Therapeutic Monoclonal Antibodies for Non-Hodgkin Lymphoma: A Literature Review

Page: [53 - 99] Pages: 47

  • * (Excluding Mailing and Handling)

Abstract

Non-Hodgkin lymphoma (NHL) occurs in the lymphatic system because of lymphocytes tumor. This type of tumor has a high death rate among patients. In recent years, a lot of progress has been made based on understanding its exact biology; several treatment methods have been developed. Many patients are cured by a combination of different chemotherapies, despite their toxic effects. In recent years, despite various studies on monoclonal antibodies for non-Hodgkin lymphoma, there have been no narrative articles in this field. Therefore, combining monoclonal antibodies with chemotherapy is successful as they reduce the toxic side effects of chemotherapies. These antibodies can target specific cellular pathways of the immune system leading to limitation of cancer progression. In this article, various types of monoclonal antibodies, their underlying mechanisms of action, as well as their effects on patients with different phases and types of Non-Hodgkin lymphoma have been reviewed for a better understanding.

Graphical Abstract

[1]
Armitage JO, Gascoyne RD, Lunning MA, Cavalli F. Non-Hodgkin lymphoma. Lancet 2017; 390(10091): 298-310.
[http://dx.doi.org/10.1016/S0140-6736(16)32407-2] [PMID: 28153383]
[2]
Sapkota S, Shaikh H. Non-hodgkin lymphoma. StatPearls 2020.
[3]
Board PATE. Adult non-hodgkin lymphoma treatment PDQ® PDQ cancer information summaries. US: National cancer institute 2020.
[4]
Mei M, Wang Y, Song W, Zhang M. Primary causes of death in patients with non-hodgkin’s lymphoma: A retrospective cohort study. Cancer Manag Res 2020; 12: 3155-62.
[http://dx.doi.org/10.2147/CMAR.S243672] [PMID: 32440213]
[5]
Maloney DG. Immunotherapy for non-Hodgkin’s lymphoma: monoclonal antibodies and vaccines. J Clin Oncol 2005; 23(26): 6421-8.
[http://dx.doi.org/10.1200/JCO.2005.06.004] [PMID: 16155029]
[6]
Motta G, Cea M, Moran E, et al. Monoclonal antibodies for non-Hodgkin's lymphoma: State of the art and perspectives. Clin Develop Immunol 2010; 2010
[http://dx.doi.org/10.1155/2010/428253]
[7]
Martin R, Richard R, Ruan FJ, et al. Novel and engineered anti-B-cell monoclonal antibodies for non-Hodgkin’s lymphoma Seminars in hematology. Elsevier 2008.
[http://dx.doi.org/10.1053/j.seminhematol.2008.02.007]
[8]
Frazer JK, Capra J. Immunoglobulins: Structure and function. Fund Immunol 1999; 4: 37-74.
[9]
Adams GP, Weiner LM. Monoclonal antibody therapy of cancer. Nat Biotechnol 2005; 23(9): 1147-57.
[http://dx.doi.org/10.1038/nbt1137] [PMID: 16151408]
[10]
Köhler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975; 256(5517): 495-7.
[11]
Badger CC, Anasetti C, Davis J, Bernstein ID. Treatment of malignancy with unmodified antibody. Pathol Immunopathol Res 1987; 6(5-6): 419-34.
[http://dx.doi.org/10.1159/000157067] [PMID: 3333188]
[12]
Lee J, Fenton BM, Koch CJ, Frelinger JG, Lord EM. Interleukin 2 expression by tumor cells alters both the immune response and the tumor microenvironment. Cancer Res 1998; 58(7): 1478-85.
[PMID: 9537251]
[13]
Hu Y, Liu C, Muyldermans S. Nanobody-based delivery systems for diagnosis and targeted tumor therapy. Front Immunol 2017; 8: 1442.
[http://dx.doi.org/10.3389/fimmu.2017.01442] [PMID: 29163515]
[14]
Wang S, Jia M. Antibody therapies in cancer. Adv Exp Med Biol 2016; 909: 1-67.
[http://dx.doi.org/10.1007/978-94-017-7555-7_1] [PMID: 27240456]
[15]
Martin DF, Maguire MG, Ying GS, Grunwald JE, Fine SL, Jaffe GJ. Ranibizumab and bevacizumab for neovascular age-related macular degeneration. N Engl J Med 2011; 364(20): 1897-908.
[http://dx.doi.org/10.1056/NEJMoa1102673] [PMID: 21526923]
[16]
Mellstedt H. Monoclonal antibodies in human cancer. Drugs of today (Barcelona, Spain: 1998) 2003; 39: 1-16.
[17]
Piccart-Gebhart MJ, Procter M, Leyland-Jones B, et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med 2005; 353(16): 1659-72.
[http://dx.doi.org/10.1056/NEJMoa052306] [PMID: 16236737]
[18]
Ecker DM, Jones SD, Levine HL. The therapeutic monoclonal antibody market. MAbs 2015; 7(1): 9-14.
[http://dx.doi.org/10.4161/19420862.2015.989042] [PMID: 25529996]
[19]
Perosa F, Favoino E, Caragnano MA, Prete M, Dammacco F. CD20: A target antigen for immunotherapy of autoimmune diseases. Autoimmun Rev 2005; 4(8): 526-31.
[http://dx.doi.org/10.1016/j.autrev.2005.04.004] [PMID: 16214090]
[20]
Prevodnik VK, Lavrenčak J, Horvat M, Novakovič BJ. The predictive significance of CD20 expression in B-cell lymphomas. Diagn Pathol 2011; 6(1): 33-.
[http://dx.doi.org/10.1186/1746-1596-6-33] [PMID: 21486448]
[21]
Pierpont TM, Limper CB, Richards KL. Past, present, and future of rituximab- The world’s first oncology monoclonal antibody therapy. Front Oncol 2018; 8(163): 163.
[http://dx.doi.org/10.3389/fonc.2018.00163] [PMID: 29915719]
[22]
Tilly H, Gomes da Silva M, Vitolo U, et al. Diffuse large B-cell lymphoma (DLBCL): ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2015; 26 (Suppl. 5): v116-25.
[http://dx.doi.org/10.1093/annonc/mdv304] [PMID: 26314773]
[23]
Dreyling M, Ghielmini M, Rule S, Salles G, Vitolo U, Ladetto M. Correction to: Newly diagnosed and relapsed follicular lymphoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2017; 28(12): 3109.
[http://dx.doi.org/10.1093/annonc/mdx020] [PMID: 28327933]
[24]
Eichhorst B. Chronic lymphocytic leukaemia: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2021; 32(1): 23-33.
[PMID: 33091559]
[25]
Coiffier B, Sarkozy C. Diffuse large B-cell lymphoma: R-CHOP failure-What to do? Hematology (Am Soc Hematol Educ Program) 2016; 2016(1): 366-78.
[http://dx.doi.org/10.1182/asheducation-2016.1.366] [PMID: 27913503]
[26]
López-Guillermo A, Canales MÁ, Dlouhy I, et al. A randomized phase II study comparing consolidation with a single dose of 90Y ibritumomab tiuxetan vs. maintenance with rituximab for two years in patients with newly diagnosed follicular lymphoma responding to R-CHOP. Long-term follow-up results. Leuk Lymphoma 2022; 63(1): 93-100.
[http://dx.doi.org/10.1080/10428194.2021.1971216] [PMID: 34459702]
[27]
Giné E, de la Cruz F, Jiménez Ubieto A, et al. Ibrutinib in combination with rituximab for indolent clinical forms of mantle cell lymphoma (IMCL-2015): A multicenter, open-label, single-arm, Phase II trial. J Clin Oncol 2022; 40(11): 1196-205.
[http://dx.doi.org/10.1200/JCO.21.02321] [PMID: 35030036]
[28]
Ollila T, Butera J, Egan P, et al. Vincristine sulfate liposome injection with bendamustine and rituximab as first-line therapy for B-Cell lymphomas: A phase I Study. Oncologist 2022; 27(7): 532-e542.
[http://dx.doi.org/10.1093/oncolo/oyab079] [PMID: 35641232]
[29]
Bond DA, Huang Y, Christian BA, et al. A phase I study of rituximab and buparlisib in patients with relapsed or refractory indolent non-Hodgkin lymphoma. Leuk Lymphoma 2022; 63(7): 1750-3.
[http://dx.doi.org/10.1080/10428194.2022.2034154] [PMID: 35129029]
[30]
Tobinai K, Klein C, Oya N, Fingerle-Rowson G. A review of obinutuzumab (GA101), a novel type II Anti-CD20 monoclonal antibody, for the treatment of patients with B-Cell malignancies. Adv Ther 2017; 34(2): 324-56.
[http://dx.doi.org/10.1007/s12325-016-0451-1] [PMID: 28004361]
[31]
Le Garff-Tavernier M, Decocq J, de Romeuf C, et al. Analysis of CD16+CD56dim NK cells from CLL patients: evidence supporting a therapeutic strategy with optimized anti-CD20 monoclonal antibodies. Leukemia 2011; 25(1): 101-9.
[http://dx.doi.org/10.1038/leu.2010.240] [PMID: 20975664]
[32]
Freeman CL, Morschhauser F, Sehn L, et al. Cytokine release in patients with CLL treated with obinutuzumab and possible relationship with infusion-related reactions. Blood 2015; 126(24): 2646-9.
[http://dx.doi.org/10.1182/blood-2015-09-670802] [PMID: 26447188]
[33]
Ge X, Wu L, Hu W, et al. rILYd4, a human CD59 inhibitor, enhances complement-dependent cytotoxicity of ofatumumab against rituximab-resistant B-cell lymphoma cells and chronic lymphocytic leukemia. Clin Cancer Res 2011; 17(21): 6702-11.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-0647] [PMID: 21918174]
[34]
Marcus R, Davies A, Ando K, et al. Obinutuzumab for the first-line treatment of follicular lymphoma. N Engl J Med 2017; 377(14): 1331-44.
[http://dx.doi.org/10.1056/NEJMoa1614598] [PMID: 28976863]
[35]
Stathis A, Mey U, Schär S, et al. SAKK 35/15: a phase 1 trial of obinutuzumab in combination with venetoclax in patients with previously untreated follicular lymphoma. Blood Adv 2022; 6(13): 3911-20.
[http://dx.doi.org/10.1182/bloodadvances.2021006520] [PMID: 35537101]
[36]
Kesavan M, Zammar G, McQuillan JT, Macdonald WBG, Turner JH, McQuillan AD. Long‐term efficacy and safety of chemotherapy‐free first‐line iodine‐131‐rituximab radioimmunotherapy of follicular lymphoma. Br J Haematol 2022; 196(1): 237-41.
[http://dx.doi.org/10.1111/bjh.17758] [PMID: 34368952]
[37]
Cheson BD. Ofatumumab, a novel anti-CD20 monoclonal antibody for the treatment of B-cell malignancies. J Clin Oncol 2010; 28(21): 3525-30.
[http://dx.doi.org/10.1200/JCO.2010.27.9836] [PMID: 20458041]
[38]
Bologna L, Gotti E, Da Roit F, et al. Ofatumumab is more efficient than rituximab in lysing B chronic lymphocytic leukemia cells in whole blood and in combination with chemotherapy. J Immunol 2013; 190(1): 231-9.
[http://dx.doi.org/10.4049/jimmunol.1202645] [PMID: 23225880]
[39]
Coiffier B, Radford J, Bosly A, et al. A multicentre, phase II trial of ofatumumab monotherapy in relapsed/progressive diffuse large B-cell lymphoma. Br J Haematol 2013; 163(3): 334-42.
[http://dx.doi.org/10.1111/bjh.12537] [PMID: 24032456]
[40]
Matasar MJ, Czuczman MS, Rodriguez MA, et al. Ofatumumab in combination with ICE or DHAP chemotherapy in relapsed or refractory intermediate grade B-cell lymphoma. Blood 2013; 122(4): 499-506.
[http://dx.doi.org/10.1182/blood-2012-12-472027] [PMID: 23692856]
[41]
Sachpekidis C, Jackson DB, Soldatos TG. Radioimmunotherapy in Non-Hodgkin’s Lymphoma: Retrospective adverse event profiling of zevalin and bexxar. Pharmaceuticals (Basel) 2019; 12(4): 141.
