Management of Hemorrhagic Fever Viruses: Intervention of Natural and Synthetic Products

Page: [1575 - 1589] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Background: Viral hemorrhagic fevers (VHFs) are a group of clinical syndromes caused by several different RNA virus families, including several members of the arenavirus, bunyavirus, filovirus, and flavivirus families. VHFs have high mortality rates, and they have been associated with vascular permeability, malaise, fever, variable degrees of hemorrhage, reduced plasma volume, and coagulation abnormalities. To treat such conditions, antigen-presenting cells target dysregulated immune reactions and productive infections. Monocytes and macrophages produce inflammatory cytokines that damage adaptive immunity, while infected dendritic cells fail to mature correctly, compromising adaptive immunity. Inflammation and uncontrolled virus replication are associated with vascular leakage and coagulopathy.

Objective: VHF infects both humans and animals and if not treated, causes hemorrhagic manifestations and lethal platelet dysfunction. Besides pharmacological and immunological solutions, the intervention of natural products for VHF management is of great interest. In this review, we gathered current data about the effectiveness of natural products for VHF management.

Methods: Data were extracted from Scopus, Google Scholar, PubMed, and Cochrane library in terms of clinical and animal studies published in English between 1981 to February 2022.

Results: Several plants from diverse families and species were identified with antiviral activity against VHF. The combination of botanical therapeutics and multitarget synergistic therapeutic effects is now the widely accepted explanation for the treatment of VHF. Most of these herbal therapeutics have shown promising immunomodulatory effects in vivo and in vitro VHF models. They can probably modulate the immune system in VHF-infected subjects mainly by interfering with certain inflammatory mediators involved in various infectious diseases.

Conclusion: Natural, in particular, herbal sources can be valuable for the management of various VHFs and their related complications.

Graphical Abstract

[1]
Cobo Martínez, F. Imported Infectious Diseases the Impact in Developed Countries; Elsevier Science & Technology: Cambridge, 2014.
[2]
Farrar, J.; Manson, P. Manson’s tropical diseases; Elsevier Saunders: Edinburgh, 2014.
[3]
Bray, M. Pathogenesis of Viral Hemorrhagic Fever. Curr. Opin. Immunol., 2005, 17(4), 399-403.
[http://dx.doi.org/10.1016/j.coi.2005.05.001]
[4]
Jassim, S.A.A.; Naji, M.A. Novel antiviral agents: A medicinal plant perspective. J. Appl. Microbiol., 2003, 95(3), 412-427.
[http://dx.doi.org/10.1046/j.1365-2672.2003.02026.x] [PMID: 12911688]
[5]
Kapoor, R.; Sharma, B.; Kanwar, S.S. Antiviral phytochemicals: An overview. Biochem. Physiol., 2017, 6(2), 7.
[http://dx.doi.org/10.4172/2168-9652.1000220]
[6]
Li, L.; Wang, C.H.; Wang, S.F.; Li, M.T.; Yakob, L.; Cazelles, B.; Jin, Z.; Zhang, W-Y. Hemorrhagic fever with renal syndrome in China: Mechanisms on two distinct annual peaks and control measures. Int. J. Biomath., 2018, 11(2), 1850030.
[http://dx.doi.org/10.1142/S1793524518500304]
[7]
Saksida, A.; Duh, D.; Wraber, B.; Dedushaj, I.; Ahmeti, S. AvšičŽupanc, T. Interacting roles of immune mechanisms and viral load in the pathogenesis of crimean-congo hemorrhagic fever. Clin. Vaccine Immunol., 2010, 17(7), 1086-1093.
[http://dx.doi.org/10.1128/CVI.00530-09] [PMID: 20484568]
[8]
McLay, L.; Ansari, A.; Liang, Y.; Ly, H. Targeting virulence mechanisms for the prevention and therapy of arenaviral hemorrhagic fever. Antiviral Res., 2013, 97(2), 81-92.
[http://dx.doi.org/10.1016/j.antiviral.2012.12.003] [PMID: 23261843]
[9]
Korsman, S.N.; Van, Z.G.; Preiser, W.; Nutt, L.; Andersson, M.I. Virology: An illustrated colour text, 1st ed; Churchill Livingstone: London, 2014.
[10]
Mariën, J.; Kourouma, F.; Magassouba, N.F.; Leirs, H.; Fichet-Calvet, E. Movement patterns of small rodents in Lassa fever-endemic villages in Guinea. EcoHealth, 2018, 15(2), 348-359.
[http://dx.doi.org/10.1007/s10393-018-1331-8] [PMID: 29572697]
[11]
Hastie, K.M.; Igonet, S.; Sullivan, B.M.; Legrand, P.; Zandonatti, M.A.; Robinson, J.E.; Garry, R.F.; Rey, F.A.; Oldstone, M.B.; Saphire, E.O. Crystal structure of the prefusion surface glycoprotein of the prototypic arenavirus LCMV. Nat. Struct. Mol. Biol., 2016, 23(6), 513-521.
[http://dx.doi.org/10.1038/nsmb.3210] [PMID: 27111888]
[12]
Buchmeier, MJ Arenaviridae: the viruses and their replication. Fields virology, 2007, 1792-827.
[13]
Peters, C.J. Human infection with arenaviruses in the Americas. In: Arenaviruses; Oldstone, M.B.A., Ed.; Springer: Berlin, Heidelberg, 2002; pp. 65-74.
[14]
Golden, J.W.; Hammerbeck, C.D.; Mucker, E.M.; Brocato, R.L. Animal models for the study of rodent-borne hemorrhagic fever viruses: Arenaviruses and hantaviruses. BioMed Res. Int., 2015, 2015, 1-31.
[http://dx.doi.org/10.1155/2015/793257] [PMID: 26266264]
[15]
Stinebaugh, B.J.; Schloeder, F.X.; Johnson, K.M.; Mackenzie, R.B.; Entwisle, G.; De Alba, E. Bolivian hemorrhagic fever. Am. J. Med., 1966, 40(2), 217-230.
[http://dx.doi.org/10.1016/0002-9343(66)90103-3] [PMID: 4159195]
[16]
Charrel, R.N.; Lamballerie, X. Arenaviruses other than Lassa virus. Antiviral Res., 2003, 57(1-2), 89-100.
[http://dx.doi.org/10.1016/S0166-3542(02)00202-4] [PMID: 12615305]
[17]
McCormick, J.B.; King, I.J.; Webb, P.A.; Scribner, C.L.; Craven, R.B.; Johnson, K.M.; Elliott, L.H.; Belmont-Williams, R. Lassa fever. N. Engl. J. Med., 1986, 314(1), 20-26.
[http://dx.doi.org/10.1056/NEJM198601023140104] [PMID: 3940312]
[18]
Moraz, M.L.; Kunz, S. Pathogenesis of arenavirus hemorrhagic fevers. Expert Rev. Anti Infect. Ther., 2011, 9(1), 49-59.
[http://dx.doi.org/10.1586/eri.10.142] [PMID: 21171877]
[19]
McCormick, J.; Fisher-Hoch, S. Lassa fever. In: Arenaviruses I; Oldstone, M.B.A. (eds); Springer: Berlin, Heidelberg, 2002, pp. 75- 109.
[http://dx.doi.org/10.1007/978-3-642-56029-3_4]
[20]
McCormick, J.B.; King, I.J.; Webb, P.A.; Johnson, K.M.; O’Sullivan, R.; Smith, E.S.; Trippel, S.; Tong, T.C. A case-control study of the clinical diagnosis and course of Lassa fever. J. Infect. Dis., 1987, 155(3), 445-455.
[http://dx.doi.org/10.1093/infdis/155.3.445] [PMID: 3805772]
[21]
Mateer, E.J.; Huang, C.; Shehu, N.Y.; Paessler, S. Lassa fever–induced sensorineural hearing loss: A neglected public health and social burden. PLoS Negl. Trop. Dis., 2018, 12(2), e0006187.
[http://dx.doi.org/10.1371/journal.pntd.0006187] [PMID: 29470486]
[22]
Yun, N.E.; Ronca, S.; Tamura, A.; Koma, T.; Seregin, A.V.; Dineley, K.T.; Miller, M.; Cook, R.; Shimizu, N.; Walker, A.G.; Smith, J.N.; Fair, J.N.; Wauquier, N.; Bockarie, B.; Khan, S.H.; Makishima, T.; Paessler, S. Animal model of sensorineural hearing loss associated with Lassa virus infection. J. Virol., 2016, 90(6), 2920-2927.
