.1016/j.maturitas.2019.02.006] [PMID: 31027677]
[9]
Toyoshima, K.; Kako, Y.; Toyomaki, A.; Shimizu, Y.; Tanaka, T.; Nakagawa, S.; Inoue, T.; Martinez-Aran, A.; Vieta, E.; Kusumi, I. Associations between cognitive impairment and quality of life in euthymic bipolar patients. Psychiatry Res., 2019, 271, 510-515.
[http://dx.doi.org/10.1016/j.psychres.2018.11.061] [PMID: 30551083]
[10]
McWhirter, L.; Ritchie, C.; Stone, J.; Carson, A. Functional cognitive disorders: a systematic review. Lancet Psychiatry, 2020, 7(2), 191-207.
[http://dx.doi.org/10.1016/S2215-0366(19)30405-5] [PMID: 31732482]
[11]
Benbow, A.A.; Anderson, P.L. Long-term improvements in probability and cost biases following brief cognitive behavioral therapy for social anxiety disorder. Cognit. Ther. Res., 2019, 43(2), 412-418.
[http://dx.doi.org/10.1007/s10608-018-9947-0]
[12]
Yaribeygi, H.; Atkin, S.L.; Sahebkar, A. Mechanistic effects of SGLT2 inhibition on blood pressure in diabetes. Diabetes Metab. Syndr., 2019, 13(2), 1679-1683.
[http://dx.doi.org/10.1016/j.dsx.2019.03.031] [PMID: 31336541]
[13]
Yaribeygi, H.; Butler, A.E.; Atkin, S.L.; Katsiki, N.; Sahebkar, A. Sodium–glucose cotransporter 2 inhibitors and inflammation in chronic kidney disease: Possible molecular pathways. J. Cell. Physiol., 2019, 234(1), 223-230.
[http://dx.doi.org/10.1002/jcp.26851] [PMID: 30076706]
[14]
Yaribeygi, H.; Ashrafizadeh, M.; Henney, N.C.; Sathyapalan, T.; Jamialahmadi, T.; Sahebkar, A. Neuromodulatory effects of anti-diabetes medications: A mechanistic review. Pharmacol. Res., 2020, 152, 104611.
[http://dx.doi.org/10.1016/j.phrs.2019.104611] [PMID: 31863868]
[15]
Akbari, A; Rafiee, M; Sathyapalan, T; Sahebkar, A. Impacts of sodium/glucose cotransporter-2 inhibitors on circulating uric acid concentrations: A systematic review and meta-analysis. J. Diabetes Res., 2022, 2022, 7520632.
[16]
Liu, Z.; Ma, X.; Ilyas, I.; Zheng, X.; Luo, S.; Little, P.J.; Kamato, D.; Sahebkar, A.; Wu, W.; Weng, J.; Xu, S. Impact of sodium glucose cotransporter 2 (SGLT2) inhibitors on atherosclerosis: from pharmacology to pre-clinical and clinical therapeutics. Theranostics, 2021, 11(9), 4502-4515.
[http://dx.doi.org/10.7150/thno.54498] [PMID: 33754074]
[17]
Ranjbar, G.; Mikhailidis, D.P.; Sahebkar, A. Effects of newer antidiabetic drugs on nonalcoholic fatty liver and steatohepatitis: Think out of the box! Metab. Clin. Exp., 2019, 101, 154001.
[18]
Yaribeygi, H.; Atkin, S.L.; Jamialahmadi, T.; Sahebkar, A. A review on the effects of new anti-diabetic drugs on platelet function. Endocr. Metab. Immune Disord. Drug Targets, 2020, 20(3), 328-334.
[http://dx.doi.org/10.2174/1871530319666191014110414] [PMID: 31612835]
[19]
Yaribeygi, H.; Maleki, M.; Nasimi, F.; Butler, A.E.; Jamialahmadi, T.; Sahebkar, A. Sodium-glucose co-transporter 2 inhibitors and hematopoiesis. J. Cell. Physiol., 2022, 237(10), 3778-3787.
[http://dx.doi.org/10.1002/jcp.30851] [PMID: 35951776]
[20]
Yaribeygi, H.; Sathyapalan, T.; Maleki, M.; Jamialahmadi, T.; Sahebkar, A. Molecular mechanisms by which SGLT2 inhibitors can induce insulin sensitivity in diabetic milieu: A mechanistic review. Life Sci., 2020, 240, 117090.
[http://dx.doi.org/10.1016/j.lfs.2019.117090] [PMID: 31765648]
[21]
Lin, K.J.; Wang, T.J.; Chen, S.D.; Lin, K.L.; Liou, C.W.; Lan, M.Y.; Chuang, Y.C.; Chuang, J.H.; Wang, P.W.; Lee, J.J.; Wang, F.S.; Lin, H.Y.; Lin, T.K. Two birds one stone: The neuroprotective effect of antidiabetic agents on parkinson disease—focus on sodium-glucose cotransporter 2 (SGLT2) inhibitors. Antioxidants, 2021, 10(12), 1935.
[http://dx.doi.org/10.3390/antiox10121935] [PMID: 34943038]
[22]
Katsenos, A.P.; Davri, A.S.; Simos, Y.V.; Nikas, I.P.; Bekiari, C.; Paschou, S.A. New treatment approaches for Alzheimer’s disease: Preclinical studies and clinical trials centered on antidiabetic drugs. Expert Opin. Invest. Drugs,2022, 31(1), 105-123.
[23]
Association, A.D. 2. Classification and diagnosis of diabetes. Diabetes Care, 2017, 40(Suppl. 1), S11-S24.
[http://dx.doi.org/10.2337/dc17-S005] [PMID: 27979889]
[24]
de Faria Maraschin, J. Classification of diabetes. Adv. Exp. Med. Biol; , 2012, pp. (771)12-9.
[25]
O’Neal, K.S.; Johnson, J.L.; Panak, R.L. Recognizing and appropriately treating latent autoimmune diabetes in adults. Diabetes Spectr., 2016, 29(4), 249-252.