[http://dx.doi.org/10.3390/ph12040141] [PMID: 31546999]
[42]
Horning SJ, Younes A, Jain V, et al. Efficacy and safety of tositumomab and iodine-131 tositumomab (Bexxar) in B-cell lymphoma, progressive after rituximab. J Clin Oncol 2005; 23(4): 712-9.
[http://dx.doi.org/10.1200/JCO.2005.07.040] [PMID: 15613695]
[43]
Green DJ, Press OW. Whither radioimmunotherapy: To be or not to be? Cancer Res 2017; 77(9): 2191-6.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-2523] [PMID: 28428282]
[44]
Chow VA, Rajendran JG, Fisher DR, et al. A phase II trial evaluating the efficacy of high‐dose Radioiodinated Tositumomab (Anti‐CD20) antibody, etoposide and cyclophosphamide followed by autologous transplantation, for high‐risk relapsed or refractory non‐hodgkin lymphoma. Am J Hematol 2020; 95(7): 775-83.
[http://dx.doi.org/10.1002/ajh.25818] [PMID: 32243637]
[45]
Iino M, Sakamoto Y, Sato T. Yttrium-90 ibritumomab tiuxetan consolidation versus rituximab maintenance therapy after induction chemotherapy in patients with indolent non-Hodgkin lymphoma: A single-institution experience. Hematology 2019; 24(1): 623-30.
[http://dx.doi.org/10.1080/16078454.2019.1664094] [PMID: 31496425]
[46]
Morschhauser F, Radford J, Van Hoof A, et al. 90Yttrium-ibritumomab tiuxetan consolidation of first remission in advanced-stage follicular non-Hodgkin lymphoma: updated results after a median follow-up of 7.3 years from the International, Randomized, Phase III First-LineIndolent trial. J Clin Oncol 2013; 31(16): 1977-83.
[http://dx.doi.org/10.1200/JCO.2012.45.6400] [PMID: 23547079]
[47]
Morschhauser F, Radford J, Van Hoof A, et al. Phase III trial of consolidation therapy with yttrium-90-ibritumomab tiuxetan compared with no additional therapy after first remission in advanced follicular lymphoma. J Clin Oncol 2008; 26(32): 5156-64.
[http://dx.doi.org/10.1200/JCO.2008.17.2015] [PMID: 18854568]
[48]
Lunning M, Vose J, Nastoupil L, et al. Ublituximab and umbralisib in relapsed/refractory B-cell non-Hodgkin lymphoma and chronic lymphocytic leukemia. Blood 2019; 134(21): 1811-20.
[http://dx.doi.org/10.1182/blood.2019002118] [PMID: 31558467]
[49]
Sawas A, Farber CM, Schreeder MT, et al. A phase 1/2 trial of ublituximab, a novel anti-CD20 monoclonal antibody, in patients with B-cell non-Hodgkin lymphoma or chronic lymphocytic leukaemia previously exposed to rituximab. Br J Haematol 2017; 177(2): 243-53.
[http://dx.doi.org/10.1111/bjh.14534] [PMID: 28220479]
[50]
Ridwansyah H. The potency of radiolabelled monoclonal antibody anti-CD20 as a targeted therapy for B-cell non-Hodgkin lymphoma: A review. Systematic Reviews in Pharmacy 2021; 12(1): 935-47.
[51]
Palomba ML, Till BG, Park SI, et al. Combination of atezolizumab and obinutuzumab in patients with relapsed/refractory follicular lymphoma and diffuse large B‐Cell Lymphoma: Results from a Phase 1b Study. Clin Lymphoma Myeloma Leuk 2022; 22(7): e443-51.
[http://dx.doi.org/10.1016/j.clml.2021.12.010] [PMID: 35031227]
[52]
Murayama K, Kiguchi T, Izutsu K, et al. Bendamustine plus rituximab in Japanese patients with relapsed or refractory diffuse large B-cell lymphoma. Ann Hematol 2022; 101(5): 979-89.
[http://dx.doi.org/10.1007/s00277-022-04801-2] [PMID: 35244756]
[53]
Rule S. Efficacy and safety assessment of prolonged maintenance with subcutaneous rituximab in patients with relapsed or refractory indolent non-Hodgkin lymphoma: results of the phase III MabCute study. haematologica 2022; 107(2): 500.
[54]
Hess G, Hüttmann A, Witzens-Harig M, et al. A phase II trial to evaluate the combination of pixantrone and obinutuzumab for patients with relapsed aggressive lymphoma: Final results of the prospective, multicentre GOAL trial. Br J Haematol 2022; 198(3): 482-91.
[http://dx.doi.org/10.1111/bjh.18161] [PMID: 35362552]
[55]
Wang ML, Jurczak W, Jerkeman M, et al. Ibrutinib plus bendamustine and rituximab in untreated mantle-cell lymphoma. N Engl J Med 2022; 386(26): 2482-94.
[http://dx.doi.org/10.1056/NEJMoa2201817] [PMID: 35657079]
[56]
Wang K, Wei G, Liu D. CD19: a biomarker for B cell development, lymphoma diagnosis and therapy. Exp Hematol Oncol 2012; 1(1): 36.
[http://dx.doi.org/10.1186/2162-3619-1-36] [PMID: 23210908]
[57]
Tedder TF. CD19: a promising B cell target for rheumatoid arthritis. Nat Rev Rheumatol 2009; 5(10): 572-7.
[http://dx.doi.org/10.1038/nrrheum.2009.184] [PMID: 19798033]
[58]
Poe JC, Minard-Colin V, Kountikov EI, Haas KM, Tedder TF. A c-Myc and surface CD19 signaling amplification loop promotes B cell lymphoma development and progression in mice. J Immunol 2012; 189(5): 2318-25.
[http://dx.doi.org/10.4049/jimmunol.1201000] [PMID: 22826319]
[59]
Yang W, Agrawal N, Patel J, et al. Diminished expression of CD19 in B-cell lymphomas. Cytometry B Clin Cytom 2005; 63B(1): 28-35.
[http://dx.doi.org/10.1002/cyto.b.20030] [PMID: 15624204]
[60]
Bukhari A, Lee ST. Blinatumomab: a novel therapy for the treatment of non-Hodgkin’s lymphoma. Expert Rev Hematol 2019; 12(11): 909-18.
[http://dx.doi.org/10.1080/17474086.2019.1676717] [PMID: 31583919]
[61]
Brandl C, Haas C, d’Argouges S, et al. The effect of dexamethasone on polyclonal T cell activation and redirected target cell lysis as induced by a CD19/CD3-bispecific single-chain antibody construct. Cancer Immunol Immunother 2007; 56(10): 1551-63.
[http://dx.doi.org/10.1007/s00262-007-0298-z] [PMID: 17310380]
[62]
Löffler A, Kufer P, Lutterbüse R, et al. A recombinant bispecific single-chain antibody, CD19 × CD3, induces rapid and high lymphoma-directed cytotoxicity by unstimulated T lymphocytes. Blood 2000; 95(6): 2098-103.
[http://dx.doi.org/10.1182/blood.V95.6.2098] [PMID: 10706880]
[63]
Dufner V, Sayehli CM, Chatterjee M, et al. Long-term outcome of patients with relapsed/refractory B-cell non-Hodgkin lymphoma treated with blinatumomab. Blood Adv 2019; 3(16): 2491-8.
[http://dx.doi.org/10.1182/bloodadvances.2019000025] [PMID: 31451445]
[64]
Advani AS, Moseley A, O’Dwyer KM, et al. SWOG 1318: A phase II trial of blinatumomab followed by POMP maintenance in older patients with newly diagnosed philadelphia Chromosome–Negative B-Cell acute lymphoblastic leukemia. J Clin Oncol 2022; 40(14): 1574-82.
[http://dx.doi.org/10.1200/JCO.21.01766] [PMID: 35157496]
[65]
Jabbour EJ, Short NJ, Jain N, et al. Blinatumomab is associated with favorable outcomes in patients with B‐cell lineage acute lymphoblastic leukemia and positive measurable residual disease at a threshold of 10 −4 and higher. Am J Hematol 2022; 97(9): 1135-41.
[http://dx.doi.org/10.1002/ajh.26634] [PMID: 35713551]
[66]
Locatelli F, Eckert C, Hrusak O, et al. Blinatumomab overcomes poor prognostic impact of measurable residual disease in pediatric high‐risk first relapse B‐cell precursor acute lymphoblastic leukemia. Pediatr Blood Cancer 2022; 69(8): e29715.
[http://dx.doi.org/10.1002/pbc.29715] [PMID: 35482538]
[67]
Hoy SM. Tafasitamab: First Approval. Drugs 2020; 80(16): 1731-7.
[68]
Salles G, Duell J, González Barca E, et al. Tafasitamab plus lenalidomide in relapsed or refractory diffuse large B-cell lymphoma (L-MIND): a multicentre, prospective, single-arm, phase 2 study. Lancet Oncol 2020; 21(7): 978-88.
[http://dx.doi.org/10.1016/S1470-2045(20)30225-4] [PMID: 32511983]
[69]
Tilch MK, Robak T, Ghiggi C, et al. Safety of the anti-CD19 antibody tafasitamab in long term responders from A phase II trial for relapsed lymphoma. Clin Lymphoma Myeloma Leuk 2022; 22(4): 270-5.
[http://dx.doi.org/10.1016/j.clml.2021.10.005] [PMID: 34776401]
[70]
Klisovic RB, Leung WH, Brugger W, et al. A phase 2a, single‐arm, open‐label study of tafasitamab, a humanized, Fc‐modified, anti‐CD19 antibody, in patients with relapsed/refractory B‐precursor cell acute lymphoblastic leukemia. Cancer 2021; 127(22): 4190-7.
[http://dx.doi.org/10.1002/cncr.33796] [PMID: 34343354]
[71]
Duell J, Maddocks HJ, Gonzalaz-Barca E, et al. Long-term outcomes from the phase II L-MIND study of tafasitamab (MOR208) plus lenalidomide in patients with relapsed or refractory diffuse large B-cell lymphoma. Haematologica 2021; 106(9): 2417.
[72]
Zammarchi F, Corbett S, Adams L, et al. ADCT-402, a PBD dimer-containing antibody drug conjugate targeting CD19-expressing malignancies. Blood 2018; 131(10): 1094-105.
[http://dx.doi.org/10.1182/blood-2017-10-813493] [PMID: 29298756]
[73]
Abramson JS, Ghosh N, Smith SM. ADCs, BiTEs, CARs, and small molecules: a new era of targeted therapy in non-Hodgkin lymphoma. Am Soc Clin Oncol Educ Book 2020; 40(40): 302-13.
[http://dx.doi.org/10.1200/EDBK_279043] [PMID: 32421455]
[74]
Kahl BS, Hamadani M, Radford J, et al. A Phase I Study of ADCT-402 (Loncastuximab Tesirine), a novel pyrrolobenzodiazepine-based antibody–drug conjugate, in relapsed/refractory b-cell non-hodgkin lymphoma. Clin Cancer Res 2019; 25(23): 6986-94.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-0711] [PMID: 31685491]
[75]
Zinzani PL, Caimi PF, Carlo-Stella C, et al. LOTIS 2 follow‐up analysis: Updated results from a phase 2 study of loncastuximab tesirine in relapsed or refractory diffuse large B‐Cell lymphoma. Hematol Oncol 2021; 39(S2)
[http://dx.doi.org/10.1002/hon.89_2880]
[76]
Hamadani M, Radford J, Carlo-Stella C, et al. Final results of a phase 1 study of loncastuximab tesirine in relapsed/refractory B-cell non-Hodgkin lymphoma. Blood 2021; 137(19): 2634-45.
[http://dx.doi.org/10.1182/blood.2020007512] [PMID: 33211842]
[77]
Caimi PF, Ai W, Alderuccio JP, et al. Loncastuximab tesirine in relapsed or refractory diffuse large B-cell lymphoma (LOTIS-2): a multicentre, open-label, single-arm, phase 2 trial. Lancet Oncol 2021; 22(6): 790-800.
[http://dx.doi.org/10.1016/S1470-2045(21)00139-X] [PMID: 33989558]
[78]
Trnĕný M, Verhoef G, Dyer MJS, et al. A phase II multicenter study of the anti-CD19 antibody drug conjugate coltuximab ravtansine (SAR3419) in patients with relapsed or refractory diffuse large B-cell lymphoma previously treated with rituximab-based immunotherapy. Haematologica 2018; 103(8): 1351-8.