[http://dx.doi.org/10.1128/JVI.02948-15] [PMID: 26719273]
[23]
Cokorinos, E.C.; Delmore, J.; Reyes, A.R.; Albuquerque, B.; Kjøbsted, R.; Jørgensen, N.O. Activation of skeletal muscle AMPK promotes glucose disposal and glucose lowering in non-human primates and mice. Cell Metabol., 2017, 25(5), 1147-1159.
[http://dx.doi.org/10.1016/j.cmet.2017.04.010]
[24]
Levis, S.C.; Saavedra, M.C.; Ceccoli, C.; Feuillade, M.R.; Enría, D.A.; Maiztegui, J.; Falcoff, R. Correlation between endogenous interferon and the clinical evolution of patients with Argentine hemorrhagic fever. J. Interferon Res., 1985, 5(3), 383-389.
[http://dx.doi.org/10.1089/jir.1985.5.383] [PMID: 4056485]
[25]
Heller, M.V.; Saavedra, M.C.; Falcoff, R.; Maiztegui, J.I.; Molinas, F.C. Increased tumor necrosis factor-α levels in Argentine hemorrhagic fever. J. Infect. Dis., 1992, 166(5), 1203-1204.
[http://dx.doi.org/10.1093/infdis/166.5.1203] [PMID: 1402041]
[26]
Charrel, R.N.; de Lamballerie, X.; Emonet, S. Phylogeny of the genus Arenavirus. Curr. Opin. Microbiol., 2008, 11(4), 362-368.
[http://dx.doi.org/10.1016/j.mib.2008.06.001] [PMID: 18602020]
[27]
Günther, S.; Lenz, O. Lassa Virus. Crit. Rev. Clin. Lab. Sci., 2004, 41(4), 339-390.
[http://dx.doi.org/10.1080/10408360490497456] [PMID: 15487592]
[28]
Radoshitzky, S.R.; de la Torre, J. Human pathogenic arenaviruses (Arenaviridae).Encyclopedia of Virology; , 2019, pp. 507-517.
[29]
Price, M.E.; Fisher-Hoch, S.P.; Craven, R.B.; McCormick, J.B. A prospective study of maternal and fetal outcome in acute Lassa fever infection during pregnancy. BMJ, 1988, 297(6648), 584-587.
[http://dx.doi.org/10.1136/bmj.297.6648.584] [PMID: 3139220]
[30]
Ciottone, G.R. Ciottone’s Disaster Medicine, 2nd ed; Elsevier: Philadelphia, 2016, pp. 985-1013.
[http://dx.doi.org/10.1016/B978-0-323-28665-7.10000-7]
[31]
Motarjemi, Y.; Moy, G.; Todd, E.C.D. Encyclopedia of Food Safety, 1st ed; Academic Press: Amsterdam, 2014.
[32]
Burrell, C.J.; Howard, C.R.; Murphy, F.A. Fenner and White’s Medical Virology, 5th ed; Academic Press: London, 2017, pp. 557-583.
[http://dx.doi.org/10.1016/B978-0-12-375156-0.00053-9]
[33]
Arenaviruses. In: Perspectives in Medical Virology. 11; Howard, C.R., Ed.; Elsevier, 2005; pp. 53-91.
[34]
Ellwanger, J.H.; Chies, J.A.B. Keeping track of hidden dangers - The short history of the Sabiá virus. Rev. Soc. Bras. Med. Trop., 2017, 50(1), 3-8.
[http://dx.doi.org/10.1590/0037-8682-0330-2016] [PMID: 28327796]
[35]
Burrell, C.J.; Howard, C.R.; Murphy, F.A. Chapter 30 - Arenaviruses. In: Fenner and White’s Medical Virology, 5th ed; Burrell, C.J.; Howard, C.R.; Murphy, F.A., Eds.; Academic Press: London, 2017; pp. 425-436.
[http://dx.doi.org/10.1016/B978-0-12-375156-0.00030-8]
[36]
Contigiani, M.S.; Diaz, L.A.; Tauro, L.B. Bunyaviruses. In: Arthropod Borne Diseases; Marcondes, C.B., Ed.; Springer International Publishing: Cham, 2017; pp. 137-154.
[37]
Ikegami, T.; Makino, S. The pathogenesis of Rift Valley fever. Viruses, 2011, 3(5), 493-519.
[http://dx.doi.org/10.3390/v3050493] [PMID: 21666766]
[38]
Conn, P.M. Animal models for the study of human disease, 2nd ed; Elsevier: Amsterdam, 2017.
[39]
Franz, D.R.; Jahrling, P.B.; Friedlander, A.M.; McClain, D.J.; Hoover, D.L.; Bryne, W.R.; Pavlin, J.A.; Christopher, G.W.; Eitzen, E.M., Jr Clinical recognition and management of patients exposed to biological warfare agents. JAMA, 1997, 278(5), 399-411.
[http://dx.doi.org/10.1001/jama.1997.03550050061035] [PMID: 9244332]
[40]
Mishra, B.; Appannanavar, S.B. An update on crimean congo hemorrhagic fever. J. Glob. Infect. Dis., 2011, 3(3), 285-292.
[http://dx.doi.org/10.4103/0974-777X.83537] [PMID: 21887063]
[41]
Hoogstraal, H. The epidemiology of tick-borne Crimean-Congo hemorrhagic fever in Asia, Europe, and Africa. J. Med. Entomol., 1979, 15(4), 307-417.
[http://dx.doi.org/10.1093/jmedent/15.4.307] [PMID: 113533]
[42]
Ergonul, O.; Celikbas, A.; Dokuzoguz, B.; Eren, S.; Baykam, N.; Esener, H. Characteristics of Crimean Congo haemorrhagic fever in a recent outbreak in Turkey and the impact of oral ribavirin therapy. Clin. Microbiol. Infect., 2004, 39(2), 284-287.
[43]
Bakir, M.; Ugurlu, M.; Dokuzoguz, B.; Bodur, H.; Tasyaran, M.A.; Vahaboglu, H. Crimean-Congo haemorrhagic fever outbreak in Middle Anatolia: A multicentre study of clinical features and outcome measures. J. Med. Microbiol., 2005, 54(4), 385-389.
[http://dx.doi.org/10.1099/jmm.0.45865-0] [PMID: 15770025]
[44]
Ozkurt, Z.; Kiki, I.; Erol, S.; Erdem, F.; Yilmaz, N.; Parlak, M.; Gundogdu, M.; Tasyaran, M. Crimean-Congo hemorrhagic fever in Eastern Turkey: Clinical features, risk factors and efficacy of ribavirin therapy. J. Infect., 2006, 52(3), 207-215.
[http://dx.doi.org/10.1016/j.jinf.2005.05.003] [PMID: 15953646]
[45]
Doganci, L.; Ceyhan, M.; Tasdeler, N.F.; Sarikayalar, H.; Tulek, N. Crimean Congo hemorrhagic fever and diffuse alveolar haemorrhage. Trop. Doct., 2008, 38(4), 252-254.
[http://dx.doi.org/10.1258/td.2008.070406] [PMID: 18820205]
[46]
Schwarz, T.F.; Nsanze, H.; Ameen, A.M. Clinical features of crimean-congo haemorrhagic fever in the united arab emirates. Infection, 1997, 25(6), 364-367.
[http://dx.doi.org/10.1007/BF01740819] [PMID: 9427056]
[47]
Karti, S.S.; Odabasi, Z.; Korten, V.; Yilmaz, M.; Sonmez, M.; Caylan, R.; Akdogan, E.; Eren, N.; Koksal, I.; Ovali, E.; Erickson, B.R.; Vincent, M.J.; Nichol, S.T.; Comer, J.A.; Rollin, P.E.; Ksiazek, T.G. Crimean-Congo hemorrhagic fever in Turkey. Emerg. Infect. Dis., 2004, 10(8), 1379-1384.
[http://dx.doi.org/10.3201/eid1008.030928] [PMID: 15496237]
[48]
Huang, X.; Yin, H.; Yan, L.; Wang, X.; Wang, S. Epidemiologic characteristics of haemorrhagic fever with renal syndrome in Mainland China from 2006 to 2010. Western Pac. Surveill. Response J., 2012, 3(1), 1.