[http://dx.doi.org/10.2337/ds15-0047] [PMID: 27899877]
[26]
Association, A.D. Diagnosis and classification of diabetes mellitus. Diabetes Care, 2014, 37(Suppl. 1), S81-S90.
[http://dx.doi.org/10.2337/dc14-S081] [PMID: 24357215]
[27]
Zilliox, L.A.; Chadrasekaran, K.; Kwan, J.Y.; Russell, J.W. Diabetes and cognitive impairment. Curr. Diab. Rep., 2016, 16(9), 87.
[http://dx.doi.org/10.1007/s11892-016-0775-x] [PMID: 27491830]
[28]
Moran, C.; Beare, R.; Wang, W.; Callisaya, M.; Srikanth, V. Type 2 diabetes mellitus, brain atrophy, and cognitive decline. Neurology, 2019, 92(8), e823-e830.
[http://dx.doi.org/10.1212/WNL.0000000000006955] [PMID: 30674592]
[29]
Sun, Y; Ma, C; Sun, H; Wang, H; Peng, W; Zhou, Z Metabolism: a novel shared link between diabetes mellitus and alzheimer’s disease. J. Diabetes Res., 2020, 2020, 4981814.
[http://dx.doi.org/10.1155/2020/4981814]
[30]
Hassan, A.; Sharma Kandel, R.; Mishra, R.; Gautam, J.; Alaref, A.; Jahan, N. Diabetes mellitus and Parkinson’s disease: shared pathophysiological links and possible therapeutic implications. Cureus, 2020, 12(8), e9853.
[http://dx.doi.org/10.7759/cureus.9853] [PMID: 32832307]
[31]
Hogg, E.; Athreya, K.; Basile, C.; Tan, E.E.; Kaminski, J.; Tagliati, M. High prevalence of undiagnosed insulin resistance in non-diabetic subjects with Parkinson’s disease. J. Parkinsons Dis., 2018, 8(2), 259-265.
[http://dx.doi.org/10.3233/JPD-181305] [PMID: 29614702]
[32]
Sang, Y.M.; Wang, L.J.; Mao, H.X.; Lou, X.Y.; Zhu, Y.J. The association of short-term memory and cognitive impairment with ghrelin, leptin, and cortisol levels in non-diabetic and diabetic elderly individuals. Acta Diabetol., 2018, 55(6), 531-539.
[http://dx.doi.org/10.1007/s00592-018-1111-5] [PMID: 29492658]
[33]
Yaribeygi, H.; Atkin, S.L.; Butler, A.E.; Sahebkar, A. Sodium–glucose cotransporter 2 inhibition normalizes glucose metabolism and suppresses oxidative stress in the kidneys of diabetic mice. Kidney Int., 2018, 94(5), 912-925.
[http://dx.doi.org/10.1016/j.kint.2018.04.025] [PMID: 30021702]
[34]
Davidson, J.A.; Kuritzky, L. Sodium glucose co-transporter 2 inhibitors and their mechanism for improving glycemia in patients with type 2 diabetes. Postgrad. Med., 2014, 126(6), 33-48.
[http://dx.doi.org/10.3810/pgm.2014.10.2819] [PMID: 25414933]
[35]
Yaribeygi, H.; Atkin, S.L.; Butler, A.E.; Sahebkar, A. Sodium–glucose cotransporter inhibitors and oxidative stress: An update. J. Cell. Physiol., 2019, 234(4), 3231-3237.
[http://dx.doi.org/10.1002/jcp.26760] [PMID: 30443936]
[36]
Chao, E.C. SGLT-2 inhibitors: a new mechanism for glycemic control. Clin. Diabetes, 2014, 32(1), 4-11.
[http://dx.doi.org/10.2337/diaclin.32.1.4] [PMID: 26246672]
[37]
Kern, M.; Klöting, N.; Mark, M.; Mayoux, E.; Klein, T.; Blüher, M. The SGLT2 inhibitor empagliflozin improves insulin sensitivity in db/db mice both as monotherapy and in combination with linagliptin. Metabolism, 2016, 65(2), 114-123.
[http://dx.doi.org/10.1016/j.metabol.2015.10.010] [PMID: 26773934]
[38]
Han, S.; Hagan, D.L.; Taylor, J.R.; Xin, L.; Meng, W.; Biller, S.A.; Wetterau, J.R.; Washburn, W.N.; Whaley, J.M. Dapagliflozin, a selective SGLT2 inhibitor, improves glucose homeostasis in normal and diabetic rats. Diabetes, 2008, 57(6), 1723-1729.
[http://dx.doi.org/10.2337/db07-1472] [PMID: 18356408]
[39]
Wilding, J.P.H.; Woo, V.; Rohwedder, K.; Sugg, J.; Parikh, S. Dapagliflozin in patients with type 2 diabetes receiving high doses of insulin: efficacy and safety over 2 years. Diabetes Obes. Metab., 2014, 16(2), 124-136.
[http://dx.doi.org/10.1111/dom.12187] [PMID: 23911013]
[40]
Ferrannini, E.; Muscelli, E.; Frascerra, S.; Baldi, S.; Mari, A.; Heise, T.; Broedl, U.C.; Woerle, H.J. Metabolic response to sodium-glucose cotransporter 2 inhibition in type 2 diabetic patients. J. Clin. Invest., 2014, 124(2), 499-508.
[http://dx.doi.org/10.1172/JCI72227] [PMID: 24463454]
[41]
Chao, E.C.; Henry, R.R. SGLT2 inhibition — a novel strategy for diabetes treatment. Nat. Rev. Drug Discov., 2010, 9(7), 551-559.
[http://dx.doi.org/10.1038/nrd3180] [PMID: 20508640]
[42]
Clar, C.; Gill, J.A.; Court, R.; Waugh, N. Systematic review of SGLT2 receptor inhibitors in dual or triple therapy in type 2 diabetes. BMJ Open, 2012, 2(5), e001007.
[http://dx.doi.org/10.1136/bmjopen-2012-001007] [PMID: 23087012]
[43]
Monica Reddy, R.P.; Inzucchi, S.E. SGLT2 inhibitors in the management of type 2 diabetes. Endocrine, 2016, 53(2), 364-372.