[http://dx.doi.org/10.3324/haematol.2017.168401] [PMID: 29748443]
[79]
Raufi A, Ebrahim AS, Al-Katib A. Targeting CD19 in B-cell lymphoma: emerging role of SAR3419. Cancer Manag Res 2013; 5: 225-33.
[PMID: 24023523]
[80]
Fathi AT, Borate U, DeAngelo DJ, et al. A phase 1 study of denintuzumab mafodotin (sgn-cd19a) in adults with relapsed or refractory b-lineage acute leukemia (b-all) and highly aggressive lymphoma. Blood 2015; 126(23): 1328-8.
[http://dx.doi.org/10.1182/blood.V126.23.1328.1328]
[81]
Moskowitz CH, Fanale MA, Shah BD, et al. A phase 1 study of denintuzumab mafodotin (sgn-cd19a) in relapsed/refactory b-lineage non-hodgkin lymphoma. Blood 2015; 126(23): 182.
[http://dx.doi.org/10.1182/blood.V126.23.182.182]
[82]
Olteanu H, Fenske TS, Harrington AM, Szabo A, He P, Kroft SH. CD23 expression in follicular lymphoma: clinicopathologic correlations. Am J Clin Pathol 2011; 135(1): 46-53.
[http://dx.doi.org/10.1309/AJCP27YWLIQRAJPW] [PMID: 21173123]
[83]
Murray PG, Janmohamed RMI, Crocker J. CD23 expression in non-Hodgkin lymphoma: Immunohistochemical demonstration using the antibody BU38 on paraffin sections. J Pathol 1991; 165(2): 125-8.
[http://dx.doi.org/10.1002/path.1711650207] [PMID: 1744798]
[84]
Ries LAG. SEER Cancer Statistics Review, 1975-2004, National Cancer Institute. Bethesda, MD, based on November 2006 SEER data submission, posted to the SEER web site. 2007. [https://seer.cancer.gov/csr/1975_2004/]
[85]
Pathan NI, Chu P, Hariharan K, Cheney C, Molina A, Byrd J. Mediation of apoptosis by and antitumor activity of lumiliximab in chronic lymphocytic leukemia cells and CD23+ lymphoma cell lines. Blood 2008; 111(3): 1594-602.
[http://dx.doi.org/10.1182/blood-2007-03-082024] [PMID: 18032710]
[86]
Byrd JC, Kipps TJ, Flinn IW, et al. Phase 1/2 study of lumiliximab combined with fludarabine, cyclophosphamide, and rituximab in patients with relapsed or refractory chronic lymphocytic leukemia. Blood 2010; 115(3): 489-95.
[http://dx.doi.org/10.1182/blood-2009-08-237727] [PMID: 19843887]
[87]
Awan FT, Hillmen P, Hellmann A, et al. A randomized, open-label, multicentre, phase 2/3 study to evaluate the safety and efficacy of lumiliximab in combination with fludarabine, cyclophosphamide and rituximab versus fludarabine, cyclophosphamide and rituximab alone in subjects with relapsed ch. Br J Haematol 2014; 167(4): 466-77.
[http://dx.doi.org/10.1111/bjh.13061] [PMID: 25130401]
[88]
Vincenti F, Kirkman R, Light S, et al. Interleukin-2-receptor blockade with daclizumab to prevent acute rejection in renal transplantation. N Engl J Med 1998; 338(3): 161-5.
[http://dx.doi.org/10.1056/NEJM199801153380304] [PMID: 9428817]
[89]
Bielekova B, Catalfamo M, Reichert-Scrivner S, et al. Regulatory CD56 bright natural killer cells mediate immunomodulatory effects of IL-2Rα-targeted therapy (daclizumab) in multiple sclerosis. Proc Natl Acad Sci USA 2006; 103(15): 5941-6.
[http://dx.doi.org/10.1073/pnas.0601335103] [PMID: 16585503]
[90]
Waldmann TA. The structure, function, and expression of interleukin-2 receptors on normal and malignant lymphocytes. Science 1986; 232(4751): 727-32.
[http://dx.doi.org/10.1126/science.3008337] [PMID: 3008337]
[91]
Costa V, Oliva T, Norton L. Successful treatment with daclizumab of refractory anaplastic lymphoma. Pediatr Blood Cancer 2009; 53(6): 1130-1.
[http://dx.doi.org/10.1002/pbc.22177] [PMID: 19598219]
[92]
Study of ADCT-301 in patients with relapsed or refractory Hodgkin and non-Hodgkin lymphoma. 2019.
[93]
Zammarchi F, Havenith K, Bertelli F, Vijayakrishnan B, Chivers S, van Berkel PH. CD25-targeted antibody–drug conjugate depletes regulatory T cells and eliminates established syngeneic tumors via antitumor immunity. J Immunother Cancer 2020; 8(2): e000860.
[http://dx.doi.org/10.1136/jitc-2020-000860] [PMID: 32912922]
[94]
Goldberg AD, Atallah E, Rizzieri D, et al. Camidanlumab tesirine, an antibody-drug conjugate, in relapsed/refractory CD25-positive acute myeloid leukemia or acute lymphoblastic leukemia: A phase I study. Leuk Res 2020; 95: 106385.
[http://dx.doi.org/10.1016/j.leukres.2020.106385] [PMID: 32521310]
[95]
Flynn MJ, Zammarchi F, Tyrer PC, et al. ADCT-301, a pyrrolobenzodiazepine (pbd) dimer–containing antibody–drug conjugate (adc) targeting cd25-expressing hematological malignancies. Mol Cancer Ther 2016; 15(11): 2709-21.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0233] [PMID: 27535974]
[96]
Hamadani M, Collins GP, Caimi PF, et al. Camidanlumab tesirine in patients with relapsed or refractory lymphoma: A phase 1, open-label, multicentre, dose-escalation, dose-expansion study. Lancet Haematol 2021; 8(6): e433-45.
[http://dx.doi.org/10.1016/S2352-3026(21)00103-4] [PMID: 34048682]
[97]
Younes A, Yasothan U, Kirkpatrick P. Kirkpatrick, Brentuximab vedotin. Nat Rev Drug Discov 2012; 11(1) 19.: 20.
[http://dx.doi.org/10.1038/nrd3629]
[98]
Hu S, Xu-Monette ZY, Balasubramanyam A, et al. CD30 expression defines a novel subgroup of diffuse large B-cell lymphoma with favorable prognosis and distinct gene expression signature: a report from the International DLBCL Rituximab-CHOP Consortium Program Study. Blood 2013; 121(14): 2715-24.
[http://dx.doi.org/10.1182/blood-2012-10-461848] [PMID: 23343832]
[99]
Lu TX, Liang JH, Miao Y, et al. Epstein-Barr virus positive diffuse large B-cell lymphoma predict poor outcome, regardless of the age. Sci Rep 2015; 5(1): 12168.
[http://dx.doi.org/10.1038/srep12168] [PMID: 26202875]
[100]
Slack GW, Steidl C, Sehn LH, Gascoyne RD. CD30 expression in de novo diffuse large B-cell lymphoma: A population-based study from British Columbia. Br J Haematol 2014; 167(5): 608-17.
[http://dx.doi.org/10.1111/bjh.13085] [PMID: 25135752]
[101]
Higgins JP, Warnke RA. CD30 expression is common in mediastinal large B-cell lymphoma. Am J Clin Pathol 1999; 112(2): 241-7.
[http://dx.doi.org/10.1093/ajcp/112.2.241] [PMID: 10439805]
[102]
Jacobsen ED, Sharman JP, Oki Y, et al. Brentuximab vedotin demonstrates objective responses in a phase 2 study of relapsed/refractory DLBCL with variable CD30 expression. Blood 2015; 125(9): 1394-402.
[http://dx.doi.org/10.1182/blood-2014-09-598763] [PMID: 25573987]
[103]
Bhatt S, Ashlock BM, Natkunam Y, et al. CD30 targeting with brentuximab vedotin: a novel therapeutic approach to primary effusion lymphoma. Blood 2013; 122(7): 1233-42.
[http://dx.doi.org/10.1182/blood-2013-01-481713] [PMID: 23838350]
[104]
Sandoval-Sus JD, Brahim A, Khan A, Raphael B, Ansari-Lari A, Ruiz M. Brentuximab vedotin as frontline treatment for HIV-related extracavitary primary effusion lymphoma. Int J Hematol 2019; 109(5): 622-6.
[http://dx.doi.org/10.1007/s12185-019-02592-3] [PMID: 30671911]
[105]
Garciaz S, Loschi M, Masson AD, et al. Brentuximab vedotin as a bridge to allogeneic stem-cell transplantation for refractory or relapsing patients with CD30 positive anaplastic or T-cell non-Hodgkin lymphomas: A study on behalf of the SFGM-TC. Leuk Lymphoma 2019; 60(11): 2802-5.
[106]
Berger GK, McBride A, Lawson S, et al. Brentuximab vedotin for treatment of non-Hodgkin lymphomas: A systematic review. Crit Rev Oncol Hematol 2017; 109: 42-50.
[http://dx.doi.org/10.1016/j.critrevonc.2016.11.009] [PMID: 28010897]
[107]
Horwitz SM, O’Connor OA, Pro B, et al. The ECHELON-2 trial: results of a randomized, double-blind, active-controlled phase 3 study of brentuximab vedotin and CHP (A+ CHP) versus CHOP in the frontline treatment of patients with CD30+ peripheral T-cell lymphomas. Blood 2018; 132 (Suppl. 1): 997.
[http://dx.doi.org/10.1182/blood-2018-99-110563]
[108]
Horwitz S, O’Connor OA, Pro B, et al. The ECHELON-2 Trial: 5-year results of a randomized, phase III study of brentuximab vedotin with chemotherapy for CD30-positive peripheral T-cell lymphoma. Ann Oncol 2022; 33(3): 288-98.
[http://dx.doi.org/10.1016/j.annonc.2021.12.002] [PMID: 34921960]
[109]
Horwitz SM, Scarisbrick JJ, Dummer R, et al. Randomized phase 3 ALCANZA study of brentuximab vedotin vs physician’s choice in cutaneous T-cell lymphoma: final data. Blood Adv 2021; 5(23): 5098-106.
[http://dx.doi.org/10.1182/bloodadvances.2021004710] [PMID: 34507350]
[110]
Stein R, Mattes MJ, Cardillo TM, et al. CD74: a new candidate target for the immunotherapy of B-cell neoplasms. Clin Cancer Res 2007; 13(18): 5556s-63s.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-1167] [PMID: 17875789]
[111]
Horvat M, Zadnik V, Južnič Šetina T, et al. Diffuse large B-cell lymphoma: 10�years’ real-world clinical experience with rituximab plus cyclophosphamide, doxorubicin, vincristine and prednisolone. Oncol Lett 2018; 15(3): 3602-9.
[http://dx.doi.org/10.3892/ol.2018.7774] [PMID: 29467881]
[112]
Chen X, Stein R, Chang C-H, Goldenberg DM. Differential effects of milatuzumab on human antigen-presenting cells in comparison to malignant B cells. Blood 2009; 114(22): 2744.
[http://dx.doi.org/10.1182/blood.V114.22.2744.2744]
[113]
Stein R, Qu Z, Cardillo TM, et al. Antiproliferative activity of a humanized anti-CD74 monoclonal antibody, hLL1, on B-cell malignancies. Blood 2004; 104(12): 3705-11.
[http://dx.doi.org/10.1182/blood-2004-03-0890] [PMID: 15297317]
[114]
Alinari L, Yu B, Christian BA, et al. Combination anti-CD74 (milatuzumab) and anti-CD20 (rituximab) monoclonal antibody therapy has in vitro and in vivo activity in mantle cell lymphoma. Blood 2011; 117(17): 4530-41.
[http://dx.doi.org/10.1182/blood-2010-08-303354] [PMID: 21228331]
[115]
Skarbnik AP, Goy AH. Mantle cell lymphoma: state of the art. Clin Adv Hematol Oncol 2015; 13(1): 44-55.
[PMID: 25679973]
[116]
Smith MR, Jin F, Joshi I. Milatuzumab and veltuzumab induce apoptosis through JNK signalling in an NF-κB dependent human transformed follicular lymphoma cell line. Br J Haematol 2014; 165(1): 151-3.
[http://dx.doi.org/10.1111/bjh.12711] [PMID: 24386925]
[117]
Christian BA, Poi M, Jones JA, et al. The combination of milatuzumab, a humanized anti-CD74 antibody, and veltuzumab, a humanized anti-CD20 antibody, demonstrates activity in patients with relapsed and refractory B-cell non-Hodgkin lymphoma. Br J Haematol 2015; 169(5): 701-10.