[http://dx.doi.org/10.5365/wpsar.2011.2.2.007] [PMID: 23908902]
[49]
Zhang, S.; Wang, S.; Yin, W.; Liang, M.; Li, J.; Zhang, Q.; Feng, Z.; Li, D. Epidemic characteristics of hemorrhagic fever with renal syndrome in China, 2006–2012. BMC Infect. Dis., 2014, 14(1), 384.
[http://dx.doi.org/10.1186/1471-2334-14-384] [PMID: 25012160]
[50]
Kariwa, H.; Yoshimatsu, K.; Arikawa, J. Hantavirus infection in east Asia. Comp. Immunol. Microbiol. Infect. Dis., 2007, 30(5-6), 341-356.
[http://dx.doi.org/10.1016/j.cimid.2007.05.011] [PMID: 17655929]
[51]
Echterdiek, F.; Kitterer, D.; Alscher, M.D.; Schwenger, V.; Ruckenbrod, B.; Bald, M.; Latus, J. Clinical course of hantavirus-induced nephropathia epidemica in children compared to adults in Germany—analysis of 317 patients. Pediatr. Nephrol., 2019, 34(7), 1247-1252.
[http://dx.doi.org/10.1007/s00467-019-04215-9] [PMID: 30874941]
[52]
Jiang, H.; Du, H.; Wang, L.M.; Wang, P.Z.; Bai, X.F. Hemorrhagic fever with renal syndrome: pathogenesis and clinical picture. Front. Cell. Infect. Microbiol., 2016, 6, 1.
[http://dx.doi.org/10.3389/fcimb.2016.00001] [PMID: 26870699]
[53]
Terajima, M.; Ennis, F.A. T cells and pathogenesis of hantavirus cardiopulmonary syndrome and hemorrhagic fever with renal syndrome. Viruses, 2011, 3(7), 1059-1073.
[http://dx.doi.org/10.3390/v3071059] [PMID: 21994770]
[54]
MacNeil, A.; Nichol, S.T.; Spiropoulou, C.F. Hantavirus pulmonary syndrome. Virus Res., 2011, 162(1-2), 138-147.
[http://dx.doi.org/10.1016/j.virusres.2011.09.017] [PMID: 21945215]
[55]
Garanina, E.; Martynova, E.; Davidyuk, Y.; Kabwe, E.; Ivanov, K.; Titova, A.; Markelova, M.; Zhuravleva, M.; Cherepnev, G.; Shakirova, V.G.; Khaertynova, I.; Tarlinton, R.; Rizvanov, A.; Khaiboullina, S.; Morzunov, S. Cytokine storm combined with humoral immune response defect in fatal hemorrhagic fever with renal syndrome case, Tatarstan, Russia. Viruses, 2019, 11(7), 601.
[http://dx.doi.org/10.3390/v11070601] [PMID: 31269734]
[56]
Lu, S.; Zhu, N.; Guo, W.; Wang, X.; Li, K.; Yan, J.; Jiang, C.; Han, S.; Xiang, H.; Wu, X.; Liu, Y.; Xiong, H.; Chen, L.; Gong, Z.; Luo, F.; Hou, W. RNA-Seq revealed a circular RNA-microRNA-mRNA regulatory network in hantaan virus infection. Front. Cell. Infect. Microbiol., 2020, 10(97), 97.
[http://dx.doi.org/10.3389/fcimb.2020.00097] [PMID: 32232013]
[57]
Fan, X.; Deng, H.; Sang, J.; Li, N.; Zhang, X.; Han, Q.; Liu, Z. High serum procalcitonin concentrations in patients with hemorrhagic fever with renal syndrome caused by hantaan virus. front. Cell. Infect. Microbiol., 2018, 8(129), 129.
[http://dx.doi.org/10.3389/fcimb.2018.00129] [PMID: 29868489]
[58]
Kuhn, J.H.; Bao, Y.; Bavari, S.; Becker, S.; Bradfute, S.; Brister, J.R.; Bukreyev, A.A.; Chandran, K.; Davey, R.A.; Dolnik, O.; Dye, J.M.; Enterlein, S.; Hensley, L.E.; Honko, A.N.; Jahrling, P.B.; Johnson, K.M.; Kobinger, G.; Leroy, E.M.; Lever, M.S.; Mühlberger, E.; Netesov, S.V.; Olinger, G.G.; Palacios, G.; Patterson, J.L.; Paweska, J.T.; Pitt, L.; Radoshitzky, S.R.; Saphire, E.O.; Smither, S.J.; Swanepoel, R.; Towner, J.S.; van der Groen, G.; Volchkov, V.E.; Wahl-Jensen, V.; Warren, T.K.; Weidmann, M.; Nichol, S.T. Virus nomenclature below the species level: a standardized nomenclature for natural variants of viruses assigned to the family Filoviridae. Arch. Virol., 2013, 158(1), 301-311.
[http://dx.doi.org/10.1007/s00705-012-1454-0] [PMID: 23001720]
[59]
Sanchez, A.; Lukwiya, M.; Bausch, D.; Mahanty, S.; Sanchez, A.J.; Wagoner, K.D.; Rollin, P.E. Analysis of human peripheral blood samples from fatal and nonfatal cases of Ebola (Sudan) hemorrhagic fever: cellular responses, virus load, and nitric oxide levels. J. Virol., 2004, 78(19), 10370-10377.
[http://dx.doi.org/10.1128/JVI.78.19.10370-10377.2004] [PMID: 15367603]
[60]
Nakayama, E.; Saijo, M. Animal models for Ebola and Marburg virus infections. Front. Microbiol., 2013, 4(267), 267.
[http://dx.doi.org/10.3389/fmicb.2013.00267] [PMID: 24046765]
[61]
Dowell, S.F.; Mukunu, R.; Ksiazek, T.G.; Khan, A.S.; Rollin, P.E.; Peters, C.J. Transmission of Ebola hemorrhagic fever: A study of risk factors in family members, Kikwit, Democratic Republic of the Congo, 1995. Commission de Lutte contre les Epidémies à Kikwit. J. Infect. Dis., 1999, 179(s1)(Suppl. 1), S87-S91.
[http://dx.doi.org/10.1086/514284] [PMID: 9988169]
[62]
Bwaka, M.A.; Bonnet, M.J.; Calain, P.; Colebunders, R.; De Roo, A.; Guimard, Y.; Katwiki, K.R.; Kibadi, K.; Kipasa, M.A.; Kuvula, K.J.; Mapanda, B.B.; Massamba, M.; Mupapa, K.D.; Muyembe-Tamfum, J.J.; Ndaberey, E.; Peters, C.J.; Rollin, P.E.; Van den Enden, E.; Van den Enden, E. Ebola hemorrhagic fever in Kikwit, Democratic Republic of the Congo: Clinical observations in 103 patients. J. Infect. Dis., 1999, 179(s1)(Suppl. 1), S1-S7.
[http://dx.doi.org/10.1086/514308] [PMID: 9988155]
[63]
Bente, D.; Gren, J.; Strong, J.E.; Feldmann, H. Disease modeling for Ebola and Marburg viruses. Dis. Model. Mech., 2009, 2(1-2), 12-17.
[http://dx.doi.org/10.1242/dmm.000471] [PMID: 19132113]
[64]
Alves, D.A.; Glynn, A.R.; Steele, K.E.; Lackemeyer, M.G.; Garza, N.L.; Buck, J.G.; Mech, C.; Reed, D.S. Aerosol exposure to the angola strain of marburg virus causes lethal viral hemorrhagic Fever in cynomolgus macaques. Vet. Pathol., 2010, 47(5), 831-851.
[http://dx.doi.org/10.1177/0300985810378597] [PMID: 20807825]
[65]
Kiley, M.P. Filoviridae: Marburg and Ebola Viruses. In: Laboratory Diagnosis of Infectious Diseases Principles and Practice: VOLUME II Viral, Rickettsial, and Chlamydial Diseases; Lennette, E.H.; Halonen, P.; Murphy, F.A.; Balows, A.; Hausler, W.J., Eds.; Springer New York: New York, NY, 1988; pp. 595-601.
[http://dx.doi.org/10.1007/978-1-4612-3900-0_30]
[66]
Jacob, S.T.; Crozier, I.; Fischer, W.A., II; Hewlett, A.; Kraft, C.S.; Vega, M.A.L.; Soka, M.J.; Wahl, V.; Griffiths, A.; Bollinger, L.; Kuhn, J.H. Ebola virus disease. Nat. Rev. Dis. Primers, 2020, 6(1), 13.