[http://dx.doi.org/10.1007/s12020-016-0943-4] [PMID: 27270407]
[44]
Pawlos, A.; Broncel, M.; Woźniak, E.; Gorzelak-Pabiś, P. Neuroprotective effect of SGLT2 inhibitors. Molecules, 2021, 26(23), 7213.
[http://dx.doi.org/10.3390/molecules26237213] [PMID: 34885795]
[45]
Rizzo, M.R.; Di Meo, I.; Polito, R.; Auriemma, M.C.; Gambardella, A.; di Mauro, G.; Capuano, A.; Paolisso, G. Cognitive impairment and type 2 diabetes mellitus: Focus of SGLT2 inhibitors treatment. Pharmacol. Res., 2022, 176, 106062.
[http://dx.doi.org/10.1016/j.phrs.2022.106062] [PMID: 35017046]
[46]
Rieg, T.; Vallon, V. Development of SGLT1 and SGLT2 inhibitors. Diabetologia, 2018, 61(10), 2079-2086.
[http://dx.doi.org/10.1007/s00125-018-4654-7] [PMID: 30132033]
[47]
Tahara, A.; Takasu, T.; Yokono, M.; Imamura, M.; Kurosaki, E. Characterization and comparison of sodium-glucose cotransporter 2 inhibitors in pharmacokinetics, pharmacodynamics, and pharmacologic effects. J. Pharmacol. Sci., 2016, 130(3), 159-169.
[http://dx.doi.org/10.1016/j.jphs.2016.02.003] [PMID: 26970780]
[48]
Erdogan, M.A.; Yusuf, D.; Christy, J.; Solmaz, V.; Erdogan, A.; Taskiran, E.; Erbas, O. Highly selective SGLT2 inhibitor dapagliflozin reduces seizure activity in pentylenetetrazol-induced murine model of epilepsy. BMC Neurol., 2018, 18(1), 81.
[http://dx.doi.org/10.1186/s12883-018-1086-4] [PMID: 29879920]
[49]
Amin, E.F.; Rifaai, R.A.; Abdel-latif, R.G. Empagliflozin attenuates transient cerebral ischemia/reperfusion injury in hyperglycemic rats via repressing oxidative–inflammatory–apoptotic pathway. Fundam. Clin. Pharmacol., 2020, 34(5), 548-558.
[http://dx.doi.org/10.1111/fcp.12548] [PMID: 32068294]
[50]
Hayden, M.; Grant, D.; Aroor, A.; DeMarco, V. Empagliflozin ameliorates type 2 diabetes-induced ultrastructural remodeling of the neurovascular unit and neuroglia in the female db/db mouse. Brain Sci., 2019, 9(3), 57.
[http://dx.doi.org/10.3390/brainsci9030057] [PMID: 30866531]
[51]
Oerter, S.; Förster, C.; Bohnert, M. Validation of sodium/glucose cotransporter proteins in human brain as a potential marker for temporal narrowing of the trauma formation. Int. J. Legal Med., 2019, 133(4), 1107-1114.
[http://dx.doi.org/10.1007/s00414-018-1893-6] [PMID: 30073510]
[52]
Kim, B; Feldman, EL Insulin resistance as a key link for the increased risk of cognitive impairment in the metabolic syndrome. Exper. Mol. Med., 2015, 47(3), e149.
[http://dx.doi.org/10.1038/emm.2015.3]
[53]
McNay, E.C.; Recknagel, A.K. Reprint of: ‘Brain insulin signaling: A key component of cognitive processes and a potential basis for cognitive impairment in type 2 diabetes’. Neurobiol. Learn. Mem., 2011, 96(4), 517-528.
[http://dx.doi.org/10.1016/j.nlm.2011.11.001] [PMID: 22085799]
[54]
Stanciu, G.D.; Rusu, R.N.; Bild, V.; Filipiuc, L.E.; Tamba, B.I.; Ababei, D.C. Systemic actions of SGLT2 inhibition on chronic mTOR activation as a shared pathogenic mechanism between Alzheimer’s disease and diabetes. Biomedicines, 2021, 9(5), 576.
[http://dx.doi.org/10.3390/biomedicines9050576] [PMID: 34069618]
[55]
Femminella, G.D.; Livingston, N.R.; Raza, S.; van der Doef, T.; Frangou, E.; Love, S.; Busza, G.; Calsolaro, V.; Carver, S.; Holmes, C.; Ritchie, C.W.; Lawrence, R.M.; McFarlane, B.; Tadros, G.; Ridha, B.H.; Bannister, C.; Walker, Z.; Archer, H.; Coulthard, E.; Underwood, B.; Prasanna, A.; Koranteng, P.; Karim, S.; Junaid, K.; McGuinness, B.; Passmore, A.P.; Nilforooshan, R.; Macharouthu, A.; Donaldson, A.; Thacker, S.; Russell, G.; Malik, N.; Mate, V.; Knight, L.; Kshemendran, S.; Tan, T.; Holscher, C.; Harrison, J.; Brooks, D.J.; Ballard, C.; Edison, P. Does insulin resistance influence neurodegeneration in non-diabetic Alzheimer’s subjects? Alzheimers Res. Ther., 2021, 13(1), 47.
[http://dx.doi.org/10.1186/s13195-021-00784-w] [PMID: 33597002]
[56]
Zhao, W.; Chen, H.; Xu, H.; Moore, E.; Meiri, N.; Quon, M.J.; Alkon, D.L. Brain insulin receptors and spatial memory. Correlated changes in gene expression, tyrosine phosphorylation, and signaling molecules in the hippocampus of water maze trained rats. J. Biol. Chem., 1999, 274(49), 34893-34902.
[http://dx.doi.org/10.1074/jbc.274.49.34893] [PMID: 10574963]
[57]
Zhao, W.Q.; Chen, H.; Quon, M.J.; Alkon, D.L. Insulin and the insulin receptor in experimental models of learning and memory. Eur. J. Pharmacol., 2004, 490(1-3), 71-81.