[http://dx.doi.org/10.1111/bjh.13354] [PMID: 25847298]
[118]
Martin P, Furman RR, Rutherford S, et al. Phase I study of the anti-CD74 monoclonal antibody milatuzumab (hLL1) in patients with previously treated B-cell lymphomas. Leuk Lymphoma 2015; 56(11): 3065-70.
[http://dx.doi.org/10.3109/10428194.2015.1028052] [PMID: 25754579]
[119]
Wright MD, Tomlinson MG. The ins and outs of the transmembrane 4 superfamily. Immunol Today 1994; 15(12): 588-94.
[http://dx.doi.org/10.1016/0167-5699(94)90222-4] [PMID: 7531445]
[120]
Maecker HT, Todd SC, Levy S. The tetraspanin superfamily: molecular facilitators. FASEB J 1997; 11(6): 428-42.
[http://dx.doi.org/10.1096/fasebj.11.6.9194523] [PMID: 9194523]
[121]
Tarrant JM, Robb L, van Spriel AB, Wright MD. Tetraspanins: molecular organisers of the leukocyte surface. Trends Immunol 2003; 24(11): 610-7.
[http://dx.doi.org/10.1016/j.it.2003.09.011] [PMID: 14596886]
[122]
Belov L, de la Vega O, dos Remedios CG, Mulligan SP, Christopherson RI. Immunophenotyping of leukemias using a cluster of differentiation antibody microarray. Cancer Res 2001; 61(11): 4483-9.
[PMID: 11389079]
[123]
Barrena S, Almeida J, Yunta M, et al. Aberrant expression of tetraspanin molecules in B-cell chronic lymphoproliferative disorders and its correlation with normal B-cell maturation. Leukemia 2005; 19(8): 1376-83.
[http://dx.doi.org/10.1038/sj.leu.2403822] [PMID: 15931266]
[124]
van Spriel AB, Puls KL, Sofi M, et al. A regulatory role for CD37 in T cell proliferation. J Immunol 2004; 172(5): 2953-61.
[http://dx.doi.org/10.4049/jimmunol.172.5.2953] [PMID: 14978098]
[125]
Link MP, Bindl J, Meeker TC, et al. A unique antigen on mature B cells defined by a monoclonal antibody. J Immunol 1986; 137(9): 3013-8.
[PMID: 3489782]
[126]
Bertoni F, Stathis A. Staining the target: CD37 expression in lymphomas. Blood 2016; 128(26): 3022-3.
[http://dx.doi.org/10.1182/blood-2016-11-748137] [PMID: 28034866]
[127]
Moore K, Cooper SA, Jones DB. Use of the monoclonal antibody WR17, identifying the CD37 gp40-45 Kd antigen complex, in the diagnosis of B-lymphoid malignancy. J Pathol 1987; 152(1): 13-21.
[http://dx.doi.org/10.1002/path.1711520103] [PMID: 3305845]
[128]
Blakkisrud J, Løndalen A, Dahle J, et al. Red marrow–absorbed dose for non-hodgkin lymphoma patients treated with 177lu-lilotomab satetraxetan, a novel anti-cd37 antibody–radionuclide conjugate. J Nucl Med 2017; 58(1): 55-61.
[http://dx.doi.org/10.2967/jnumed.116.180471] [PMID: 27587710]
[129]
Stokke C, Blakkisrud J, Løndalen A, et al. Pre-dosing with lilotomab prior to therapy with 177Lu-lilotomab satetraxetan significantly increases the ratio of tumor to red marrow absorbed dose in non-Hodgkin lymphoma patients. Eur J Nucl Med Mol Imaging 2018; 45(7): 1233-41.
[http://dx.doi.org/10.1007/s00259-018-3964-9] [PMID: 29470615]
[130]
Blakkisrud J, Holtedahl JE, Løndalen A, et al. Biodistribution and dosimetry results from a phase 1 trial of therapy with the antibody–radionuclide conjugate 177lu-lilotomab satetraxetan. J Nucl Med 2018; 59(4): 704-10.
[http://dx.doi.org/10.2967/jnumed.117.195347] [PMID: 28848035]
[131]
Kolstad A, Madsbu U, Beasley M, et al. 177 Lu-Lilotomab satetraxetan, a novel CD37-targeted antibody-radionuclide conjugate in relapsed non-Hodgkin’s lymphoma (NHL): updated results of an ongoing phase I/II study (LYMRIT 37-01). Blood 2017; 130 (Suppl. 1): 2769-9.
[132]
Kolstad A, Madsbu U, Dahle J, et al. A phase i study of 177 lu-DOTA-HH1 (Betalutin) radioimmunotherapy for patients with relapsed CD37+ Non-Hodgkin’s B cell lymphoma. Blood 2014; 124(21): 3094.
[http://dx.doi.org/10.1182/blood.V124.21.3094.3094]
[133]
Saidi A, Maaland A, Torgue J, Heyerdahl H, Dahle J. Targeted alpha therapy with 212Pb-NNV003 for the treatment of CD37 positive B-cell chronic lymphocytic leukemia (CLL) and non-hodgkin lymphoma (NHL). Blood 2018; 132 (Suppl. 1): 4422-2.
[http://dx.doi.org/10.1182/blood-2018-99-110297]
[134]
Maaland AF, Saidi A, Torgue J, et al. Targeted alpha therapy for chronic lymphocytic leukaemia and non-Hodgkin’s lymphoma with the anti-CD37 radioimmunoconjugate 212Pb-NNV003. PLoS One 2020; 15(3): e0230526.
[http://dx.doi.org/10.1371/journal.pone.0230526] [PMID: 32187209]
[135]
Pereira DS, Guevara CI, Jin L, et al. AGS67E, an anti-CD37 monomethyl auristatin E antibody–drug conjugate as a potential therapeutic for B/T-cell malignancies and AML: a new role for CD37 in AML. Mol Cancer Ther 2015; 14(7): 1650-60.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0067] [PMID: 25934707]
[136]
Sawas A, Savage KJ, Perez RP, et al. A phase 1 study of the anti‐CD37 antibody‐drug conjugate AGS67E in advanced lymphoid malignancies. Interim results. Hematol Oncol 2017; 35: 49-9.
[http://dx.doi.org/10.1002/hon.2437_32]
[137]
Maaland AF, Heyerdahl H, O’Shea A, et al. Targeting B-cell malignancies with the beta-emitting anti-CD37 radioimmunoconjugate 177Lu-NNV003. Eur J Nucl Med Mol Imaging 2019; 46(11): 2311-21.
[http://dx.doi.org/10.1007/s00259-019-04417-1] [PMID: 31309259]
[138]
Balzarotti M, Magagnoli M, Canales MÁ, et al. A phase Ib, open-label, dose-escalation trial of the anti-CD37 monoclonal antibody, BI 836826, in combination with gemcitabine and oxaliplatin in patients with relapsed/refractory diffuse large B-cell lymphoma. Invest New Drugs 2021; 39(4): 1028-35.
[http://dx.doi.org/10.1007/s10637-020-01054-6] [PMID: 33523334]
[139]
Reinherz EL, Kung PC, Goldstein G, Levey RH, Schlossman SF. Discrete stages of human intrathymic differentiation: Analysis of normal thymocytes and leukemic lymphoblasts of T-cell lineage. Proc Natl Acad Sci USA 1980; 77(3): 1588-92.
[http://dx.doi.org/10.1073/pnas.77.3.1588] [PMID: 6966400]
[140]
Cesano A, Visonneau S, Deaglio S, Malavasi F, Santoli D. Role of CD38 and its ligand in the regulation of MHC-nonrestricted cytotoxic T cells. J Immunol 1998; 160(3): 1106-15.
[PMID: 9570523]
[141]
Calabretta E, Carlo-Stella C. The many facets of CD38 in lymphoma: From tumor–microenvironment cell interactions to acquired resistance to immunotherapy. Cells 2020; 9(4): 802.
[http://dx.doi.org/10.3390/cells9040802] [PMID: 32225002]
[142]
Vidal-Crespo A, Matas-Céspedes A, Rodriguez V, et al. Daratumumab displays in vitro and in vivo anti-tumor activity in models of B-cell non-Hodgkin lymphoma and improves responses to standard chemo-immunotherapy regimens. Haematologica 2020; 105(4): 1032-41.
[http://dx.doi.org/10.3324/haematol.2018.211904] [PMID: 31296574]
[143]
McKeage K. Daratumumab: First global approval. Drugs 2016; 76(2): 275-81.
[http://dx.doi.org/10.1007/s40265-015-0536-1] [PMID: 26729183]
[144]
Salles G, Gopal AK, Minnema MC, et al. Phase 2 study of daratumumab in relapsed/refractory mantle-cell lymphoma, diffuse large B-cell lymphoma, and follicular lymphoma. Clin Lymphoma Myeloma Leuk 2019; 19(5): 275-84.
[http://dx.doi.org/10.1016/j.clml.2018.12.013] [PMID: 30795996]
[145]
Huang H, Zhu J, Yao M, et al. Daratumumab monotherapy for patients with relapsed or refractory natural killer/T-cell lymphoma, nasal type: an open-label, single-arm, multicenter, phase 2 study. J Hematol Oncol 2021; 14(1): 25.
[http://dx.doi.org/10.1186/s13045-020-01020-y] [PMID: 33588922]
[146]
Boissel N, Chevallier P, Doronin V, et al. Isatuximab monotherapy in patients with refractory T‐acute lymphoblastic leukemia or T‐lymphoblastic lymphoma: Phase 2 study. Cancer Med 2022; 11(5): 1292-8.
[http://dx.doi.org/10.1002/cam4.4478] [PMID: 35106962]
[147]
Deckert J, Wetzel MC, Bartle LM, et al. SAR650984, a novel humanized CD38-targeting antibody, demonstrates potent antitumor activity in models of multiple myeloma and other CD38+ hematologic malignancies. Clin Cancer Res 2014; 20(17): 4574-83.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-0695] [PMID: 24987056]
[148]
Olejniczak SH, Stewart CC, Donohue K, Czuczman MS. A quantitative exploration of surface antigen expression in common B-cell malignancies using flow cytometry. Immunol Invest 2006; 35(1): 93-114.
[http://dx.doi.org/10.1080/08820130500496878] [PMID: 16531332]
[149]
Cabezudo E, Carrara P, Morilla R, Matutes E. Quantitative analysis of CD79b, CD5 and CD19 in mature B-cell lymphoproliferative disorders. Haematologica 1999; 84(5): 413-8.
[PMID: 10329919]
[150]
Bai RL, Pettit GR, Hamel E. Binding of dolastatin 10 to tubulin at a distinct site for peptide antimitotic agents near the exchangeable nucleotide and vinca alkaloid sites. J Biol Chem 1990; 265(28): 17141-9.
[http://dx.doi.org/10.1016/S0021-9258(17)44880-0] [PMID: 2211617]
[151]
Doronina SO, Toki BE, Torgov MY, et al. Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nat Biotechnol 2003; 21(7): 778-84.
[http://dx.doi.org/10.1038/nbt832] [PMID: 12778055]
[152]
Francisco JA, Cerveny CG, Meyer DL, et al. cAC10-vcMMAE, an anti-CD30–monomethyl auristatin E conjugate with potent and selective antitumor activity. Blood 2003; 102(4): 1458-65.
[http://dx.doi.org/10.1182/blood-2003-01-0039] [PMID: 12714494]
[153]
Palanca-Wessels MCA, Czuczman M, Salles G, et al. Safety and activity of the anti-CD79B antibody–drug conjugate polatuzumab vedotin in relapsed or refractory B-cell non-Hodgkin lymphoma and chronic lymphocytic leukaemia: a phase 1 study. Lancet Oncol 2015; 16(6): 704-15.
[http://dx.doi.org/10.1016/S1470-2045(15)70128-2] [PMID: 25925619]
[154]
Tilly H, Morschhauser F, Bartlett NL, et al. Polatuzumab vedotin in combination with immunochemotherapy in patients with previously untreated diffuse large B-cell lymphoma: an open-label, non-randomised, phase 1b–2 study. Lancet Oncol 2019; 20(7): 998-1010.
[http://dx.doi.org/10.1016/S1470-2045(19)30091-9] [PMID: 31101489]
[155]
Diefenbach C, Kahl BS, McMillan A, et al. Polatuzumab vedotin plus obinutuzumab and lenalidomide in patients with relapsed or refractory follicular lymphoma: a cohort of a multicentre, single-arm, phase 1b/2 study. Lancet Haematol 2021; 8(12): e891-901.