[http://dx.doi.org/10.1038/s41572-020-0147-3] [PMID: 32080199]
[67]
Calisher, C.H.; Karabatsos, N.; Dalrymple, J.M.; Shope, R.E.; Porterfield, J.S.; Westaway, E.G.; Brandt, W.E. Antigenic relationships between flaviviruses as determined by cross-neutralization tests with polyclonal antisera. J. Gen. Virol., 1989, 70(1), 37-43.
[http://dx.doi.org/10.1099/0022-1317-70-1-37] [PMID: 2543738]
[68]
Barrett, A.D.T.; Higgs, S. Yellow fever: a disease that has yet to be conquered. Annu. Rev. Entomol., 2007, 52(1), 209-229.
[http://dx.doi.org/10.1146/annurev.ento.52.110405.091454] [PMID: 16913829]
[69]
Monath, T.P. Dengue and yellow fever--challenges for the development and use of vaccines. N. Engl. J. Med., 2007, 357(22), 2222-2225.
[http://dx.doi.org/10.1056/NEJMp0707161] [PMID: 18046026]
[70]
Scully, C. Ebola: A very dangerous viral haemorrhagic fever. Dent. Update, 2015, 42(1), 7-21, 14-16, 18-21.
[http://dx.doi.org/10.12968/denu.2015.42.1.7] [PMID: 26062275]
[71]
Roddy, P.; Colebunders, R.; Jeffs, B.; Palma, P.P.; Van Herp, M.; Borchert, M. Filovirus hemorrhagic fever outbreak case management: A review of current and future treatment options. J. Infect. Dis., 2011, 204(Suppl. 3), S791-S795.
[http://dx.doi.org/10.1093/infdis/jir297] [PMID: 21987752]
[72]
Ströher, U.; Feldmann, H. Progress towards the treatment of Ebola haemorrhagic fever. Expert Opin. Investig. Drugs, 2006, 15(12), 1523-1535.
[http://dx.doi.org/10.1517/13543784.15.12.1523] [PMID: 17107278]
[73]
Gene, O.G.; Julia, B.E.; Vanessa, M.R.; Victoria, W-J.; Thomas, G.W. Lisa, HE Drug targets in infections with Ebola and Marburg viruses. Infectious Disorders-Drug Targets, 2009, 9(2), 191-200.
[http://dx.doi.org/10.2174/187152609787847730]
[74]
Jahrling, P.B.; Geisbert, T.W.; Geisbert, J.B.; Swearengen, J.R.; Bray, M.; Jaax, N.K.; Huggins, J.W.; LeDuc, J.W.; Peters, C.J. Evaluation of immune globulin and recombinant interferon-α2b for treatment of experimental Ebola virus infections. J. Infect. Dis., 1999, 179(s1)(Suppl. 1), S224-S234.
[http://dx.doi.org/10.1086/514310] [PMID: 9988188]
[75]
Oswald, W.B.; Geisbert, T.W.; Davis, K.J.; Geisbert, J.B.; Sullivan, N.J.; Jahrling, P.B.; Parren, P.W.H.I.; Burton, D.R. Neutralizing antibody fails to impact the course of Ebola virus infection in monkeys. PLoS Pathog., 2007, 3(1), e9.
[http://dx.doi.org/10.1371/journal.ppat.0030009] [PMID: 17238286]
[76]
Takada, A.; Ebihara, H.; Jones, S.; Feldmann, H.; Kawaoka, Y. Protective efficacy of neutralizing antibodies against Ebola virus infection. Vaccine, 2007, 25(6), 993-999.
[http://dx.doi.org/10.1016/j.vaccine.2006.09.076] [PMID: 17055127]
[77]
Nakayama, E.; Tomabechi, D.; Matsuno, K.; Kishida, N.; Yoshida, R.; Feldmann, H.; Takada, A. Antibody-dependent enhancement of Marburg virus infection. J. Infect. Dis., 2011, 204(Suppl 3)(Suppl.3), S978-S985.
[http://dx.doi.org/10.1093/infdis/jir334] [PMID: 21987779]
[78]
Takada, A.; Ebihara, H.; Feldmann, H.; Geisbert, T.W.; Kawaoka, Y. Epitopes required for antibody-dependent enhancement of Ebola virus infection. J. Infect. Dis., 2007, 196(s2)(Suppl. 2), S347-S356.
[http://dx.doi.org/10.1086/520581] [PMID: 17940970]
[79]
Takada, A.; Feldmann, H.; Ksiazek, T.G.; Kawaoka, Y. Antibody-dependent enhancement of Ebola virus infection. J. Virol., 2003, 77(13), 7539-7544.
[http://dx.doi.org/10.1128/JVI.77.13.7539-7544.2003] [PMID: 12805454]
[80]
Gould, E.A.; Moss, S.R.; Turner, S.L. Evolution and dispersal of encephalitic flaviviruses. In: Emergence and Control of Zoonotic Viral Encephalitides; Calisher, C.H.; Griffin, D.E., Eds.; Springer Vienna: Vienna, 2004; pp. 65-84.
[http://dx.doi.org/10.1007/978-3-7091-0572-6_6]
[81]
Barnett, E.D. Yellow fever: Epidemiology and prevention. Clin. Infect. Dis., 2007, 44(6), 850-856.
[http://dx.doi.org/10.1086/511869] [PMID: 17304460]
[82]
Gubler, D.J. Dengue and dengue hemorrhagic fever. Clin. Microbiol. Rev., 1998, 11(3), 480-496.
[http://dx.doi.org/10.1128/CMR.11.3.480] [PMID: 9665979]
[83]
Gubler, D.J. Dengue/dengue haemorrhagic fever: History and current status. In: New Treatment Strategies for Dengue and Other Flaviviral Diseases: Novartis Foundation Symposium; Bock, G.; Goode, J., Eds.; John Wiley & Sons, Ltd., Chichester, UK, 2006; Vol. 277, pp. 3-22.
[84]
Bhatt, S.; Gething, P.W.; Brady, O.J.; Messina, J.P.; Farlow, A.W.; Moyes, C.L.; Drake, J.M.; Brownstein, J.S.; Hoen, A.G.; Sankoh, O.; Myers, M.F.; George, D.B.; Jaenisch, T.; Wint, G.R.W.; Simmons, C.P.; Scott, T.W.; Farrar, J.J.; Hay, S.I. The global distribution and burden of dengue. Nature, 2013, 496(7446), 504-507.
[http://dx.doi.org/10.1038/nature12060] [PMID: 23563266]
[85]
Organization, W.H. Dengue haemorrhagic fever: Diagnosis, treatment, prevention and control; World Health Organization, 1997.
[86]
Guzmán, M.G.; Kouri, G.; Bravo, J.; Valdes, L.; Susana, V.; Halstead, S.B. Effect of age on outcome of secondary dengue 2 infections. Int. J. Infect. Dis., 2002, 6(2), 118-124.
[http://dx.doi.org/10.1016/S1201-9712(02)90072-X] [PMID: 12121599]
[87]
Ooi, E.E.; Goh, K.T.; Gubler, D.J. Dengue prevention and 35 years of vector control in Singapore. Emerg. Infect. Dis., 2006, 12(6), 887-893.
[http://dx.doi.org/10.3201/eid1206.051210] [PMID: 16707042]
[88]
Derouich, M.; Boutayeb, A.; Twizell, E.H. A model of dengue fever. Biomed. Eng. Online, 2003, 2(1), 4.
[http://dx.doi.org/10.1186/1475-925X-2-4] [PMID: 12657162]
[89]
World Health Organization, Special Programme for Research, Training in Tropical Diseases, World Health Organization. Epidemic, Pandemic Alert. Dengue: guidelines for diagnosis, treatment, prevention and control; World Health Organization, 2009.
[90]
Pabbaraju, K.; Wong, S.; Gill, K.; Fonseca, K.; Tipples, G.A.; Tellier, R. Simultaneous detection of Zika, Chikungunya and Dengue viruses by a multiplex real-time RT-PCR assay. J. Clin. Virol., 2016, 83, 66-71.
[http://dx.doi.org/10.1016/j.jcv.2016.09.001] [PMID: 27614319]
[91]
Pang, J.; Chia, P.Y.; Lye, D.C.; Leo, Y.S. Progress and challenges towards point-of-care diagnostic development for dengue. J. Clin. Microbiol., 2017, 55(12), 3339-3349.