[http://dx.doi.org/10.1016/j.ejphar.2004.02.045] [PMID: 15094074]
[58]
Abbott, M.A.; Wells, D.G.; Fallon, J.R. The insulin receptor tyrosine kinase substrate p58/53 and the insulin receptor are components of CNS synapses. J. Neurosci., 1999, 19(17), 7300-7308.
[http://dx.doi.org/10.1523/JNEUROSCI.19-17-07300.1999] [PMID: 10460236]
[59]
Soto, M.; Cai, W.; Konishi, M.; Kahn, C.R. Insulin signaling in the hippocampus and amygdala regulates metabolism and neurobehavior. Proc. Natl. Acad. Sci. USA, 2019, 116(13), 6379-6384.
[http://dx.doi.org/10.1073/pnas.1817391116] [PMID: 30765523]
[60]
Choudhury, A.I.; Heffron, H.; Smith, M.A.; Al-Qassab, H.; Xu, A.W.; Selman, C.; Simmgen, M.; Clements, M.; Claret, M.; MacColl, G.; Bedford, D.C.; Hisadome, K.; Diakonov, I.; Moosajee, V.; Bell, J.D.; Speakman, J.R.; Batterham, R.L.; Barsh, G.S.; Ashford, M.L.J.; Withers, D.J. The role of insulin receptor substrate 2 in hypothalamic and β cell function. J. Clin. Invest., 2005, 115(4), 940-950.
[http://dx.doi.org/10.1172/JCI24445] [PMID: 15841180]
[61]
Grillo, C.A.; Piroli, G.G.; Kaigler, K.F.; Wilson, S.P.; Wilson, M.A.; Reagan, L.P. Downregulation of hypothalamic insulin receptor expression elicits depressive-like behaviors in rats. Behav. Brain Res., 2011, 222(1), 230-235.
[http://dx.doi.org/10.1016/j.bbr.2011.03.052] [PMID: 21458499]
[62]
Fernandez, A.M.; Torres-Alemán, I. The many faces of insulin-like peptide signalling in the brain. Nat. Rev. Neurosci., 2012, 13(4), 225-239.
[http://dx.doi.org/10.1038/nrn3209] [PMID: 22430016]
[63]
Spinelli, M.; Fusco, S.; Grassi, C. Brain insulin resistance and hippocampal plasticity: mechanisms and biomarkers of cognitive decline. Front. Neurosci., 2019, 13, 788.
[http://dx.doi.org/10.3389/fnins.2019.00788] [PMID: 31417349]
[64]
Kitagishi, Y; Kobayashi, M; Kikuta, K; Matsuda, S. Roles of PI3K/AKT/GSK3/mTOR pathway in cell signaling of mental illnesses. Depres. Res. Treat., 2012, 2012, 752563.
[65]
Inkster, B.; Zai, G.; Lewis, G.; Miskowiak, K.W. GSK3β: a plausible mechanism of cognitive and hippocampal changes induced by erythropoietin treatment in mood disorders? Transl. Psychiatry, 2018, 8(1), 216.
[http://dx.doi.org/10.1038/s41398-018-0270-z] [PMID: 29317594]
[66]
Rippin, I.; Eldar-Finkelman, H. Mechanisms and therapeutic implications of GSK-3 in treating neurodegeneration. Cells, 2021, 10(2), 262.
[http://dx.doi.org/10.3390/cells10020262] [PMID: 33572709]
[67]
Van Der Heide, L.P.; Kamal, A.; Artola, A.; Gispen, W.H.; Ramakers, G.M.J. Insulin modulates hippocampal activity-dependent synaptic plasticity in a N-methyl-d-aspartate receptor and phosphatidyl-inositol-3-kinase-dependent manner. J. Neurochem., 2005, 94(4), 1158-1166.
[http://dx.doi.org/10.1111/j.1471-4159.2005.03269.x] [PMID: 16092951]
[68]
Grillo, C.A.; Piroli, G.G.; Lawrence, R.C.; Wrighten, S.A.; Green, A.J.; Wilson, S.P.; Sakai, R.R.; Kelly, S.J.; Wilson, M.A.; Mott, D.D.; Reagan, L.P. Hippocampal insulin resistance impairs spatial learning and synaptic plasticity. Diabetes, 2015, 64(11), 3927-3936.
[http://dx.doi.org/10.2337/db15-0596] [PMID: 26216852]
[69]
Costello, D.A.; Claret, M.; Al-Qassab, H.; Plattner, F.; Irvine, E.E.; Choudhury, A.I.; Giese, K.P.; Withers, D.J.; Pedarzani, P. Brain deletion of insulin receptor substrate 2 disrupts hippocampal synaptic plasticity and metaplasticity. PLoS One, 2012, 7(2), e31124.
[http://dx.doi.org/10.1371/journal.pone.0031124] [PMID: 22383997]
[70]
Sa-nguanmoo, P.; Tanajak, P.; Kerdphoo, S.; Jaiwongkam, T.; Pratchayasakul, W.; Chattipakorn, N.; Chattipakorn, S.C. SGLT2-inhibitor and DPP-4 inhibitor improve brain function via attenuating mitochondrial dysfunction, insulin resistance, inflammation, and apoptosis in HFD-induced obese rats. Toxicol. Appl. Pharmacol., 2017, 333, 43-50.
[http://dx.doi.org/10.1016/j.taap.2017.08.005] [PMID: 28807765]
[71]
Hierro-Bujalance, C.; Infante-Garcia, C.; del Marco, A.; Herrera, M.; Carranza-Naval, M.J.; Suarez, J.; Alves-Martinez, P.; Lubian-Lopez, S.; Garcia-Alloza, M. Empagliflozin reduces vascular damage and cognitive impairment in a mixed murine model of Alzheimer’s disease and type 2 diabetes. Alzheimers Res. Ther., 2020, 12(1), 40.
[http://dx.doi.org/10.1186/s13195-020-00607-4] [PMID: 32264944]
[72]
Ali, L. The neuroprotective effects of SGLT2 or Nox1/Nox4 selective inhibitors on Alzheimer’s-Like symptoms development in diabetic mice. Molecules, 2021, 26(23), 7213.