[http://dx.doi.org/10.1016/S2352-3026(21)00311-2] [PMID: 34826412]
[156]
Tilly H, Morschhauser F, Sehn LH, et al. Polatuzumab Vedotin in Previously Untreated Diffuse Large B-Cell Lymphoma. N Engl J Med 2022; 386(4): 351-63.
[http://dx.doi.org/10.1056/NEJMoa2115304] [PMID: 34904799]
[157]
Sehn LH, Kamdar M, Herrera AF, et al. Randomized phase 2 trial of polatuzumab vedotin (pola) with bendamustine and rituximab (BR) in relapsed/refractory (r/r) FL and DLBCL. J Clin Oncol 2018; 36(15_suppl): 7507-7.
[http://dx.doi.org/10.1200/JCO.2018.36.15_suppl.7507]
[158]
Terui Y, Rai S, Izutsu K, et al. A phase 2 study of polatuzumab vedotin + bendamustine + rituximab in relapsed/refractory diffuse large B‐cell lymphoma. Cancer Sci 2021; 112(7): 2845-54.
[http://dx.doi.org/10.1111/cas.14937] [PMID: 33942442]
[159]
Wang YW, Tsai XCH, Hou HA, et al. Polatuzumab vedotin–based salvage immunochemotherapy as third-line or beyond treatment for patients with diffuse large B-cell lymphoma: a real-world experience. Ann Hematol 2022; 101(2): 349-58.
[http://dx.doi.org/10.1007/s00277-021-04711-9] [PMID: 34766217]
[160]
Herrera AF, Patel MR, Burke JM, et al. Anti-CD79B Antibody–Drug Conjugate DCDS0780A in Patients with B-Cell Non-Hodgkin Lymphoma: Phase 1 Dose-Escalation Study. Clin Cancer Res 2022; 28(7): 1294-301.
[http://dx.doi.org/10.1158/1078-0432.CCR-21-3261] [PMID: 34980599]
[161]
Nitschke L, Carsetti R, Ocker B, Köhler G, Lamers MC. CD22 is a negative regulator of B-cell receptor signalling. Curr Biol 1997; 7(2): 133-43.
[http://dx.doi.org/10.1016/S0960-9822(06)00057-1] [PMID: 9016707]
[162]
Walker JA, Smith KGC. CD22: An inhibitory enigma. Immunology 2008; 123(3): 314-25.
[http://dx.doi.org/10.1111/j.1365-2567.2007.02752.x] [PMID: 18067554]
[163]
O’Keefe TL, Williams GT, Davies SL, Neuberger MS. Hyperresponsive B cells in CD22-deficient mice. Science 1996; 274(5288): 798-801.
[http://dx.doi.org/10.1126/science.274.5288.798] [PMID: 8864124]
[164]
Sato S, Miller AS, Inaoki M, et al. CD22 is both a positive and negative regulator of B lymphocyte antigen receptor signal transduction: Altered signaling in CD22-deficient mice. Immunity 1996; 5(6): 551-62.
[http://dx.doi.org/10.1016/S1074-7613(00)80270-8] [PMID: 8986715]
[165]
Tuscano J, Engel P, Tedder TF, Kehrl JH. Engagement of the adhesion receptor CD22 triggers a potent stimulatory signal for B cells and blocking CD22/CD22L interactions impairs T-cell proliferation. Blood 1996; 87(11): 4723-30.
[http://dx.doi.org/10.1182/blood.V87.11.4723.bloodjournal87114723] [PMID: 8639842]
[166]
Garrett M, Ruiz-Garcia A, Parivar K, Hee B, Boni J. Population pharmacokinetics of inotuzumab ozogamicin in relapsed/refractory acute lymphoblastic leukemia and non-Hodgkin lymphoma. J Pharmacokinet Pharmacodyn 2019; 46(3): 211-22.
[http://dx.doi.org/10.1007/s10928-018-9614-9] [PMID: 30859374]
[167]
Bouchard H, Viskov C, Garcia-Echeverria C. Antibody–drug conjugates—A new wave of cancer drugs. Bioorg Med Chem Lett 2014; 24(23): 5357-63.
[http://dx.doi.org/10.1016/j.bmcl.2014.10.021] [PMID: 25455482]
[168]
Goy A, Forero A, Wagner-Johnston N, et al. A phase 2 study of inotuzumab ozogamicin in patients with indolent B-cell non-Hodgkin lymphoma refractory to rituximab alone, rituximab and chemotherapy, or radioimmunotherapy. Br J Haematol 2016; 174(4): 571-81.
[http://dx.doi.org/10.1111/bjh.14094] [PMID: 27101934]
[169]
Ogura M, Tobinai K, Hatake K, et al. Phase I study of inotuzumab ozogamicin combined with R-CVP for relapsed/refractory CD22+ b-cell non-hodgkin lymphoma. Clin Cancer Res 2016; 22(19): 4807-16.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-2488] [PMID: 27154915]
[170]
Dang NH, Ogura M, Castaigne S, et al. Randomized, phase 3 trial of inotuzumab ozogamicin plus rituximab versus chemotherapy plus rituximab for relapsed/refractory aggressive B-cell non-Hodgkin lymphoma. Br J Haematol 2018; 182(4): 583-6.
[http://dx.doi.org/10.1111/bjh.14820] [PMID: 28677896]
[171]
Pirosa MC, Zhang L, Hitz F, et al. A phase I trial of inotuzumab ozogamicin in combination with temsirolimus in patients with relapsed or refractory CD22-positive B-cell non-Hodgkin lymphomas. Leuk Lymphoma 2022; 63(1): 117-23.
[http://dx.doi.org/10.1080/10428194.2021.1966780] [PMID: 34407735]
[172]
Daridon C, Blassfeld D, Reiter K, et al. Epratuzumab targeting of CD22 affects adhesion molecule expression and migration of B-cells in systemic lupus erythematosus. Arthritis Res Ther 2010; 12(6): R204.
[http://dx.doi.org/10.1186/ar3179] [PMID: 21050432]
[173]
Grant BW, Jung SH, Johnson JL, et al. A phase 2 trial of extended induction epratuzumab and rituximab for previously untreated follicular lymphoma: CALGB 50701. Cancer 2013; 119(21): 3797-804.
[http://dx.doi.org/10.1002/cncr.28299] [PMID: 23922187]
[174]
Griffiths GL, Govindan SV, Sharkey RM, Fisher DR, Goldenberg DM. 90Y-DOTA-hLL2: an agent for radioimmunotherapy of non-Hodgkin’s lymphoma. J Nucl Med 2003; 44(1): 77-84.
[PMID: 12515879]
[175]
Kraeber-Bodere F, Pallardy A, Maisonneuve H, et al. Consolidation anti-CD22 fractionated radioimmunotherapy with 90 Y-epratuzumab tetraxetan following R-CHOP in elderly patients with diffuse large B-cell lymphoma: A prospective, single group, phase 2 trial. Lancet Haematol 2017; 4(1): e35-45.
[http://dx.doi.org/10.1016/S2352-3026(16)30168-5] [PMID: 27964867]
[176]
Advani RH, Lebovic D, Chen A, et al. Phase I study of the anti-CD22 antibody–drug conjugate pinatuzumab vedotin with/without rituximab in patients with relapsed/refractory B-cell non-Hodgkin lymphoma. Clin Cancer Res 2017; 23(5): 1167-76.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-0772] [PMID: 27601593]
[177]
Morschhauser F, Flinn IW, Advani R, et al. Polatuzumab vedotin or pinatuzumab vedotin plus rituximab in patients with relapsed or refractory non-Hodgkin lymphoma: final results from a phase 2 randomised study (ROMULUS). Lancet Haematol 2019; 6(5): e254-65.
[http://dx.doi.org/10.1016/S2352-3026(19)30026-2] [PMID: 30935953]
[178]
Lindén O, Bates AT, Cunningham D, et al. 227 Th-labeled anti-CD22 antibody (bay 1862864) in relapsed/refractory cd22-positive non-hodgkin lymphoma: A first-in-human, phase I study. Cancer Biother Radiopharm 2021; 36(8): 672-81.
[http://dx.doi.org/10.1089/cbr.2020.4653] [PMID: 33887152]
[179]
Law CL, Grewal IS. Therapeutic interventions targeting CD40L (CD154) and CD40: the opportunities and challenges. Adv Exp Med Biol 2009; 647: 8-36.
[http://dx.doi.org/10.1007/978-0-387-89520-8_2] [PMID: 19760064]
[180]
van Kooten C, Banchereau J. CD40-CD40 ligand. J Leukoc Biol 2000; 67(1): 2-17.
[http://dx.doi.org/10.1002/jlb.67.1.2] [PMID: 10647992]
[181]
Chatzigeorgiou A, Lyberi M, Chatzilymperis G, Nezos A, Kamper E. CD40/CD40L signaling and its implication in health and disease. Biofactors 2009; 35(6): 474-83.
[http://dx.doi.org/10.1002/biof.62] [PMID: 19904719]
[182]
Law CL, Gordon KA, Collier J, et al. Preclinical antilymphoma activity of a humanized anti-CD40 monoclonal antibody, SGN-40. Cancer Res 2005; 65(18): 8331-8.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-0095] [PMID: 16166310]
[183]
de Vos S, Forero-Torres A, Ansell SM, et al. A phase II study of dacetuzumab (SGN-40) in patients with relapsed diffuse large B-cell lymphoma (DLBCL) and correlative analyses of patient-specific factors. J Hematol Oncol 2014; 7(1): 44.
[http://dx.doi.org/10.1186/1756-8722-7-44] [PMID: 24919462]
[184]
Fayad L, Ansell SM, Advani R, et al. Dacetuzumab plus rituximab, ifosfamide, carboplatin and etoposide as salvage therapy for patients with diffuse large B-cell lymphoma relapsing after rituximab, cyclophosphamide, doxorubicin, vincristine and prednisolone: a randomized, double-blind, placebo-controlled phase 2b trial. Leuk Lymphoma 2015; 56(9): 2569-78.
[http://dx.doi.org/10.3109/10428194.2015.1007504] [PMID: 25651427]
[185]
Luqman M, Klabunde S, Lin K, et al. The antileukemia activity of a human anti-CD40 antagonist antibody, HCD122, on human chronic lymphocytic leukemia cells. Blood 2008; 112(3): 711-20.
[http://dx.doi.org/10.1182/blood-2007-04-084756] [PMID: 18497318]
[186]
Fanale M, Assouline S, Kuruvilla J, et al. Phase IA/II, multicentre, open-label study of the CD40 antagonistic monoclonal antibody lucatumumab in adult patients with advanced non-Hodgkin or Hodgkin lymphoma. Br J Haematol 2014; 164(2): 258-65.
[http://dx.doi.org/10.1111/bjh.12630] [PMID: 24219359]
[187]
Coyle AJ, Gutierrez-Ramos JC. The expanding B7 superfamily: Increasing complexity in costimulatory signals regulating T cell function. Nat Immunol 2001; 2(3): 203-9.
[http://dx.doi.org/10.1038/85251] [PMID: 11224518]
[188]
Suvas S, Singh V, Sahdev S, Vohra H, Agrewala JN. Distinct role of CD80 and CD86 in the regulation of the activation of B cell and B cell lymphoma. J Biol Chem 2002; 277(10): 7766-75.
[http://dx.doi.org/10.1074/jbc.M105902200] [PMID: 11726649]
[189]
Munro JM, Freedman AS, Aster JC, et al. In vivo expression of the B7 costimulatory molecule by subsets of antigen-presenting cells and the malignant cells of Hodgkin’s disease. Blood 1994; 83(3): 793-8.
[http://dx.doi.org/10.1182/blood.V83.3.793.793] [PMID: 7507734]
[190]
Vyth-Dreese FA, Dellemijn TAM, Majoor D, de Jong D. Localizationin situ of the co-stimulatory molecules B7.1, B7.2, CD40 and their ligands in normal human lymphoid tissue. Eur J Immunol 1995; 25(11): 3023-9.
[http://dx.doi.org/10.1002/eji.1830251106] [PMID: 7489738]
[191]
Dorfman DM, Schultze JL, Shahsafaei A, et al. In vivo expression of B7-1 and B7-2 by follicular lymphoma cells can prevent induction of T-cell anergy but is insufficient to induce significant T-cell proliferation. Blood 1997; 90(11): 4297-306.