[http://dx.doi.org/10.1128/JCM.00707-17] [PMID: 28904181]
[92]
Graci, J.D.; Cameron, C.E. Mechanisms of action of ribavirin against distinct viruses. Rev. Med. Virol., 2006, 16(1), 37-48.
[http://dx.doi.org/10.1002/rmv.483] [PMID: 16287208]
[93]
Fischer, S.A.; Graham, M.B.; Kuehnert, M.J.; Kotton, C.N.; Srinivasan, A.; Marty, F.M.; Comer, J.A.; Guarner, J.; Paddock, C.D.; DeMeo, D.L.; Shieh, W.J.; Erickson, B.R.; Bandy, U.; DeMaria, A., Jr; Davis, J.P.; Delmonico, F.L.; Pavlin, B.; Likos, A.; Vincent, M.J.; Sealy, T.K.; Goldsmith, C.S.; Jernigan, D.B.; Rollin, P.E.; Packard, M.M.; Patel, M.; Rowland, C.; Helfand, R.F.; Nichol, S.T.; Fishman, J.A.; Ksiazek, T.; Zaki, S.R. Transmission of lymphocytic choriomeningitis virus by organ transplantation. N. Engl. J. Med., 2006, 354(21), 2235-2249.
[http://dx.doi.org/10.1056/NEJMoa053240] [PMID: 16723615]
[94]
Moreno, H.; Gallego, I.; Sevilla, N.; de la Torre, J.C.; Domingo, E.; Martín, V. Ribavirin can be mutagenic for arenaviruses. J. Virol., 2011, 85(14), 7246-7255.
[http://dx.doi.org/10.1128/JVI.00614-11] [PMID: 21561907]
[95]
Enria, D.A.; Briggiler, A.M.; Sánchez, Z. Treatment of Argentine hemorrhagic fever. Antiviral Res., 2008, 78(1), 132-139.
[http://dx.doi.org/10.1016/j.antiviral.2007.10.010] [PMID: 18054395]
[96]
Rusnak, J.M. Experience with ribavirin for treatment and postexposure prophylaxis of hemorrhagic fever viruses: Crimean Congo hemorrhagic fever, Lassa fever, and hantaviruses. Appl. Biosaf., 2011, 16(2), 67-87.
[http://dx.doi.org/10.1177/153567601101600203]
[97]
Tezer, H.; Ozkaya-Parlakay, A.; Gulhan, B.; Kanik-Yuksek, S. Ribavirin use in pediatric patients with Crimean Congo Hemorrhagic Fever: is it really necessary? Braz. J. Infect. Dis., 2016, 20(2), 222-223.
[http://dx.doi.org/10.1016/j.bjid.2015.11.012] [PMID: 26845543]
[98]
Jabbari, A.; Besharat, S.; Abbasi, A.; Moradi, A.; Kalavi, K. Crimean-congo hemorrhagic fever: Case series from a medical center in golestan province, Northeast of Iran (2004-2006). Indian J. Med. Sci., 2006, 60(8), 327-329.
[http://dx.doi.org/10.4103/0019-5359.26609] [PMID: 16864919]
[99]
Bodur, H.; Erbay, A. Akıncı, E.; Öngürü, P.; Bayazıt, N.; Eren, S.S.; Kubar, A. Effect of oral ribavirin treatment on the viral load and disease progression in Crimean-Congo hemorrhagic fever. Int. J. Infect. Dis., 2011, 15(1), e44-e47.
[http://dx.doi.org/10.1016/j.ijid.2010.09.009] [PMID: 21106428]
[100]
Ascioglu, S.; Leblebicioglu, H.; Vahaboglu, H.; Chan, K.A. Ribavirin for patients with Crimean–Congo haemorrhagic fever: a systematic review and meta-analysis. J. Antimicrob. Chemother., 2011, 66(6), 1215-1222.
[http://dx.doi.org/10.1093/jac/dkr136] [PMID: 21482564]
[101]
Ferraris, O.; Moroso, M.; Pernet, O.; Emonet, S.; Ferrier Rembert, A.; Paranhos-Baccalà, G.; Peyrefitte, C.N. Evaluation of Crimean-Congo hemorrhagic fever virus in vitro inhibition by chloroquine and chlorpromazine, two FDA approved molecules. Antiviral Res., 2015, 118, 75-81.
[http://dx.doi.org/10.1016/j.antiviral.2015.03.005] [PMID: 25796972]
[102]
Huggins, J.W.; Hsiang, C.M.; Cosgriff, T.M.; Guang, M.Y.; Smith, J.I.; Wu, Z.O.; LeDuc, J.W.; Zheng, Z.M.; Meegan, J.M.; Wang, Q.N.; Oland, D.D.; Gui, X.E.; Gibbs, P.H.; Yuan, G.H.; Zhang, T.M. Prospective, double-blind, concurrent, placebo-controlled clinical trial of intravenous ribavirin therapy of hemorrhagic fever with renal syndrome. J. Infect. Dis., 1991, 164(6), 1119-1127.
[http://dx.doi.org/10.1093/infdis/164.6.1119] [PMID: 1683355]
[103]
Malinin, O.V.; Platonov, A.E. Insufficient efficacy and safety of intravenous ribavirin in treatment of haemorrhagic fever with renal syndrome caused by Puumala virus. Infect. Dis. (Lond.), 2017, 49(7), 514-520.
[http://dx.doi.org/10.1080/23744235.2017.1293841] [PMID: 28276794]
[104]
Chapman, L.E.; Mertz, G.J.; Peters, C.J.; Jolson, H.M.; Khan, A.S.; Ksiazek, T.G.; Koster, F.T.; Baum, K.F.; Rollin, P.E.; Pavia, A.T.; Holman, R.C.; Christenson, J.C.; Rubin, P.J.; Behrman, R.E.; Bell, L.J.W.; Simpson, G.L.; Sadek, R.F.; Armstrong, B.; Atterbury, B.T.; Baacke, G.; Bellardi, D.; Carroll, M.; Cheek, J.; Craig, A.; Daniels, D.; Freeman, W.; Held, F.; Kessler, D.; Konicck, S.; Light, A.; McGee, J.; Savage, J.; Sloan, M.; Tempest, B.; Vaughan, K.; Waite, D.; Becher, J.; Brieman, R.; Bulter, J.; Schmidt-Dalton, M.J.; Hart, D.C.; Hawk, J.; Khabbaz, R.; Lloyd, E.; Sortir, M.; Stokes, S.; Torok, T.J.; Vitek, C.; Harding, S.; England, R.; Kioski, C.; Mosley, D.; Sands, L.; Johnson-Baach, T.; Ronnau, K.J.; Mast, D.D.; Servi, R.; Levinson, R.; Yeager, F.S.; Adam, R.; Friedman, B.; Lincoln, L.; Petersen, E.A.; Wack, E.; Moncada, R.; Bassi, S.S.; Rumack, J.S.; Kuriyama, S.; McGovern, J.; Olson, D.; Garst, P.; Butera, M.L.; Erlich, K.; Dinolfo, M.; Dalton, C.; Hoffman, R.; Kuritzkes, D.; Madinger, N.; Schooley, R.; Mass, A.; Hofflin, J.M.; Britton, K.; Blum, R.; Cott, G.; Golub, B.; Greenberg, K.; Lichtenstien, K.; O’Brien, R.; Motley, R.F.; Culliman, M.; Fujeta, N.; Mason, S.; McLeod, G.X.; Mateos-Mora, M.; Demers, D.; Jackson, C.; Zar, B.; Ramakrishna, B.; Jones, C.L.; Lucht, W.; Conrad, S.; Grier, L.R.; King, J.W.; Adelso, J.; Kim-Karpe, M.; Bergman, M.; Schut, R.; Sterling, T.; Brewer, J.H.; Anderson, D.E.; Roehrs, J.; Dietrich, J.E.; Jones, D.; Ward, C.; Stockfish, J.F.; Allen, S.; Crowell, R.E.; Cushing, A.; Goade, D.; Irizarry, L.; Jenison, S.; Levy, H.; Overturf, G.; Palmer, D.; Quenzer, R.; Reed, W.; Simpson, S.; Williams, J.; Berger, B.J.; Hussain, F.; Berger, B.; Sepe, F.; Hargreaves, J.; Baddour, L.M.; Parrish, R.; Plemmons, R.; Radolf, J.; Szeyko, G.; Elkind, K.; Knight, V.; Badger, M.S.; Furlan, J.; Gillum, M.; Tice, A.D.; Barany, J. Intravenous ribavirin for hantavirus pulmonary syndrome: Safety and tolerance during 1 year of open-label experience. Antivir. Ther., 1999, 4(4), 211-219.