[73]
Kullmann, S.; Hummel, J.; Wagner, R.; Dannecker, C.; Vosseler, A.; Fritsche, L. Empagliflozin improves insulin sensitivity of the hypothalamus in humans with prediabetes: A randomized, double-blind, placebo-controlled, phase 2 Trial. Diabetes Care, 2021, 45(2), 398-406.
[PMID: 34716213]
[74]
Yaribeygi, H; Panahi, Y; Javadi, B; Sahebkar, A the underlying role of oxidative stress in neurodegeneration: A mechanistic review. CNS Neurol. Disord.-Drug Target, 2018, 17(3), 207-215.
[http://dx.doi.org/10.2174/1871527317666180425122557]
[75]
Hajjar, I.; Hayek, S.S.; Goldstein, F.C.; Martin, G.; Jones, D.P.; Quyyumi, A. Oxidative stress predicts cognitive decline with aging in healthy adults: an observational study. J. Neuroinflammation, 2018, 15(1), 17.
[http://dx.doi.org/10.1186/s12974-017-1026-z] [PMID: 29338747]
[76]
Perry, N.; Martin, L.; Rosenfeldt, F.; Ou, R.; Rowsell, R.; Stough, C. Understanding the relationship between oxidative stress and cognition in the elderly: targets for nutraceutical interventions. Nutraceuticals in Brain Health and Beyond; Elsevier, 2021, pp. 57-80.
[http://dx.doi.org/10.1016/B978-0-12-820593-8.00006-9]
[77]
Tamagno, E.; Guglielmotto, M.; Vasciaveo, V.; Tabaton, M. Oxidative stress and beta amyloid in Alzheimer’s disease. Which comes first: The chicken or the egg? Antioxidants, 2021, 10(9), 1479.
[http://dx.doi.org/10.3390/antiox10091479] [PMID: 34573112]
[78]
Nunomura, A.; Perry, G.; Pappolla, M.A.; Friedland, R.P.; Hirai, K.; Chiba, S.; Smith, M.A. Neuronal oxidative stress precedes amyloid-β deposition in Down syndrome. J. Neuropathol. Exp. Neurol., 2000, 59(11), 1011-1017.
[http://dx.doi.org/10.1093/jnen/59.11.1011] [PMID: 11089579]
[79]
Porcellotti, S.; Fanelli, F.; Fracassi, A.; Sepe, S.; Cecconi, F.; Bernardi, C. Oxidative stress during the progression of β-amyloid pathology in the neocortex of the Tg2576 mouse model of Alzheimer’s disease. Oxid. Med. Cell. Longev., 2015, 2015, 967203.
[http://dx.doi.org/10.1155/2015/967203]
[80]
Nkpaa, K.W.; Onyeso, G.I. Rutin attenuates neurobehavioral deficits, oxidative stress, neuro-inflammation and apoptosis in fluoride treated rats. Neurosci. Lett., 2018, 682, 92-99.
[http://dx.doi.org/10.1016/j.neulet.2018.06.023] [PMID: 29908257]
[81]
Kawanami, D.; Matoba, K.; Takeda, Y.; Nagai, Y.; Akamine, T.; Yokota, T.; Sango, K.; Utsunomiya, K. SGLT2 inhibitors as a therapeutic option for diabetic nephropathy. Int. J. Mol. Sci., 2017, 18(5), 1083.
[http://dx.doi.org/10.3390/ijms18051083] [PMID: 28524098]
[82]
Osorio, H.; Coronel, I.; Arellano, A.; Pacheco, U.; Bautista, R.; Franco, M. Sodium-glucose cotransporter inhibition prevents oxidative stress in the kidney of diabetic rats. Oxid. Med. Cell. Longev., 2012, 2012, 542042.
[http://dx.doi.org/10.1155/2012/542042]
[83]
Oelze, M.; Kröller-Schön, S.; Welschof, P.; Jansen, T.; Hausding, M.; Mikhed, Y.; Stamm, P.; Mader, M.; Zinßius, E.; Agdauletova, S.; Gottschlich, A.; Steven, S.; Schulz, E.; Bottari, S.P.; Mayoux, E.; Münzel, T.; Daiber, A. The sodium-glucose co-transporter 2 inhibitor empagliflozin improves diabetes-induced vascular dysfunction in the streptozotocin diabetes rat model by interfering with oxidative stress and glucotoxicity. PLoS One, 2014, 9(11), e112394.
[http://dx.doi.org/10.1371/journal.pone.0112394] [PMID: 25402275]
[84]
Islam, M.T. Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders. Neurol. Res., 2017, 39(1), 73-82.
[http://dx.doi.org/10.1080/01616412.2016.1251711] [PMID: 27809706]
[85]
Sawicki, K.T.; Ben-Sahra, I.; McNally, E.M. SGLT2 Inhibition on cardiac mitochondrial function: Searching for a sweet spot. Am. Heart Assoc., 2021, e021949.
[86]
Maejima, Y. SGLT2 inhibitors play a salutary role in heart failure via modulation of the mitochondrial function. Front. Cardiovasc. Med., 2020, 6, 186.
[http://dx.doi.org/10.3389/fcvm.2019.00186] [PMID: 31970162]
[87]
Takagi, S.; Li, J.; Takagaki, Y.; Kitada, M.; Nitta, K.; Takasu, T.; Kanasaki, K.; Koya, D. Ipragliflozin improves mitochondrial abnormalities in renal tubules induced by a high-fat diet. J. Diabetes Investig., 2018, 9(5), 1025-1032.
[http://dx.doi.org/10.1111/jdi.12802] [PMID: 29352520]
[88]
Yaribeygi, H.; Atkin, S.L.; Sahebkar, A. A review of the molecular mechanisms of hyperglycemia-induced free radical generation leading to oxidative stress. J Cell Physiol., 2019, Feb 234(2), 1310-1312.
[http://dx.doi.org/10.1002/jcp.27164]
[89]
Sugizaki, T.; Zhu, S.; Guo, G.; Matsumoto, A.; Zhao, J.; Endo, M.; Horiguchi, H.; Morinaga, J.; Tian, Z.; Kadomatsu, T.; Miyata, K.; Itoh, H.; Oike, Y. Treatment of diabetic mice with the SGLT2 inhibitor TA-1887 antagonizes diabetic cachexia and decreases mortality. NPJ Aging Mech. Dis., 2017, 3(1), 12.