[http://dx.doi.org/10.1182/blood.V90.11.4297] [PMID: 9373240]
[192]
Bhat S, Czuczman MS. Galiximab: a review. Expert Opin Biol Ther 2010; 10(3): 451-8.
[http://dx.doi.org/10.1517/14712591003596318] [PMID: 20092425]
[193]
Czuczman MS, Leonard JP, Jung S, et al. Phase II trial of galiximab (anti-CD80 monoclonal antibody) plus rituximab (CALGB 50402): Follicular Lymphoma International Prognostic Index (FLIPI) score is predictive of upfront immunotherapy responsiveness. Ann Oncol 2012; 23(9): 2356-62.
[http://dx.doi.org/10.1093/annonc/mdr620] [PMID: 22357442]
[194]
Chester C, Sanmamed MF, Wang J, Melero I. Immunotherapy targeting 4-1BB: mechanistic rationale, clinical results, and future strategies. Blood 2018; 131(1): 49-57.
[http://dx.doi.org/10.1182/blood-2017-06-741041] [PMID: 29118009]
[195]
Zapata JM, Perez-Chacon G, Carr-Baena P, et al. CD137 (4-1BB) Signalosome: Complexity Is a Matter of TRAFs. Front Immunol 2018; 9: 2618.
[http://dx.doi.org/10.3389/fimmu.2018.02618] [PMID: 30524423]
[196]
Segal NH, Logan TF, Hodi FS, et al. Results from an integrated safety analysis of urelumab, an agonist anti-CD137 monoclonal antibody. Clin Cancer Res 2017; 23(8): 1929-36.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-1272] [PMID: 27756788]
[197]
Timmerman J, Herbaux C, Ribrag V, et al. Urelumab alone or in combination with rituximab in patients with relapsed or refractory B‐cell lymphoma. Am J Hematol 2020; 95(5): 510-20.
[http://dx.doi.org/10.1002/ajh.25757] [PMID: 32052473]
[198]
Fisher TS, Kamperschroer C, Oliphant T, et al. Targeting of 4-1BB by monoclonal antibody PF-05082566 enhances T-cell function and promotes anti-tumor activity. Cancer Immunol Immunother 2012; 61(10): 1721-33.
[http://dx.doi.org/10.1007/s00262-012-1237-1] [PMID: 22406983]
[199]
Chin SM, Kimberlin CR, Roe-Zurz Z, et al. Structure of the 4-1BB/4-1BBL complex and distinct binding and functional properties of utomilumab and urelumab. Nat Commun 2018; 9(1): 4679.
[http://dx.doi.org/10.1038/s41467-018-07136-7] [PMID: 30410017]
[200]
Segal NH, He AR, Doi T, et al. Phase I study of single-agent utomilumab (PF-05082566), a 4-1BB/CD137 agonist, in patients with advanced cancer. Clin Cancer Res 2018; 24(8): 1816-23.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-1922] [PMID: 29549159]
[201]
Gopal AK, Levy R, Houot R, et al. First-in-human study of utomilumab, a 4-1BB/CD137 agonist, in combination with rituximab in patients with follicular and other CD20+ non-hodgkin lymphomas. Clin Cancer Res 2020; 26(11): 2524-34.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-2973] [PMID: 32144134]
[202]
Domagała A, Kurpisz M. CD52 antigen-A review. Med Sci Monit 2001; 7(2): 325-31.
[PMID: 11257744]
[203]
Giles FJ, Vose JM, Do KA, et al. Circulating CD20 and CD52 in patients with non-Hodgkin’s lymphoma or Hodgkin’s disease. Br J Haematol 2003; 123(5): 850-7.
[http://dx.doi.org/10.1046/j.1365-2141.2003.04683.x] [PMID: 14632776]
[204]
Ravandi F, O’Brien S. Alemtuzumab in CLL and other lymphoid neoplasms. Cancer Invest 2006; 24(7): 718-25.
[http://dx.doi.org/10.1080/07357900600981414] [PMID: 17118783]
[205]
Cruz RI, Hernandez-Ilizaliturri FJ, Olejniczak S, et al. CD52 over-expression affects rituximab-associated complement-mediated cytotoxicity but not antibody-dependent cellular cytotoxicity: Preclinical evidence that targeting CD52 with alemtuzumab may reverse acquired resistance to rituximab in non-Hodgkin lymphoma. Leuk Lymphoma 2007; 48(12): 2424-36.
[http://dx.doi.org/10.1080/10428190701647879] [PMID: 18067019]
[206]
Wulf GG, Altmann B, Ziepert M, et al. Alemtuzumab plus CHOP versus CHOP in elderly patients with peripheral T-cell lymphoma: the DSHNHL2006-1B/ACT-2 trial. Leukemia 2021; 35(1): 143-55.
[http://dx.doi.org/10.1038/s41375-020-0838-5] [PMID: 32382083]
[207]
Jørgensen JM, Sørensen FB, Bendix K, et al. Angiogenesis in non-Hodgkin’s lymphoma: Clinico-pathological correlations and prognostic significance in specific subtypes. Leuk Lymphoma 2007; 48(3): 584-95.
[http://dx.doi.org/10.1080/10428190601083241] [PMID: 17454603]
[208]
Yang J, Li W, He X, Zhang G, Yue L, Chai Y. VEGF overexpression is a valuable prognostic factor for non-Hodgkin’s lymphoma evidence from a systemic meta-analysis. Dis Markers 2015; 2015: 1-9.
[http://dx.doi.org/10.1155/2015/786790] [PMID: 25810565]
[209]
Bertolini F, Paolucci M, Peccatori F, et al. Angiogenic growth factors and endostatin in non-Hodgkin’s lymphoma. Br J Haematol 1999; 106(2): 504-9.
[http://dx.doi.org/10.1046/j.1365-2141.1999.01547.x] [PMID: 10460612]
[210]
Doussis‐Anagnostopoulou IA, Talks KL, Turley H, et al. Vascular endothelial growth factor (VEGF) is expressed by neoplastic Hodgkin–Reed–Sternberg cells in Hodgkin’s disease. J Pathol 2002; 197(5): 677-83.
[211]
Salven P, Orpana A, Teerenhovi L, Joensuu H. Simultaneous elevation in the serum concentrations of the angiogenic growth factors VEGF and bFGF is an independent predictor of poor prognosis in non-Hodgkin lymphoma: A single-institution study of 200 patients. Blood 2000; 96(12): 3712-8.
[http://dx.doi.org/10.1182/blood.V96.12.3712] [PMID: 11090051]
[212]
Salven P, Teerenhovi L, Joensuu H. A high pretreatment serum vascular endothelial growth factor concentration is associated with poor outcome in non-Hodgkin’s lymphoma. Blood 1997; 90(8): 3167-72.
[http://dx.doi.org/10.1182/blood.V90.8.3167] [PMID: 9376599]
[213]
Kuramoto K, Sakai A, Shigemasa K, et al. High expression of MCL1 gene related to vascular endothelial growth factor is associated with poor outcome in non-Hodgkin’s lymphoma. Br J Haematol 2002; 116(1): 158-61.
[http://dx.doi.org/10.1046/j.1365-2141.2002.03253.x] [PMID: 11841410]
[214]
Zhao WL, Mourah S, Mounier N, et al. Vascular endothelial growth factor-A is expressed both on lymphoma cells and endothelial cells in angioimmunoblastic T-cell lymphoma and related to lymphoma progression. Lab Invest 2004; 84(11): 1512-9.
[http://dx.doi.org/10.1038/labinvest.3700145] [PMID: 15311211]
[215]
FDA, AVASTIN® (bevacizumab) Solution for intravenous infusion Initial U.S. Approval: 2004 2008.
[216]
Kazazi-Hyseni F, Beijnen JH, Schellens JHM. Bevacizumab. Oncologist 2010; 15(8): 819-25.
[http://dx.doi.org/10.1634/theoncologist.2009-0317] [PMID: 20688807]
[217]
Hainsworth JD, Greco FA, Raefsky EL, et al. Rituximab with or without bevacizumab for the treatment of patients with relapsed follicular lymphoma. Clin Lymphoma Myeloma Leuk 2014; 14(4): 277-83.
[http://dx.doi.org/10.1016/j.clml.2014.02.010] [PMID: 24679633]
[218]
Stopeck AT, Unger JM, Rimsza LM, et al. A phase 2 trial of standard-dose cyclophosphamide, doxorubicin, vincristine, prednisone (CHOP) and rituximab plus bevacizumab for patients with newly diagnosed diffuse large B-cell non-Hodgkin lymphoma: SWOG 0515. Blood 2012; 120(6): 1210-7.
[http://dx.doi.org/10.1182/blood-2012-04-423079] [PMID: 22734071]
[219]
Seymour JF, Pfreundschuh M, Trnĕný M, et al. R-CHOP with or without bevacizumab in patients with previously untreated diffuse large B-cell lymphoma: final MAIN study outcomes. Haematologica 2014; 99(8): 1343-9.
[http://dx.doi.org/10.3324/haematol.2013.100818] [PMID: 24895339]
[220]
Ganjoo K, Ganjoo K, Hong F, Horning S, et al. Bevacizumab and CHOP (a-CHOP) in combination for patients with peripheral T-cell or natural killer cell neoplasms: An Eastern Cooperative group study (E2404). Leuk Lymphoma 2014; 55(4): 768.
[http://dx.doi.org/10.3109/10428194.2013.816700] [PMID: 23786456]
[221]
Ruan J, Gregory SA, Christos P, et al. Long-term follow-up of R-CHOP with bevacizumab as initial therapy for mantle cell lymphoma: clinical and correlative results. Clin Lymphoma Myeloma Leuk 2014; 14(2): 107-13.
[http://dx.doi.org/10.1016/j.clml.2013.10.002] [PMID: 24373788]
[222]
Wang L, Peng S, Sun W, Liu X. Retracted: Bevacizumab synergises with the BCL 2 inhibitor venetoclax to effectively treat B‐cell non‐Hodgkin’s lymphoma. Eur J Haematol 2019; 103(3): 234-46.
[http://dx.doi.org/10.1111/ejh.13279] [PMID: 31211886]
[223]
Wang L, et al. Bevacizumab potentiates chemotherapeutic effect on T-leukemia/lymphoma cells by direct action on tumor endothelial cells. haematologica 2011; 96(6): 927-3.
[224]
Nieto K, Gordon LI, Raizer J. Bevacizumab for recurrent primary central nervous system lymphoma: A new treatment? Neuro-oncol 2015; 17(12): 1648-9.
[http://dx.doi.org/10.1093/neuonc/nov246] [PMID: 26541631]
[225]
Francisco LM, Sage PT, Sharpe AH. The PD-1 pathway in tolerance and autoimmunity. Immunol Rev 2010; 236(1): 219-42.
[http://dx.doi.org/10.1111/j.1600-065X.2010.00923.x] [PMID: 20636820]
[226]
Sharma P, Allison JP. The future of immune checkpoint therapy. Science 2015; 348(6230): 56-61.
[http://dx.doi.org/10.1126/science.aaa8172] [PMID: 25838373]
[227]
Krempski J, Karyampudi L, Behrens MD, et al. Tumor-infiltrating programmed death receptor-1+ dendritic cells mediate immune suppression in ovarian cancer. J Immunol 2011; 186(12): 6905-13.
[http://dx.doi.org/10.4049/jimmunol.1100274] [PMID: 21551365]
[228]
Agata Y, Kawasaki A, Nishimura H, et al. Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int Immunol 1996; 8(5): 765-72.
[http://dx.doi.org/10.1093/intimm/8.5.765] [PMID: 8671665]
[229]
Inman BA, Sebo TJ, Frigola X, et al. PD-L1 (B7-H1) expression by urothelial carcinoma of the bladder and BCG-induced granulomata. Cancer 2007; 109(8): 1499-505.
[http://dx.doi.org/10.1002/cncr.22588] [PMID: 17340590]
[230]
Matsuzaki J, Gnjatic S, Mhawech-Fauceglia P, et al. Tumor-infiltrating NY-ESO-1–specific CD8 + T cells are negatively regulated by LAG-3 and PD-1 in human ovarian cancer. Proc Natl Acad Sci USA 2010; 107(17): 7875-80.