[http://dx.doi.org/10.1177/135965359900400404] [PMID: 10723500]
[105]
Mertz, G.J.; Miedzinski, L.; Goade, D.; Pavia, A.T.; Hjelle, B.; Hansbarger, C.O.; Levy, H.; Koster, F.T.; Baum, K.; Lindemulder, A.; Wang, W.; Riser, L.; Fernandez, H.; Whitley, R.J. Placebo-controlled, double-blind trial of intravenous ribavirin for the treatment of hantavirus cardiopulmonary syndrome in North America. Clin. Infect. Dis., 2004, 39(9), 1307-1313.
[http://dx.doi.org/10.1086/425007] [PMID: 15494907]
[106]
Arroyo, J.I.; Apperson, S.A.; Cropp, C.B.; Marafino, B.J., Jr; Monath, T.P.; Tesh, R.B.; Shope, R.E.; Garcia-Blanco, M.A. Effect of human gamma interferon on yellow fever virus infection. Am. J. Trop. Med. Hyg., 1988, 38(3), 647-650.
[PMID: 3152785]
[107]
Saleem, M.; Akhtar, M.F.; Tanvir, M.; Saleem, A. Crimean-Congo hemorrhagic fever: Etiology, diagnosis, management and potential alternative therapy. Asian Pac. J. Trop. Med., 2020, 13(4), 143.
[http://dx.doi.org/10.4103/1995-7645.280221]
[108]
Mendenhall, M.; Russell, A.; Smee, D.F.; Hall, J.O.; Skirpstunas, R.; Furuta, Y.; Gowen, B.B. Effective oral favipiravir (T-705) therapy initiated after the onset of clinical disease in a model of arenavirus hemorrhagic Fever. PLoS Negl. Trop. Dis., 2011, 5(10), e1342.
[http://dx.doi.org/10.1371/journal.pntd.0001342] [PMID: 22022624]
[109]
Gowen, B.B.; Juelich, T.L.; Sefing, E.J.; Brasel, T.; Smith, J.K.; Zhang, L.; Tigabu, B.; Hill, T.E.; Yun, T.; Pietzsch, C.; Furuta, Y.; Freiberg, A.N. Favipiravir (T-705) inhibits Junín virus infection and reduces mortality in a guinea pig model of Argentine hemorrhagic fever. PLoS Negl. Trop. Dis., 2013, 7(12), e2614.
[http://dx.doi.org/10.1371/journal.pntd.0002614] [PMID: 24386500]
[110]
Scharton, D.; Bailey, K.W.; Vest, Z.; Westover, J.B.; Kumaki, Y.; Van Wettere, A.; Furuta, Y.; Gowen, B.B. Favipiravir (T-705) protects against peracute Rift Valley fever virus infection and reduces delayed-onset neurologic disease observed with ribavirin treatment. Antiviral Res., 2014, 104, 84-92.
[http://dx.doi.org/10.1016/j.antiviral.2014.01.016] [PMID: 24486952]
[111]
Sissoko, D.; Laouenan, C.; Folkesson, E.; M’Lebing, A.B.; Beavogui, A.H.; Baize, S.; Camara, A.M.; Maes, P.; Shepherd, S.; Danel, C.; Carazo, S.; Conde, M.N.; Gala, J.L.; Colin, G.; Savini, H.; Bore, J.A.; Le Marcis, F.; Koundouno, F.R.; Petitjean, F.; Lamah, M.C.; Diederich, S.; Tounkara, A.; Poelart, G.; Berbain, E.; Dindart, J.M.; Duraffour, S.; Lefevre, A.; Leno, T.; Peyrouset, O.; Irenge, L.; Bangoura, N.F.; Palich, R.; Hinzmann, J.; Kraus, A.; Barry, T.S.; Berette, S.; Bongono, A.; Camara, M.S.; Chanfreau Munoz, V.; Doumbouya, L. Souley Harouna; Kighoma, P.M.; Koundouno, F.R.; Réné Lolamou; Loua, C.M.; Massala, V.; Moumouni, K.; Provost, C.; Samake, N.; Sekou, C.; Soumah, A.; Arnould, I.; Komano, M.S.; Gustin, L.; Berutto, C.; Camara, D.; Camara, F.S.; Colpaert, J.; Delamou, L.; Jansson, L.; Kourouma, E.; Loua, M.; Malme, K.; Manfrin, E.; Maomou, A.; Milinouno, A.; Ombelet, S.; Sidiboun, A.Y.; Verreckt, I.; Yombouno, P.; Bocquin, A.; Carbonnelle, C.; Carmoi, T.; Frange, P.; Mely, S.; Nguyen, V.K.; Pannetier, D.; Taburet, A.M.; Treluyer, J.M.; Kolie, J.; Moh, R.; Gonzalez, M.C.; Kuisma, E.; Liedigk, B.; Ngabo, D.; Rudolf, M.; Thom, R.; Kerber, R.; Gabriel, M.; Di Caro, A.; Wölfel, R.; Badir, J.; Bentahir, M.; Deccache, Y.; Dumont, C.; Durant, J.F.; El Bakkouri, K.; Gasasira Uwamahoro, M.; Smits, B.; Toufik, N.; Van Cauwenberghe, S.; Ezzedine, K.; Dortenzio, E.; Pizarro, L.; Etienne, A.; Guedj, J.; Fizet, A.; Barte de Sainte Fare, E.; Murgue, B.; Tran-Minh, T.; Rapp, C.; Piguet, P.; Poncin, M.; Draguez, B.; Allaford Duverger, T.; Barbe, S.; Baret, G.; Defourny, I.; Carroll, M.; Raoul, H.; Augier, A.; Eholie, S.P.; Yazdanpanah, Y.; Levy-Marchal, C.; Antierrens, A.; Van Herp, M.; Günther, S.; de Lamballerie, X.; Keïta, S.; Mentre, F.; Anglaret, X.; Malvy, D. Experimental treatment with favipiravir for Ebola virus disease (the JIKI Trial): A historically controlled, single-arm proof-of-concept trial in Guinea. PLoS Med., 2016, 13(3), e1001967.
[http://dx.doi.org/10.1371/journal.pmed.1001967] [PMID: 26930627]
[112]
Bai, C.Q.; Mu, J.S.; Kargbo, D.; Song, Y.B.; Niu, W.K.; Nie, W.M.; Kanu, A.; Liu, W.W.; Wang, Y.P.; Dafae, F.; Yan, T.; Hu, Y.; Deng, Y.Q.; Lu, H.J.; Yang, F.; Zhang, X.G.; Sun, Y.; Cao, Y.X.; Su, H.X.; Sun, Y.; Liu, W.S.; Wang, C.Y.; Qian, J.; Liu, L.; Wang, H.; Tong, Y.G.; Liu, Z.Y.; Chen, Y.S.; Wang, H.Q.; Kargbo, B.; Gao, G.F.; Jiang, J.F. Clinical and virological characteristics of Ebola virus disease patients treated with favipiravir (T-705)—Sierra Leone, 2014. Clin. Infect. Dis., 2016, 63(10), 1288-1294.
[http://dx.doi.org/10.1093/cid/ciw571] [PMID: 27553371]
[113]
Keck, F.; Amaya, M.; Kehn-Hall, K.; Roberts, B.; Bailey, C.; Narayanan, A. Characterizing the effect of bortezomib on Rift Valley fever virus multiplication. Antiviral Res., 2015, 120, 48-56.
[http://dx.doi.org/10.1016/j.antiviral.2015.05.004] [PMID: 26001632]
[114]
Nguyen, N.M.; Tran, C.N.B.; Phung, L.K.; Duong, K.T.H.; Huynh, H.A.; Farrar, J.; Nguyen, Q.T.H.; Tran, H.T.; Nguyen, C.V.V.; Merson, L.; Hoang, L.T.; Hibberd, M.L.; Aw, P.P.K.; Wilm, A.; Nagarajan, N.; Nguyen, D.T.; Pham, M.P.; Nguyen, T.T.; Javanbakht, H.; Klumpp, K.; Hammond, J.; Petric, R.; Wolbers, M.; Nguyen, C.T.; Simmons, C.P. A randomized, double-blind placebo controlled trial of balapiravir, a polymerase inhibitor, in adult dengue patients. J. Infect. Dis., 2013, 207(9), 1442-1450.