[http://dx.doi.org/10.1038/s41514-017-0012-0] [PMID: 28900540]
[90]
Shin, S.J.; Chung, S.; Kim, S.J.; Lee, E.M.; Yoo, Y.H.; Kim, J.W.; Ahn, Y.B.; Kim, E.S.; Moon, S.D.; Kim, M.J.; Ko, S.H. Effect of sodium-glucose co-transporter 2 inhibitor, dapagliflozin, on renal renin-angiotensin system in an animal model of type 2 diabetes. PLoS One, 2016, 11(11), e0165703.
[http://dx.doi.org/10.1371/journal.pone.0165703] [PMID: 27802313]
[91]
Iannantuoni, F.; M de Marañon, A.; Diaz-Morales, N.; Falcon, R.; Bañuls, C.; Abad-Jimenez, Z.; Victor, V.M.; Hernandez-Mijares, A.; Rovira-Llopis, S. The SGLT2 inhibitor empagliflozin ameliorates the inflammatory profile in type 2 diabetic patients and promotes an antioxidant response in leukocytes. J. Clin. Med., 2019, 8(11), 1814.
[http://dx.doi.org/10.3390/jcm8111814] [PMID: 31683785]
[92]
Lin, B.; Koibuchi, N.; Hasegawa, Y.; Sueta, D.; Toyama, K.; Uekawa, K.; Ma, M.; Nakagawa, T.; Kusaka, H.; Kim-Mitsuyama, S. Glycemic control with empagliflozin, a novel selective SGLT2 inhibitor, ameliorates cardiovascular injury and cognitive dysfunction in obese and type 2 diabetic mice. Cardiovasc. Diabetol., 2014, 13(1), 148.
[http://dx.doi.org/10.1186/s12933-014-0148-1] [PMID: 25344694]
[93]
Wang, S.; Jiao, F.; Border, J.J.; Fang, X.; Crumpler, R.F.; Liu, Y.; Zhang, H.; Jefferson, J.; Guo, Y.; Elliott, P.S.; Thomas, K.N.; Strong, L.B.; Urvina, A.H.; Zheng, B.; Rijal, A.; Smith, S.V.; Yu, H.; Roman, R.J.; Fan, F. Luseogliflozin, a sodium-glucose cotransporter-2 inhibitor, reverses cerebrovascular dysfunction and cognitive impairments in 18-mo-old diabetic animals. Am. J. Physiol. Heart Circ. Physiol., 2022, 322(2), H246-H259.
[http://dx.doi.org/10.1152/ajpheart.00438.2021] [PMID: 34951541]
[94]
Faraco, G.; Sugiyama, Y.; Lane, D.; Garcia-Bonilla, L.; Chang, H.; Santisteban, M.M.; Racchumi, G.; Murphy, M.; Van Rooijen, N.; Anrather, J.; Iadecola, C. Perivascular macrophages mediate the neurovascular and cognitive dysfunction associated with hypertension. J. Clin. Invest., 2016, 126(12), 4674-4689.
[http://dx.doi.org/10.1172/JCI86950] [PMID: 27841763]
[95]
Miyachi, Y.; Tsuchiya, K.; Shiba, K.; Mori, K.; Komiya, C.; Ogasawara, N.; Ogawa, Y. A reduced M1-like/M2-like ratio of macrophages in healthy adipose tissue expansion during SGLT2 inhibition. Sci. Rep., 2018, 8(1), 16113.
[http://dx.doi.org/10.1038/s41598-018-34305-x] [PMID: 30382157]
[96]
Adelantado-Renau, M.; Beltran-Valls, M.R.; Moliner-Urdiales, D. Inflammation and cognition in children and adolescents: A call for action. Front Pediatr., 2020, 8, 583.
[http://dx.doi.org/10.3389/fped.2020.00583] [PMID: 33014950]
[97]
Gorelick, P.B. Role of inflammation in cognitive impairment: results of observational epidemiological studies and clinical trials. Ann. N. Y. Acad. Sci., 2010, 1207(1), 155-162.
[http://dx.doi.org/10.1111/j.1749-6632.2010.05726.x] [PMID: 20955439]
[98]
Hakim, A.M. A proposed hypothesis on dementia: Inflammation, small vessel disease, and hypoperfusion is the sequence that links all harmful lifestyles to cognitive impairment. Front. Aging Neurosci., 2021, 13, 679837.
[http://dx.doi.org/10.3389/fnagi.2021.679837] [PMID: 33994998]
[99]
Strawbridge, R.; Carter, R.; Saldarini, F.; Tsapekos, D.; Young, A.H. Inflammatory biomarkers and cognitive functioning in individuals with euthymic bipolar disorder: exploratory study. BJPsych Open, 2021, 7(4), e126.
[http://dx.doi.org/10.1192/bjo.2021.966] [PMID: 36043690]
[100]
Satirapoj, B. Sodium-glucose cotransporter 2 inhibitors with renoprotective effects. Kidney Dis., 2017, 3(1), 24-32.
[http://dx.doi.org/10.1159/000471765] [PMID: 28785561]
[101]
Pirklbauer, M.; Bernd, M.; Fuchs, L.; Staudinger, P.; Corazza, U.; Leierer, J.; Mayer, G.; Schramek, H. Empagliflozin inhibits basal and IL-1β-mediated MCP-1/CCL2 and endothelin-1 expression in human proximal tubular cells. Int. J. Mol. Sci., 2020, 21(21), 8189.
[http://dx.doi.org/10.3390/ijms21218189] [PMID: 33139635]
[102]
Han, J.H.; Oh, T.J.; Lee, G.; Maeng, H.J.; Lee, D.H.; Kim, K.M.; Choi, S.H.; Jang, H.C.; Lee, H.S.; Park, K.S.; Kim, Y.B.; Lim, S. The beneficial effects of empagliflozin, an SGLT2 inhibitor, on atherosclerosis in ApoE −/− mice fed a western diet. Diabetologia, 2017, 60(2), 364-376.
