Ding Q, Shults NV, Harris BT, Suzuki YJ. Angiotensin-converting enzyme 2 (ACE2) is upregulated in Alzheimer’s disease brain. bioRxiv 2020; 2020; 331157. [http://dx.doi.org/10.1101/2020.10.08.331157]
[7]
Kehoe PG, Wong S, AL Mulhim N, Palmer LE, Miners JS. Angiotensin-converting enzyme 2 is reduced in Alzheimer’s disease in association with increasing amyloid-β and tau pathology. Alzheimers Res Ther 2016; 8(1): 50. [http://dx.doi.org/10.1186/s13195-016-0217-7] [PMID: 27884212]
[8]
Song KH, Kim DM, Lee H, et al. Dynamics of viral load and anti-SARS-CoV-2 antibodies in patients with positive RT-PCR results after recovery from COVID-19. Korean J Intern Med 2021; 36(1): 11-4. [http://dx.doi.org/10.3904/kjim.2020.325] [PMID: 32972123]
[9]
Prendecki M, Kowalska M, Ł agan-Jędrzejczyk U, et al. Genetic factors related to the immune system in subjects at risk of developing Alzheimer’s disease. J Integr Neurosci 2020; 19(2): 359-71. [http://dx.doi.org/10.31083/j.jin.2020.02.110] [PMID: 32706201]
Huang SY, Yang YX, Kuo K, et al. Herpesvirus infections and Alzheimer’s disease: A mendelian randomization study. Alzheimers Res Ther 2021; 13(1): 158. [http://dx.doi.org/10.1186/s13195-021-00905-5] [PMID: 34560893]
[14]
Tiwari D, Singh VK, Baral B, et al. Indication of neurodegenerative cascade initiation by amyloid-like aggregate-forming EBV proteins and peptide in Alzheimer’s disease. ACS Chem Neurosci 2021; 12(20): 3957-67. [http://dx.doi.org/10.1021/acschemneuro.1c00584] [PMID: 34609141]
[15]
Costa Sa AC, Madsen H, Brown JR. Shared molecular signatures across neurodegenerative diseases and herpes virus infections highlights potential mechanisms for maladaptive innate immune responses. Sci Rep 2019; 9(1): 8795. [http://dx.doi.org/10.1038/s41598-019-45129-8] [PMID: 31217489]
[16]
Allnutt MA, Johnson K, Bennett DA, et al. Human herpesvirus 6 detection in Alzheimer’s disease cases and controls across multiple cohorts. Neuron 2020; 105(6): 1027-1035.e2. [http://dx.doi.org/10.1016/j.neuron.2019.12.031] [PMID: 31983538]
[17]
Whiley L, Chappell KE, D’Hondt E, et al. Metabolic phenotyping reveals a reduction in the bioavailability of serotonin and kynurenine pathway metabolites in both the urine and serum of individuals living with Alzheimer’s disease. Alzheimers Res Ther 2021; 13(1): 20. [http://dx.doi.org/10.1186/s13195-020-00741-z] [PMID: 33422142]
[18]
Miklossy J. Alzheimer’s disease - a neurospirochetosis. Analysis of the evidence following Koch’s and Hill’s criteria. J Neuroinflammation 2011; 8(1): 90. [http://dx.doi.org/10.1186/1742-2094-8-90] [PMID: 21816039]
[19]
Miklossy J. Historic evidence to support a causal relationship between spirochetal infections and Alzheimer’s disease. Front Aging Neurosci 2015; 7: 46. [http://dx.doi.org/10.3389/fnagi.2015.00046] [PMID: 25932012]
[20]
Senejani AG, Maghsoudlou J, El-Zohiry D, et al. Borrelia burgdorferi co-localizing with amyloid markers in Alzheimer’s Ddisease brain tissues. J Alzheimers Dis 2022; 85(2): 889-903. [http://dx.doi.org/10.3233/JAD-215398] [PMID: 34897095]
[21]
Little CS, Hammond CJ, MacIntyre A, Balin BJ, Appelt DM. Chlamydia pneumoniae induces Alzheimer-like amyloid plaques in brains of BALB/c mice. Neurobiol Aging 2004; 25(4): 419-29. [http://dx.doi.org/10.1016/S0197-4580(03)00127-1] [PMID: 15013562]
Jungbauer G, Stähli A, Zhu X, Auber Alberi L, Sculean A, Eick S. Periodontal microorganisms and Alzheimer disease – A causative relationship? Periodontol 2000 2022; 89(1): 59-82. [http://dx.doi.org/10.1111/prd.12429] [PMID: 35244967]
[24]
Anvari D, Sharif M, Sarvi S, et al. Seroprevalence of Toxoplasma gondii infection in cancer patients: A systematic review and meta-analysis. Microb Pathog 2019; 129: 30-42. [http://dx.doi.org/10.1016/j.micpath.2019.01.040] [PMID: 30708042]