[http://dx.doi.org/10.1093/infdis/jis470] [PMID: 22807519]
[115]
Maruyama, T.; Parren, P.W.H.I.; Sanchez, A.; Rensink, I.; Rodriguez, L.L.; Khan, A.S.; Peters, C.J.; Burton, D.R. Recombinant human monoclonal antibodies to Ebola virus. J. Infect. Dis., 1999, 179(s1)(Suppl. 1), S235-S239.
[http://dx.doi.org/10.1086/514280] [PMID: 9988189]
[116]
Parren, P.W.H.I.; Geisbert, T.W.; Maruyama, T.; Jahrling, P.B.; Burton, D.R. Pre- and postexposure prophylaxis of Ebola virus infection in an animal model by passive transfer of a neutralizing human antibody. J. Virol., 2002, 76(12), 6408-6412.
[http://dx.doi.org/10.1128/JVI.76.12.6408-6412.2002] [PMID: 12021376]
[117]
Wilson, J.A.; Hevey, M.; Bakken, R.; Guest, S.; Bray, M.; Schmaljohn, A.L.; Hart, M.K. Epitopes involved in antibody-mediated protection from Ebola virus. Science, 2000, 287(5458), 1664-1666.
[http://dx.doi.org/10.1126/science.287.5458.1664] [PMID: 10698744]
[118]
Konde, M.K.; Baker, D.P.; Traore, F.A.; Sow, M.S.; Camara, A.; Barry, A.A.; Mara, D.; Barry, A.; Cone, M.; Kaba, I.; Richard, A.A.; Beavogui, A.H.; Günther, S.; Pintilie, M.; Fish, E.N. Interferon β-1a for the treatment of Ebola virus disease: A historically controlled, single-arm proof-of-concept trial. PLoS One, 2017, 12(2), e0169255.
[http://dx.doi.org/10.1371/journal.pone.0169255] [PMID: 28225767]
[119]
Gignoux, E.; Azman, A.S.; de Smet, M.; Azuma, P.; Massaquoi, M.; Job, D.; Tiffany, A.; Petrucci, R.; Sterk, E.; Potet, J.; Suzuki, M.; Kurth, A.; Cannas, A.; Bocquin, A.; Strecker, T.; Logue, C.; Pottage, T.; Yue, C.; Cabrol, J.C.; Serafini, M.; Ciglenecki, I. Effect of Artesunate–Amodiaquine on Mortality Related to Ebola Virus Disease. N. Engl. J. Med., 2016, 374(1), 23-32.
[http://dx.doi.org/10.1056/NEJMoa1504605] [PMID: 26735991]
[120]
Dunning, J.; Sahr, F.; Rojek, A.; Gannon, F.; Carson, G.; Idriss, B.; Massaquoi, T.; Gandi, R.; Joseph, S.; Osman, H.K.; Brooks, T.J.G.; Simpson, A.J.H.; Goodfellow, I.; Thorne, L.; Arias, A.; Merson, L.; Castle, L.; Howell-Jones, R.; Pardinaz-Solis, R.; Hope-Gill, B.; Ferri, M.; Grove, J.; Kowalski, M.; Stepniewska, K.; Lang, T.; Whitehead, J.; Olliaro, P.; Samai, M.; Horby, P.W. Experimental treatment of Ebola virus disease with TKM-130803: a single-arm phase 2 clinical trial. PLoS Med., 2016, 13(4), e1001997.
[http://dx.doi.org/10.1371/journal.pmed.1001997] [PMID: 27093560]
[121]
Dunning, J.; Kennedy, S.B.; Antierens, A.; Whitehead, J.; Ciglenecki, I.; Carson, G.; Kanapathipillai, R.; Castle, L.; Howell-Jones, R.; Pardinaz-Solis, R.; Grove, J.; Scott, J.; Lang, T.; Olliaro, P.; Horby, P.W. Experimental treatment of Ebola virus disease with brincidofovir. PLoS One, 2016, 11(9), e0162199.
[http://dx.doi.org/10.1371/journal.pone.0162199] [PMID: 27611077]
[122]
Sridharan, A.; Chen, Q.; Tang, K.F.; Ooi, E.E.; Hibberd, M.L.; Chen, J. Inhibition of megakaryocyte development in the bone marrow underlies dengue virus-induced thrombocytopenia in humanized mice. J. Virol., 2013, 87(21), 11648-11658.
[http://dx.doi.org/10.1128/JVI.01156-13] [PMID: 23966397]
[123]
Ng, J.K.W.; Zhang, S.L.; Tan, H.C.; Yan, B.; Maria Martinez Gomez, J.; Tan, W.Y.; Lam, J.H.; Tan, G.K.X.; Ooi, E.E.; Alonso, S. First experimental in vivo model of enhanced dengue disease severity through maternally acquired heterotypic dengue antibodies. PLoS Pathog., 2014, 10(4), e1004031.
[http://dx.doi.org/10.1371/journal.ppat.1004031] [PMID: 24699622]
[124]
Dejnirattisai, W.; Wongwiwat, W.; Supasa, S.; Zhang, X.; Dai, X.; Rouvinski, A.; Jumnainsong, A.; Edwards, C.; Quyen, N.T.H.; Duangchinda, T.; Grimes, J.M.; Tsai, W.Y.; Lai, C.Y.; Wang, W.K.; Malasit, P.; Farrar, J.; Simmons, C.P.; Zhou, Z.H.; Rey, F.A.; Mongkolsapaya, J.; Screaton, G.R. A new class of highly potent, broadly neutralizing antibodies isolated from viremic patients infected with dengue virus. Nat. Immunol., 2015, 16(2), 170-177.
[http://dx.doi.org/10.1038/ni.3058] [PMID: 25501631]
[125]
Screaton, G.; Mongkolsapaya, J.; Yacoub, S.; Roberts, C. New insights into the immunopathology and control of dengue virus infection. Nat. Rev. Immunol., 2015, 15(12), 745-759.
[http://dx.doi.org/10.1038/nri3916] [PMID: 26603900]
[126]
Chan, K.R.; Ong, E.Z.; Ooi, E.E. Therapeutic antibodies as a treatment option for dengue fever. Expert Rev. Anti Infect. Ther., 2013, 11(11), 1147-1157.
[http://dx.doi.org/10.1586/14787210.2013.839941] [PMID: 24093625]
[127]
Halstead, S.B.; O’Rourke, E.J. Dengue viruses and mononuclear phagocytes. I. Infection enhancement by non-neutralizing antibody. J. Exp. Med., 1977, 146(1), 201-217.
[http://dx.doi.org/10.1084/jem.146.1.201] [PMID: 406347]
[128]
Chan, K.R.; Wang, X.; Saron, W.A.A.; Gan, E.S.; Tan, H.C.; Mok, D.Z.L.; Zhang, S.L.X.; Lee, Y.H.; Liang, C.; Wijaya, L.; Ghosh, S.; Cheung, Y.B.; Tannenbaum, S.R.; Abraham, S.N.; St John, A.L.; Low, J.G.H.; Ooi, E.E. Cross-reactive antibodies enhance live attenuated virus infection for increased immunogenicity. Nat. Microbiol., 2016, 1(12), 16164.
[http://dx.doi.org/10.1038/nmicrobiol.2016.164] [PMID: 27642668]
[129]
Dharmananda, S. Treatment of leukemia using integrated Chinese and western medicine. Int. J. Orie. Med., 1997, 22, 169-183.
[130]
Zheng, B.; Shen, J.; Zhuang, H.; Lin, S.; Shen, Y.; Zhou, Y. Treatment of severe aplastic anemia by immunosuppressor anti-lymphocyte globulin/anti-thymus globulin as the chief medicine in combination with Chinese drugs. Chin. J. Integr. Med., 2009, 15(2), 145-148.
[http://dx.doi.org/10.1007/s11655-009-0141-9] [PMID: 19407954]
[131]
Jing, S.; Xiaojiang, Z. Professor Zhang Shiqing’s experience on treating pediatric allergic purpura with Xijiao Dihuang decoction. Gansu Zhongyi Xueyuan Xuebao, 2005, 3.
[132]
Liu, J.; Pei, T.; Mu, J.; Zheng, C.; Chen, X.; Huang, C.; Fu, Y.; Liang, Z.; Wang, Y. Systems pharmacology uncovers the multiple mechanisms of Xijiao Dihuang decoction for the treatment of viral hemorrhagic fever. Evid. Based Complement. Alternat. Med., 2016, 2016, 1-17.