[http://dx.doi.org/10.1007/s00125-016-4158-2] [PMID: 27866224]
[103]
Vallon, V.; Gerasimova, M.; Rose, M.A.; Masuda, T.; Satriano, J.; Mayoux, E.; Koepsell, H.; Thomson, S.C.; Rieg, T. SGLT2 inhibitor empagliflozin reduces renal growth and albuminuria in proportion to hyperglycemia and prevents glomerular hyperfiltration in diabetic Akita mice. Am. J. Physiol. Renal Physiol., 2014, 306(2), F194-F204.
[http://dx.doi.org/10.1152/ajprenal.00520.2013] [PMID: 24226524]
[104]
Liao, X.; Wang, X.; Li, H.; Li, L.; Zhang, G.; Yang, M.; Yuan, L.; Liu, H.; Yang, G.; Gao, L. Sodium-glucose cotransporter 2 (SGLT2) inhibitor increases circulating zinc-a2-glycoprotein levels in patients with type 2 diabetes. Sci. Rep., 2016, 6(1), 32887.
[http://dx.doi.org/10.1038/srep32887] [PMID: 27611858]
[105]
Heneka, M.T.; Kummer, M.P.; Stutz, A.; Delekate, A.; Schwartz, S.; Vieira-Saecker, A.; Griep, A.; Axt, D.; Remus, A.; Tzeng, T.C.; Gelpi, E.; Halle, A.; Korte, M.; Latz, E.; Golenbock, D.T. NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature, 2013, 493(7434), 674-678.
[http://dx.doi.org/10.1038/nature11729] [PMID: 23254930]
[106]
Kim, S.R.; Lee, S.G.; Kim, S.H.; Kim, J.H.; Choi, E.; Cho, W.; Rim, J.H.; Hwang, I.; Lee, C.J.; Lee, M.; Oh, C.M.; Jeon, J.Y.; Gee, H.Y.; Kim, J.H.; Lee, B.W.; Kang, E.S.; Cha, B.S.; Lee, M.S.; Yu, J.W.; Cho, J.W.; Kim, J.S.; Lee, Y. SGLT2 inhibition modulates NLRP3 inflammasome activity via ketones and insulin in diabetes with cardiovascular disease. Nat. Commun., 2020, 11(1), 2127.
[http://dx.doi.org/10.1038/s41467-020-15983-6] [PMID: 32358544]
[107]
Nagata, S. Apoptosis and clearance of apoptotic cells. Annu. Rev. Immunol., 2018, 36(1), 489-517.
[http://dx.doi.org/10.1146/annurev-immunol-042617-053010] [PMID: 29400998]
[108]
Li, J.; Wang, B.; Wu, H.; Yu, Y.; Xue, G.; Hou, Y. 17β-estradiol attenuates ketamine-induced neuroapoptosis and persistent cognitive deficits in the developing brain. Brain Res., 2014, 1593, 30-39.
[http://dx.doi.org/10.1016/j.brainres.2014.09.013] [PMID: 25234726]
[109]
Han, D.; Jin, J.; Fang, H.; Xu, G. Long-term action of propofol on cognitive function and hippocampal neuroapoptosis in neonatal rats. Int. J. Clin. Exp. Med., 2015, 8(7), 10696-10704.
[PMID: 26379861]
[110]
Hua, F.Z.; Ying, J.; Zhang, J.; Wang, X.F.; Hu, Y.H.; Liang, Y.P.; Liu, Q.; Xu, G.H. Naringenin pre-treatment inhibits neuroapoptosis and ameliorates cognitive impairment in rats exposed to isoflurane anesthesia by regulating the PI3/Akt/PTEN signalling pathway and suppressing NF-κB-mediated inflammation. Int. J. Mol. Med., 2016, 38(4), 1271-1280.
[http://dx.doi.org/10.3892/ijmm.2016.2715] [PMID: 27572468]
[111]
Kwon, B.S.; Kim, J.M.; Park, S.K.; Kang, J.Y.; Kang, J.E.; Lee, C.J. Chronic alcohol exposure induced neuroapoptosis: Diminishing effect of ethyl acetate fraction from Aralia elata. Oxid. Med. Cell. Longev., 2019, 2019, 7849876.
[112]
Man, Y-G.; Zhou, R-G.; Zhao, B. Efficacy of rutin in inhibiting neuronal apoptosis and cognitive disturbances in sevoflurane or propofol exposed neonatal mice. Int. J. Clin. Exp. Med., 2015, 8(8), 14397-14409.
[PMID: 26550427]
[113]
Wiciński, M.; Wódkiewicz, E.; Górski, K.; Walczak, M.; Malinowski, B. Perspective of SGLT2 inhibition in treatment of conditions connected to neuronal loss: focus on Alzheimer’s disease and ischemia-related brain injury. Pharmaceuticals (Basel), 2020, 13(11), 379.
[http://dx.doi.org/10.3390/ph13110379] [PMID: 33187206]
[114]
Yaribeygi, H.; Lhaf, F.; Sathyapalan, T.; Sahebkar, A. Effects of novel antidiabetes agents on apoptotic processes in diabetes and malignancy: Implications for lowering tissue damage. Life Sci., 2019, 231, 116538.
[http://dx.doi.org/10.1016/j.lfs.2019.06.013] [PMID: 31176776]
[115]
Shibusawa, R.; Yamada, E.; Okada, S.; Nakajima, Y.; Bastie, C.C.; Maeshima, A.; Kaira, K.; Yamada, M. Dapagliflozin rescues endoplasmic reticulum stress-mediated cell death. Sci. Rep., 2019, 9(1), 9887.
[http://dx.doi.org/10.1038/s41598-019-46402-6] [PMID: 31285506]
[116]
Staels, B. Cardiovascular protection by sodium glucose cotransporter 2 inhibitors: potential mechanisms. Am. J. Cardiol., 2017, 120(1), S28-S36.