[25]
Letenneur L, Pérès K, Fleury H, et al. Seropositivity to herpes simplex virus antibodies and risk of Alzheimer’s disease: a population-based cohort study. PLoS One 2008; 3(11): e3637. [http://dx.doi.org/10.1371/journal.pone.0003637] [PMID: 18982063]
[26]
Itzhaki RF, Lin WR, Shang D, Wilcock GK, Faragher B, Jamieson GA. Herpes simplex virus type 1 in brain and risk of Alzheimer’s disease. Lancet 1997; 349(9047): 241-4. [http://dx.doi.org/10.1016/S0140-6736(96)10149-5] [PMID: 9014911]
Stebbins RC, Noppert GA, Yang YC, Dowd JB, Simanek A, Aiello AE. Association between immune response to cytomegalovirus and cognition in the health and retirement study. Am J Epidemiol 2021; 190(5): 786-97. [http://dx.doi.org/10.1093/aje/kwaa238] [PMID: 33094810]
[29]
Nimgaonkar VL, Yolken RH, Wang T, et al. Temporal cognitive decline associated with exposure to infectious agents in a population-based, aging cohort. Alzheimer Dis Assoc Disord 2016; 30(3): 216-22. [http://dx.doi.org/10.1097/WAD.0000000000000133] [PMID: 26710257]
[30]
Wu X, Yang H, He S, et al. Adult vaccination as a protective factor for dementia: a meta-analysis and systematic review of population-based observational studies. Front Immunol 2022; 13: 872542. [http://dx.doi.org/10.3389/fimmu.2022.872542] [PMID: 35592323]
[31]
Yang HY, Chien WC, Chung CH, et al. Risk of dementia in patients with toxoplasmosis: a nationwide, population-based cohort study in Taiwan. Parasit Vectors 2021; 14(1): 435. [http://dx.doi.org/10.1186/s13071-021-04928-7] [PMID: 34454590]
[32]
Bakrania P, Hall G, Bouter Y, et al. Discovery of a novel pseudo β-hairpin structure of N-truncated amyloid-β for use as a vaccine against Alzheimer’s disease. Mol Psychiatry 2022; 27(2): 840-8. [http://dx.doi.org/10.1038/s41380-021-01385-7] [PMID: 34776512]
[33]
André P, Samieri C, Buisson C, et al. Lipopolysaccharide-binding protein, soluble CD14, and the long-term risk of Alzheimer’s disease: A nested case-control pilot study of older community dwellers from the three-city cohort. J Alzheimers Dis 2019; 71(3): 751-61. [http://dx.doi.org/10.3233/JAD-190295] [PMID: 31450497]
[34]
Płóciennikowska A, Hromada-Judycka A, Borzęcka K, Kwiatko-wska K. Co-operation of TLR4 and raft proteins in LPS-induced pro-inflammatory signaling. Cell Mol Life Sci 2015; 72(3): 557-81. [http://dx.doi.org/10.1007/s00018-014-1762-5] [PMID: 25332099]
[35]
Zamudio F, Loon AR, Smeltzer S, et al. TDP-43 mediated blood-brain barrier permeability and leukocyte infiltration promote neurodegeneration in a low-grade systemic inflammation mouse model. J Neuroinflammation 2020; 17(1): 283. [http://dx.doi.org/10.1186/s12974-020-01952-9] [PMID: 32979923]
[36]
Wang Z, Liu X, Da Teng, et al. Development of chimeric peptides to facilitate the neutralisation of lipopolysaccharides during bactericidal targeting of multidrug-resistant Escherichia coli. Commun Biol 2020; 3(1): 41. [http://dx.doi.org/10.1038/s42003-020-0761-3] [PMID: 31974490]
Liu NK, Zhang YP, Titsworth WL, et al. A novel role of phospholipase A2 in mediating spinal cord secondary injury. Ann Neurol 2006; 59(4): 606-19. [http://dx.doi.org/10.1002/ana.20798] [PMID: 16498630]
[39]
Liao YF, Wang BJ, Cheng HT, Kuo LH, Wolfe MS. Tumor necrosis factor-alpha, interleukin-1beta, and interferon-gamma stimulate gamma-secretase-mediated cleavage of amyloid precursor protein through a JNK-dependent MAPK pathway. J Biol Chem 2004; 279(47): 49523-32. [http://dx.doi.org/10.1074/jbc.M402034200] [PMID: 15347683]
[40]
He Z, Yang Y, Xing Z, et al. Intraperitoneal injection of IFN-γ restores microglial autophagy, promotes amyloid-β clearance and improves cognition in APP/PS1 mice. Cell Death Dis 2020; 11(6): 440. [http://dx.doi.org/10.1038/s41419-020-2644-4] [PMID: 32514180]