[http://dx.doi.org/10.1073/pnas.1003345107] [PMID: 20385810]
[231]
Sun S, Fei X, Mao Y, et al. PD-1+ immune cell infiltration inversely correlates with survival of operable breast cancer patients. Cancer Immunol Immunother 2014; 63(4): 395-406.
[http://dx.doi.org/10.1007/s00262-014-1519-x] [PMID: 24514954]
[232]
Ahmadzadeh M, Johnson LA, Heemskerk B, et al. Tumor antigen–specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood 2009; 114(8): 1537-44.
[http://dx.doi.org/10.1182/blood-2008-12-195792] [PMID: 19423728]
[233]
Qin T, Zeng Y, Qin G, et al. High PD-L1 expression was associated with poor prognosis in 870 Chinese patients with breast cancer. Oncotarget 2015; 6(32): 33972-81.
[http://dx.doi.org/10.18632/oncotarget.5583] [PMID: 26378017]
[234]
Hude I, Sasse S, Engert A, Bröckelmann PJ. The emerging role of immune checkpoint inhibition in malignant lymphoma. Haematologica 2017; 102(1): 30-42.
[http://dx.doi.org/10.3324/haematol.2016.150656] [PMID: 27884973]
[235]
Balar AV, Weber JS. PD-1 and PD-L1 antibodies in cancer: current status and future directions. Cancer Immunol Immunother 2017; 66(5): 551-64.
[http://dx.doi.org/10.1007/s00262-017-1954-6] [PMID: 28213726]
[236]
Brahmer JR, Tykodi SS, Chow LQM, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 2012; 366(26): 2455-65.
[http://dx.doi.org/10.1056/NEJMoa1200694] [PMID: 22658128]
[237]
Cao Y, Lu W, Sun R, et al. Anti-CD19 chimeric antigen receptor T cells in combination with nivolumab are safe and effective against relapsed/refractory B-cell non-Hodgkin lymphoma. Front Oncol 2019; 9: 767.
[http://dx.doi.org/10.3389/fonc.2019.00767] [PMID: 31482064]
[238]
Armand P, Janssens A, Gritti G, et al. Efficacy and safety results from CheckMate 140, a phase 2 study of nivolumab for relapsed/refractory follicular lymphoma. Blood 2021; 137(5): 637-45.
[http://dx.doi.org/10.1182/blood.2019004753] [PMID: 32870269]
[239]
Younes A, Brody J, Carpio C, et al. Safety and activity of ibrutinib in combination with nivolumab in patients with relapsed non-Hodgkin lymphoma or chronic lymphocytic leukaemia: a phase 1/2a study. Lancet Haematol 2019; 6(2): e67-78.
[http://dx.doi.org/10.1016/S2352-3026(18)30217-5] [PMID: 30642819]
[240]
Hanel W, Christian BA, Maddocks KJ, et al. A Phase 2 trial of ibrutinib and nivolumab in patients with relapsed or refractory classical hodgkin’s lymphoma. Blood 2020; 136 (Suppl. 1): 29.
[http://dx.doi.org/10.1182/blood-2020-141243]
[241]
Chong EA, Svoboda J, Dwivedy Nasta S, et al. Sequential anti-cd19 directed chimeric antigen receptor modified t-cell therapy (CART19) and PD-1 blockade with pembrolizumab in patients with relapsed or refractory B-Cell Non-hodgkin lymphomas. Blood 2018; 132 (Suppl. 1): 4198-8.
[http://dx.doi.org/10.1182/blood-2018-99-119502]
[242]
Chong EA, Alanio C, Svoboda J, et al. Pembrolizumab for B-cell lymphomas relapsing after or refractory to CD19-directed CAR T-cell therapy. Blood 2022; 139(7): 1026-38.
[http://dx.doi.org/10.1182/blood.2021012634] [PMID: 34496014]
[243]
Nastoupil LJ, Chin CK, Westin JR, et al. Safety and activity of pembrolizumab in combination with rituximab in relapsed or refractory follicular lymphoma. Blood Adv 2022; 6(4): 1143-51.
[http://dx.doi.org/10.1182/bloodadvances.2021006240] [PMID: 35015819]
[244]
Geoerger B, Zwaan CM, Marshall LV, et al. Atezolizumab for children and young adults with previously treated solid tumours, non-Hodgkin lymphoma, and Hodgkin lymphoma (iMATRIX): A multicentre phase 1–2 study. Lancet Oncol 2020; 21(1): 134-44.
[http://dx.doi.org/10.1016/S1470-2045(19)30693-X] [PMID: 31780255]
[245]
Hutchings M, Gritti G, Sureda A, et al. CD20-TCB, a novel t-cell-engaging bispecific antibody, can be safely combined with the Anti-PD-L1 antibody atezolizumab in relapsed or refractory b-cell non-hodgkin lymphoma. Blood 2019; 134 (Suppl. 1): 2871-1.
[http://dx.doi.org/10.1182/blood-2019-123978]
[246]
Morschhauser F, Ghosh N, Lossos IS, et al. Obinutuzumab-atezolizumab-lenalidomide for the treatment of patients with relapsed/refractory follicular lymphoma: final analysis of a Phase Ib/II trial. Blood Cancer J 2021; 11(8): 147.
[http://dx.doi.org/10.1038/s41408-021-00539-8] [PMID: 34417444]
[247]
Palomba ML, Cartron G, Popplewell L, et al. Combination of atezolizumab and tazemetostat in patients with relapsed/refractory diffuse large b-cell lymphoma: Results from a phase IB study. Clin Lymphoma Myeloma Leuk 2022; 22(7): 504-12.
[http://dx.doi.org/10.1016/j.clml.2021.12.014] [PMID: 35151584]
[248]
Ibrahim R, Stewart R, Shalabi A. PD-L1 blockade for cancer treatment: MEDI4736. Semin Oncol 2015; 42(3): 474-83.
[http://dx.doi.org/10.1053/j.seminoncol.2015.02.007] [PMID: 25965366]
[249]
Siddiqi T, Abramson JS, Lee HJ, et al. Safety of lisocabtagene maraleucel given with durvalumab in patients with relapsed/refractory aggressive b-cell non hodgkin lymphoma: First results from the platform study. Hematol Oncol 2019; 37(S2): 171-2.
[http://dx.doi.org/10.1002/hon.128_2629]
[250]
Hirayama AV, Gauthier J, Hay KA, et al. Efficacy and toxicity of JCAR014 in combination with durvalumab for the treatment of patients with relapsed/refractory aggressive b-cell non-hodgkin lymphoma. Blood 2018; 132 (Suppl. 1): 1680-0.
[http://dx.doi.org/10.1182/blood-2018-99-116745]
[251]
Tao R, Fan L, Song Y, et al. Sintilimab for relapsed/refractory extranodal NK/T cell lymphoma: a multicenter, single-arm, phase 2 trial (ORIENT-4). Signal transduction and targeted therapy. Nature 2021; 6(1): 1-7.
[252]
Shi Y, Wu J, Wang Z, et al. Efficacy and safety of geptanolimab (GB226) for relapsed or refractory peripheral T cell lymphoma: An open-label phase 2 study (Gxplore-002). J Hematol Oncol 2021; 14(1): 12.
[http://dx.doi.org/10.1186/s13045-021-01033-1] [PMID: 33436023]
[253]
Hawkes EA, Phillips T, Budde LE, et al. Avelumab in combination regimens for relapsed/refractory DLBCL: Results from the Phase Ib JAVELIN DLBCL Study. Target Oncol 2021; 16(6): 761-71.
[http://dx.doi.org/10.1007/s11523-021-00849-8] [PMID: 34687398]
[254]
Shinkawa T, Nakamura K, Yamane N, et al. The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. J Biol Chem 2003; 278(5): 3466-73.
[http://dx.doi.org/10.1074/jbc.M210665200] [PMID: 12427744]
[255]
Yoshie O, Matsushima K. CCR4 and its ligands: From bench to bedside. Int Immunol 2015; 27(1): 11-20.
[http://dx.doi.org/10.1093/intimm/dxu079] [PMID: 25087232]
[256]
Ollila TA, Sahin I, Olszewski AJ. Mogamulizumab: A new tool for management of cutaneous T-cell lymphoma. OncoTargets Ther 2019; 12: 1085-94.
[http://dx.doi.org/10.2147/OTT.S165615] [PMID: 30799938]
[257]
Ni X, Jorgensen JL, Goswami M, et al. Reduction of regulatory T cells by Mogamulizumab, a defucosylated anti-CC chemokine receptor 4 antibody, in patients with aggressive/refractory mycosis fungoides and Sézary syndrome. Clin Cancer Res 2015; 21(2): 274-85.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-0830] [PMID: 25376389]
[258]
Porcu P, Hudgens S, Horwitz S, et al. Quality of life effect of the Anti-CCR4 monoclonal antibody mogamulizumab versus vorinostat in patients with cutaneous t-cell lymphoma. Clin Lymphoma Myeloma Leuk 2021; 21(2): 97-105.
[http://dx.doi.org/10.1016/j.clml.2020.09.003] [PMID: 33158772]
[259]
Horwitz S, Zinzani PL, Bagot M, et al. Lack of impact of type and extent of prior therapy on outcomes of mogamulizumab therapy in patients with cutaneous T cell lymphoma in the MAVORIC trial. Leuk Lymphoma 2021; 62(13): 3109-18.
[http://dx.doi.org/10.1080/10428194.2021.1953007] [PMID: 34304674]
[260]
Kim YH, Bagot M, Pinter-Brown L, et al. Mogamulizumab versus vorinostat in previously treated cutaneous T-cell lymphoma (MAVORIC): an international, open-label, randomised, controlled phase 3 trial. Lancet Oncol 2018; 19(9): 1192-204.
[http://dx.doi.org/10.1016/S1470-2045(18)30379-6] [PMID: 30100375]
[261]
Fuji S, Inoue Y, Utsunomiya A, et al. Pretransplantation anti-CCR4 antibody mogamulizumab against adult T-cell leukemia/lymphoma is associated with significantly increased risks of severe and corticosteroid-refractory graft-versus-host disease, nonrelapse mortality, and overall mortality. J Clin Oncol 2016; 34(28): 3426-33.
[http://dx.doi.org/10.1200/JCO.2016.67.8250] [PMID: 27507878]
[262]
Makita S, Tobinai K. Mogamulizumab for the treatment of T-cell lymphoma. Expert Opin Biol Ther 2017; 17(9): 1145-53.
[http://dx.doi.org/10.1080/14712598.2017.1347634] [PMID: 28649848]
[263]
Moore DC, Elmes JB, Shibu PA, Larck C, Park SI. Mogamulizumab: An anti-CC chemokine receptor 4 antibody for T-cell lymphomas. Ann Pharmacother 2020; 54(4): 371-9.
[http://dx.doi.org/10.1177/1060028019884863] [PMID: 31648540]
[264]
Ishida T, Jo T, Takemoto S, et al. Dose‐intensified chemotherapy alone or in combination with mogamulizumab in newly diagnosed aggressive adult T‐cell leukaemia‐lymphoma: a randomized phase II study. Br J Haematol 2015; 169(5): 672-82.
[http://dx.doi.org/10.1111/bjh.13338] [PMID: 25733162]
[265]
Ohyama Y, Kumode T, Eguchi G, Yamaguchi T, Maeda Y. Induction of molecular remission by using anti-CC-chemokine receptor 4 (anti-CCR4) antibodies for adult T cell leukemia: a risk of opportunistic infection after treatment with anti-CCR4 antibodies. Ann Hematol 2014; 93(1): 169-71.
[http://dx.doi.org/10.1007/s00277-013-1765-6] [PMID: 23612772]
[266]
Totani H, Kusumoto S, Ishida T, et al. Reactivation of hepatitis B virus (HBV) infection in adult T-cell leukemia-lymphoma patients with resolved HBV infection following systemic chemotherapy. Int J Hematol 2015; 101(4): 398-404.
[http://dx.doi.org/10.1007/s12185-015-1750-z] [PMID: 25633779]
[267]
Ishii Y, Itabashi M, Numata A, et al. Cytomegalovirus pneumonia after anti-CC-chemokine receptor 4 monoclonal antibody (mogamulizumab) therapy in an angioimmunoblastic T-cell lymphoma patient. Intern Med 2016; 55(6): 673-5.
[http://dx.doi.org/10.2169/internalmedicine.55.5644] [PMID: 26984089]
[268]
Maloney DG, Ogura M, Fukuhara N, et al. A phase 3 randomized study (HOMER) of ofatumumab vs rituximab in iNHL relapsed after rituximab-containing therapy. Blood Adv 2020; 4(16): 3886-93.