[http://dx.doi.org/10.1016/j.amjcard.2017.05.013] [PMID: 28606341]
[117]
Lee, W.C.; Chou, C.A.; Lee, L.C.; Chau, Y.Y.; Chiang, Y.W.; Chen, C.H.; Chen, J-B. J-B. FP416SGLT2 inhibitor protected renal proximal tubular cells from apoptosis by reducing intra-renal lipotoxicity. Nephrol. Dial. Transplant., 2018, 33(S1), i175-i176.
[http://dx.doi.org/10.1093/ndt/gfy104.FP416]
[118]
Saito, T.; Okada, S.; Yamada, E.; Shimoda, Y.; Osaki, A.; Tagaya, Y.; Shibusawa, R.; Okada, J.; Yamada, M. Effect of dapagliflozin on colon cancer cell [Rapid Communication]. Endocr. J., 2015, 62(12), 1133-1137.
[http://dx.doi.org/10.1507/endocrj.EJ15-0396] [PMID: 26522271]
[119]
Karlsson, D.; Ahnmark, A.; Sabirsh, A.; Andréasson, A.C.; Gennemark, P.; Sandinge, A.S.; Chen, L.; Tyrberg, B.; Lindén, D.; Sörhede Winzell, M. Inhibition of SGLT2 preserves function and promotes proliferation of human islets cells in vivo in diabetic mice. Biomedicines, 2022, 10(2), 203.
[http://dx.doi.org/10.3390/biomedicines10020203] [PMID: 35203411]
[120]
Constantinides, V.C.; Paraskevas, G.P.; Emmanouilidou, E.; Petropoulou, O.; Bougea, A.; Vekrellis, K.; Evdokimidis, I.; Stamboulis, E.; Kapaki, E. CSF biomarkers β-amyloid, tau proteins and a-synuclein in the differential diagnosis of Parkinson-plus syndromes. J. Neurol. Sci., 2017, 382, 91-95.
[http://dx.doi.org/10.1016/j.jns.2017.09.039] [PMID: 29111028]
[121]
Chin-Chan, M.; Navarro-Yepes, J.; Quintanilla-Vega, B. Environmental pollutants as risk factors for neurodegenerative disorders: Alzheimer and Parkinson diseases. Front. Cell. Neurosci., 2015, 9, 124.
[http://dx.doi.org/10.3389/fncel.2015.00124] [PMID: 25914621]
[122]
Chen, N.C.; Chen, H.L.; Li, S.H.; Chang, Y.H.; Chen, M.H.; Tsai, N.W.; Yu, C.C.; Yang, S.Y.; Lu, C.H.; Lin, W.C. Plasma Levels of α-synuclein, Aβ-40 and T-tau as biomarkers to predict cognitive impairment in Parkinson’s disease. Front. Aging Neurosci., 2020, 12, 112.
[http://dx.doi.org/10.3389/fnagi.2020.00112] [PMID: 32410983]
[123]
Twohig, D.; Nielsen, H.M. α-synuclein in the pathophysiology of Alzheimer’s disease. Mol. Neurodegener., 2019, 14(1), 23.
[http://dx.doi.org/10.1186/s13024-019-0320-x] [PMID: 31186026]
[124]
Ponce-López, T.; Sorsby-Vargas, A.M.; Bocanegra-López, A.P.; Luna-Muñoz, J.; Ontiveros-Torres, M.A.; Villanueva-Fierro, I. Diabetes Mellitus and Amyloid Beta Protein Pathology in Dementia; In: Amyloid Diseases; Dmitry Kurouski, edt; 2019.
[http://dx.doi.org/10.5772/intechopen.84473]
[125]
Pablo-Fernández, E.; Courtney, R.; Rockliffe, A.; Gentleman, S.; Holton, J.L.; Warner, T.T. Faster disease progression in Parkinson’s disease with type 2 diabetes is not associated with increased α-synuclein, tau, amyloid-β or vascular pathology. Neuropathol. Appl. Neurobiol., 2021, 47(7), 1080-1091.
[http://dx.doi.org/10.1111/nan.12728] [PMID: 33969516]
[126]
Sim, A.Y.; Barua, S.; Kim, J.Y.; Lee, Y.; Lee, J.E. Role of DPP-4 and SGLT2 inhibitors connected to Alzheimer disease in type 2 diabetes mellitus. Front. Neurosci., 2021, 15, 708547.
[http://dx.doi.org/10.3389/fnins.2021.708547] [PMID: 34489627]
[127]
Tomita, I; Kume, S; Sugahara, S; Osawa, N; Yamahara, K; Yasuda-Yamahara, M SGLT2 inhibition mediates protection from diabetic kidney disease by promoting ketone body-induced mTORC1 inhibition. Cell Metabol., 2020, 32(3), 404-419.
[http://dx.doi.org/10.1016/j.cmet.2020.06.020]
[128]
Caccamo, A.; Majumder, S.; Richardson, A.; Strong, R.; Oddo, S. Molecular interplay between mammalian target of rapamycin (mTOR), amyloid-β, and Tau: effects on cognitive impairments. J. Biol. Chem., 2010, 285(17), 13107-13120.
[http://dx.doi.org/10.1074/jbc.M110.100420] [PMID: 20178983]
[129]
Ferrer, I.; Barrachina, M.; Puig, B. Glycogen synthase kinase-3 is associated with neuronal and glial hyperphosphorylated tau deposits in Alzheimer’s disease, Pick’s disease, progressive supranuclear palsy and corticobasal degeneration. Acta Neuropathol., 2002, 104(6), 583-591.
[http://dx.doi.org/10.1007/s00401-002-0587-8] [PMID: 12410379]
[130]
Khan, T.; Khan, S.; Akhtar, M.; Ali, J.; Najmi, A.K. Empagliflozin nanoparticles attenuates type2 diabetes induced cognitive impairment via oxidative stress and inflammatory pathway in high fructose diet induced hyperglycemic mice. Neurochem. Int., 2021, 150, 105158.
[http://dx.doi.org/10.1016/j.neuint.2021.105158] [PMID: 34391818]
[131]
Alafnan, A. Biochemical interaction analysis of natural SGLT2 inhibitors with Alzheimer targets: A computational approach. J. Biochem. Technol., 2020, 11(4), 73-84.