[http://dx.doi.org/10.1155/2016/9025036] [PMID: 27239215]
[133]
Yang, Y.; Cheng, H.; Yan, H.; Wang, P.Z.; Rong, R.; Zhang, Y.Y.; Zhang, C.B.; Du, R.; Rong, L.J. A cell-based high-throughput protocol to screen entry inhibitors of highly pathogenic viruses with Traditional Chinese Medicines. J. Med. Virol., 2017, 89(5), 908-916.
[http://dx.doi.org/10.1002/jmv.24705] [PMID: 27704591]
[134]
Ogawa, M.; Shimojima, M.; Saijo, M.; Fukasawa, M. Several catechins and flavonols from green tea inhibit severe fever with thrombocytopenia syndrome virus infection in vitro. J. Infect. Chemother., 2021, 27(1), 32-39.
[http://dx.doi.org/10.1016/j.jiac.2020.08.005] [PMID: 32868200]
[135]
Parida, M.M.; Upadhyay, C.; Pandya, G.; Jana, A.M. Inhibitory potential of neem (Azadirachta indica Juss) leaves on Dengue virus type-2 replication. J. Ethnopharmacol., 2002, 79(2), 273-278.
[http://dx.doi.org/10.1016/S0378-8741(01)00395-6] [PMID: 11801392]
[136]
Jain, M.; Ganju, L.; Katiyal, A.; Padwad, Y.; Mishra, K.P.; Chanda, S.; Karan, D.; Yogendra, K.M.S.; Sawhney, R.C. Effect of Hippophae rhamnoides leaf extract against Dengue virus infection in human blood-derived macrophages. Phytomedicine, 2008, 15(10), 793-799.
[http://dx.doi.org/10.1016/j.phymed.2008.04.017] [PMID: 18586478]
[137]
Sood, R.; Raut, R.; Tyagi, P.; Pareek, P.K.; Barman, T.K.; Singhal, S.; Shirumalla, R.K.; Kanoje, V.; Subbarayan, R.; Rajerethinam, R.; Sharma, N.; Kanaujia, A.; Shukla, G.; Gupta, Y.K.; Katiyar, C.K.; Bhatnagar, P.K.; Upadhyay, D.J.; Swaminathan, S.; Khanna, N. Cissampelos pareira Linn: Natural Source of potent antiviral activity against all four dengue virus serotypes. PLoS Negl. Trop. Dis., 2015, 9(12), e0004255.
[http://dx.doi.org/10.1371/journal.pntd.0004255] [PMID: 26709822]
[138]
Aziz, J.; Abu Kassim, N.L.; Abu Kasim, N.H.; Haque, N.; Rahman, M.T. Carica papaya induces in vitro thrombopoietic cytokines secretion by mesenchymal stem cells and haematopoietic cells. BMC Complement. Altern. Med., 2015, 15(1), 215.
[http://dx.doi.org/10.1186/s12906-015-0749-6] [PMID: 26152209]
[139]
Ahmad, N.; Fazal, H.; Ayaz, M.; Abbasi, B.H.; Mohammad, I.; Fazal, L. Dengue fever treatment with Carica papaya leaves extracts. Asian Pac. J. Trop. Biomed., 2011, 1(4), 330-333.
[http://dx.doi.org/10.1016/S2221-1691(11)60055-5] [PMID: 23569787]
[140]
Subenthiran, S.; Choon, T.C.; Cheong, K.C.; Thayan, R.; Teck, M.B.; Muniandy, P.K.; Afzan, A.; Abdullah, N.R.; Ismail, Z. Carica papaya Leaves juice significantly accelerates the rate of increase in platelet count among patients with dengue fever and dengue haemorrhagic fever. Evid. Based Complement. Alternat. Med., 2013, 2013, 1-7.
[http://dx.doi.org/10.1155/2013/616737] [PMID: 23662145]
[141]
Kasture, P.N.; Nagabhushan, K.H.; Kumar, A. A multi-centric, double-blind, placebo-controlled, randomized, prospective study to evaluate the efficacy and safety of Carica papaya leaf extract, as empirical therapy for thrombocytopenia associated with dengue fever. J. Assoc. Physicians India, 2016, 64(6), 15-20.
[PMID: 27739262]
[142]
Sakurai, Y.; Kolokoltsov, A.A.; Chen, C.C.; Tidwell, M.W.; Bauta, W.E.; Klugbauer, N.; Grimm, C.; Wahl-Schott, C.; Biel, M.; Davey, R.A. Two-pore channels control Ebola virus host cell entry and are drug targets for disease treatment. Science, 2015, 347(6225), 995-998.
[http://dx.doi.org/10.1126/science.1258758] [PMID: 25722412]
[143]
Tong, X.; Qiu, H.; Zhang, X.; Shi, L.; Wang, G.; Ji, F.; Ding, H.; Tang, W.; Ding, K.; Zuo, J. WSS45, a sulfated α-D-glucan, strongly interferes with Dengue 2 virus infection in vitro. Acta Pharmacol. Sin., 2010, 31(5), 585-592.
[http://dx.doi.org/10.1038/aps.2010.29] [PMID: 20418898]
[144]
Talarico, L.B.; Zibetti, R.G.M.; Faria, P.C.S.; Scolaro, L.A.; Duarte, M.E.R.; Noseda, M.D.; Pujol, C.A.; Damonte, E.B. Anti-herpes simplex virus activity of sulfated galactans from the red seaweeds Gymnogongrus griffithsiae and Cryptonemia crenulata. Int. J. Biol. Macromol., 2004, 34(1-2), 63-71.
[http://dx.doi.org/10.1016/j.ijbiomac.2004.03.002] [PMID: 15178011]
[145]
Talarico, L.B.; Damonte, E.B. Interference in dengue virus adsorption and uncoating by carrageenans. Virology, 2007, 363(2), 473-485.
[http://dx.doi.org/10.1016/j.virol.2007.01.043] [PMID: 17337028]
[146]
Chen, Y.; Maguire, T.; Hileman, R.E.; Fromm, J.R.; Esko, J.D.; Linhardt, R.J.; Marks, R.M. Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate. Nat. Med., 1997, 3(8), 866-871.
[http://dx.doi.org/10.1038/nm0897-866] [PMID: 9256277]
[147]
Qadir, M.I.; Abbas, K.; Tahir, M.; Irfan, M.; Raza Bukhari, S.F.; Ahmed, B.; Hanif, M.; Rasul, A.; Ali, M. Dengue fever: natural management. Pak. J. Pharm. Sci., 2015, 28(2), 647-655.
[PMID: 25730815]
[148]
Rahman, N.; Muliawan, S.; Rashid, N.; Muhamad, M.; Yusof, R. Studies on Quercus iusitanica extracts on DENV-2 replication. Dengue Bull., 2006, 30, 260.
[149]
Muliawan, S.Y.; Kit, L.S.; Devi, S.; Hashim, O.; Yusof, R. Inhibitory potential of Quercus lusitanica extract on dengue virus type 2 replication. Southeast Asian J. Trop. Med. Public Health, 2006, 37(Suppl. 3), 132-135.
[PMID: 17547068]
[150]
Ahmed, H. Ethnomedicinal, Phytochemical and pharmacological investigations of Perilla frutescens (L.) britt. Molecules, 2018, 24(1), 102.
[http://dx.doi.org/10.3390/molecules24010102] [PMID: 30597896]
[151]
Kuo, Y.T.; Liu, C.H.; Corona, A.; Fanunza, E.; Tramontano, E.; Lin, L.T. The methanolic extract of perilla frutescens robustly restricts ebola virus glycoprotein-mediated entry. Viruses, 2021, 13(9), 1793.
[http://dx.doi.org/10.3390/v13091793] [PMID: 34578374]
[152]
Chapa-Oliver, A.; Mejía-Teniente, L. Capsaicin: From plants to a cancer-suppressing agent. Molecules, 2016, 21(8), 931.
[http://dx.doi.org/10.3390/molecules21080931] [PMID: 27472308]
[153]
Tang, K.; Zhang, X.; Guo, Y. Identification of the dietary supplement capsaicin as an inhibitor of Lassa virus entry. Acta Pharm. Sin. B, 2020, 10(5), 789-798.
[http://dx.doi.org/10.1016/j.apsb.2020.02.014] [PMID: 32528827]