[http://dx.doi.org/10.1182/bloodadvances.2020001942] [PMID: 32810220]
[269]
Minard-Colin V, Auperin A, Pillon M, et al. Rituximab for highrisk, mature B-cell non-Hodgkin’s lymphoma in children. N Engl J Med 2020; 382(- 23): 2219.
[270]
García-Muñoz R, Quero C, Perez-Persona E, et al. Safety of switching from intravenous to subcutaneous rituximab during first-line treatment of patients with non-Hodgkin lymphoma: the Spanish population of the MabRella study. Br J Haematol 2020; 188(- 5): 673.
[271]
Niederwieser D, Hamm C, Cobb F, et al. Efficacy and safety of ABP 798: Results from the JASMINE trial in patients with follicular lymphoma in comparison with rituximab reference product. Target Oncol 2020.
[272]
Morigi A, Argnani L, Lolli G, et al. Bendamustine‐rituximab regimen in untreated indolent marginal zone lymphoma: Experience on 65 patients. Hematol Oncol 2020; 38(4): 487-92.
[http://dx.doi.org/10.1002/hon.2773] [PMID: 32594531]
[273]
Shimada K, Yamaguchi M, Atsuta Y, et al. Rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisolone combined with high-dose methotrexate plus intrathecal chemotherapy for newly diagnosed intravascular large B-cell lymphoma (PRIMEUR-IVL): A multicentre, single-arm, phase 2 trial. Lancet Oncol 2020; 21(4): 593-602.
[http://dx.doi.org/10.1016/S1470-2045(20)30059-0] [PMID: 32171071]
[274]
Tanaka N, Imai Y, Yoshinaga K, Shiseki M, Tanaka J. Fractionated ifosfamide, carboplatin, and etoposide with rituximab as a safe and effective treatment for relapsed/refractory diffuse large B cell lymphoma with severe comorbidities. Ann Hematol 2020; 99(11): 2577-86.
[http://dx.doi.org/10.1007/s00277-020-04267-0] [PMID: 32945942]
[275]
Poddubnaya IV, Alekseev SM, Kaplanov KD, et al. Proposed rituximab biosimilar BCD‐020 versus reference rituximab for treatment of patients with indolent non‐Hodgkin lymphomas: An international multicenter randomized trial. Hematol Oncol 2020; 38(1): 67-73.
[http://dx.doi.org/10.1002/hon.2693] [PMID: 31724191]
[276]
Flinn IW, van der Jagt R, Kahl B, et al. First-line treatment of patients with indolent non-hodgkin lymphoma or mantle-cell lymphoma with bendamustine plus rituximab versus R-CHOP or R-CVP: Results of the BRIGHT 5-year follow-up study. J Clin Oncol 2019; 37(12): 984-91.
[http://dx.doi.org/10.1200/JCO.18.00605] [PMID: 30811293]
[277]
Khashab T, Hagemeister F, Romaguera JE, et al. Long‐term overall‐ and progression‐free survival after pentostatin, cyclophosphamide and rituximab therapy for indolent non‐Hodgkin lymphoma. Br J Haematol 2019; 185(4): 670-8.
[http://dx.doi.org/10.1111/bjh.15814] [PMID: 30820940]
[278]
Leonard JP, Trneny M, Izutsu K, et al. AUGMENT: A phase III study of lenalidomide plus rituximab versus placebo plus rituximab in relapsed or refractory indolent lymphoma. J Clin Oncol 2019; 37(14): 1188-99.
[http://dx.doi.org/10.1200/JCO.19.00010] [PMID: 30897038]
[279]
Morschhauser F, Fowler NH, Feugier P, et al. Rituximab plus lenalidomide in advanced untreated follicular lymphoma. N Engl J Med 2018; 379(10): 934-47.
[http://dx.doi.org/10.1056/NEJMoa1805104] [PMID: 30184451]
[280]
Heyman B, Rizzieri D, Adams DJ, et al. Phase I study of the combination of bendamustine, rituximab, and pixantrone in patients with relapsed/refractory b-cell non-hodgkin lymphoma. Clin Lymphoma Myeloma Leuk 2018; 18(10): 679-86.
[http://dx.doi.org/10.1016/j.clml.2018.07.285] [PMID: 30166257]
[281]
de Vos S, Swinnen LJ, Wang D, et al. Venetoclax, bendamustine, and rituximab in patients with relapsed or refractory NHL: A phase Ib dose-finding study. Ann Oncol 2018; 29(9): 1932-8.
[http://dx.doi.org/10.1093/annonc/mdy256] [PMID: 30060083]
[282]
Barnes JA, Redd R, Fisher DC, et al. Panobinostat in combination with rituximab in heavily pretreated diffuse large B-cell lymphoma: Results of a phase II study. Hematol Oncol 2018; 36(4): 633-7.
[http://dx.doi.org/10.1002/hon.2515] [PMID: 29956350]
[283]
Flinn IW, Thompson DS, Boccia RV, et al. Bendamustine, bortezomib and rituximab produces durable complete remissions in patients with previously untreated, low grade lymphoma. Br J Haematol 2018; 180(3): 365-73.
[http://dx.doi.org/10.1111/bjh.15044] [PMID: 29193021]
[284]
Puvvada SD, Guillen-Rodriguez J, Kumar A, et al. Phase 2 Open-label study of bortezomib, cladribine, and rituximab in advanced, newly diagnosed, and relapsed/refractory mantle-cell and indolent lymphomas. Clin Lymphoma Myeloma Leuk 2018; 18(1): 58-64.
[http://dx.doi.org/10.1016/j.clml.2017.09.001] [PMID: 29056470]
[285]
Torka P, Patel P, Tan W, et al. A Phase II trial of rituximab combined with pegfilgrastim in patients with indolent b-cell non-hodgkin lymphoma. Clin Lymphoma Myeloma Leuk 2018; 18(1): e51-60.
[http://dx.doi.org/10.1016/j.clml.2017.09.003] [PMID: 29233743]
[286]
Martin P, Jung SH, Pitcher B, et al. A phase II trial of lenalidomide plus rituximab in previously untreated follicular non-Hodgkin’s lymphoma (NHL): CALGB 50803 (Alliance). Ann Oncol 2017; 28(11): 2806-12.
[http://dx.doi.org/10.1093/annonc/mdx496] [PMID: 28945884]
[287]
Sonbol MB, Hilal T, Dueck AC, et al. A phase 2 study of rituximab, cyclophosphamide, bortezomib and dexamethasone (R-CyBorD) in relapsed low grade and mantle cell lymphoma. Leuk Lymphoma 2018; 59(9): 2128-34.
[http://dx.doi.org/10.1080/10428194.2017.1416368] [PMID: 29320913]
[288]
Cowan AJ, Stevenson PA, Gooley TA, et al. Results of a phase I-II study of fenretinide and rituximab for patients with indolent B-cell lymphoma and mantle cell lymphoma. Br J Haematol 2017; 176(4): 583-90.
[http://dx.doi.org/10.1111/bjh.14451] [PMID: 28055107]
[289]
Davies A, Merli F, Mihaljević B, et al. Efficacy and safety of subcutaneous rituximab versus intravenous rituximab for first-line treatment of follicular lymphoma (SABRINA): a randomised, open-label, phase 3 trial. Lancet Haematol 2017; 4(6): e272-82.
[http://dx.doi.org/10.1016/S2352-3026(17)30078-9] [PMID: 28476440]
[290]
Papadopoulos KP, Lopez-Jimenez J, Smith SE, et al. A multicenter phase II study of sepantronium bromide (YM155) plus rituximab in patients with relapsed aggressive B-cell Non-Hodgkin lymphoma. Leuk Lymphoma 2016; 57(8): 1848-55.
[http://dx.doi.org/10.3109/10428194.2015.1113275] [PMID: 26857688]
[291]
Assouline SE, Nielsen TH, Yu S, et al. Phase 2 study of panobinostat with or without rituximab in relapsed diffuse large B-cell lymphoma. Blood 2016; 128(2): 185-94.
[http://dx.doi.org/10.1182/blood-2016-02-699520] [PMID: 27166360]
[292]
Michot JM, Bouabdallah R, Vitolo U, et al. Avadomide plus obinutuzumab in patients with relapsed or refractory B-cell non-Hodgkin lymphoma (CC-122-NHL-001): a multicentre, dose escalation and expansion phase 1 study. Lancet Haematol 2020; 7(9): e649-59.
[http://dx.doi.org/10.1016/S2352-3026(20)30208-8] [PMID: 32758434]
[293]
Davies A, Trask P, Demeter J, et al. Health-related quality of life in the phase III GALLIUM study of obinutuzumab- or rituximab-based chemotherapy in patients with previously untreated advanced follicular lymphoma. Ann Hematol 2020; 99(12): 2837-46.
[http://dx.doi.org/10.1007/s00277-020-04021-6] [PMID: 32314038]
[294]
Herishanu Y, Shaulov A, Fineman R, et al. Frontline treatment with the combination obinutuzumab ± chlorambucil for chronic lymphocytic leukemia outside clinical trials: Results of a multinational, multicenter study by ERIC and the Israeli CLL study group. Am J Hematol 2020; 95(6): 604-11.
[http://dx.doi.org/10.1002/ajh.25766] [PMID: 32096887]
[295]
Bosch F, Cantin G, Cortelezzi A, et al. Obinutuzumab plus fludarabine and cyclophosphamide in previously untreated, fit patients with chronic lymphocytic leukemia: a subgroup analysis of the GREEN study. Leukemia 2020; 34(2): 441-50.
[http://dx.doi.org/10.1038/s41375-019-0554-1] [PMID: 31455851]
[296]
Morschhauser F, Le Gouill S, Feugier P, et al. Obinutuzumab combined with lenalidomide for relapsed or refractory follicular B-cell lymphoma (GALEN): a multicentre, single-arm, phase 2 study. Lancet Haematol 2019; 6(8): e429-37.
[http://dx.doi.org/10.1016/S2352-3026(19)30089-4] [PMID: 31296423]
[297]
Flinn IW, Gribben JG, Dyer MJS, et al. Phase 1b study of venetoclax-obinutuzumab in previously untreated and relapsed/refractory chronic lymphocytic leukemia. Blood 2019; 133(26): 2765-75.
[http://dx.doi.org/10.1182/blood-2019-01-896290] [PMID: 30862645]
[298]
Sharman JP, Forero-Torres A, Costa LJ, et al. Obinutuzumab plus CHOP is effective and has a tolerable safety profile in previously untreated, advanced diffuse large B-cell lymphoma: The phase II GATHER study. Leuk Lymphoma 2019; 60(4): 894-903.
[http://dx.doi.org/10.1080/10428194.2018.1515940] [PMID: 30277102]
[299]
Cramer P, von Tresckow J, Bahlo J, et al. Bendamustine followed by obinutuzumab and venetoclax in chronic lymphocytic leukaemia (CLL2-BAG): primary endpoint analysis of a multicentre, open-label, phase 2 trial. Lancet Oncol 2018; 19(9): 1215-28.
[http://dx.doi.org/10.1016/S1470-2045(18)30414-5] [PMID: 30115596]
[300]
Ohmachi K, Ando K, Kinoshita T, et al. Safety, tolerability and pharmacokinetics of shorter duration of infusion of obinutuzumab in Japanese patients with B-cell non-Hodgkin lymphoma: final results of the phase II GATS study. Jpn J Clin Oncol 2018; 48(8): 736-42.
[http://dx.doi.org/10.1093/jjco/hyy087] [PMID: 30060000]
[301]
Ohmachi K, Tobinai K, Kinoshita T, et al. Efficacy and safety of obinutuzumab in patients with previously untreated follicular lymphoma: a subgroup analysis of patients enrolled in Japan in the randomized phase III GALLIUM trial. Int J Hematol 2018; 108(5): 499-509.
[http://dx.doi.org/10.1007/s12185-018-2497-0] [PMID: 30027429]
[302]
Leblond V, Aktan M, Ferra Coll CM, et al. Safety of obinutuzumab alone or combined with chemotherapy for previously untreated or relapsed/refractory chronic lymphocytic leukemia in the phase IIIb GREEN study. Haematologica 2018; 103(11): 1889-98.
[http://dx.doi.org/10.3324/haematol.2017.186387] [PMID: 29976743]
[303]
Qin Y, Song Y, Shen Z, et al. Safety and efficacy of obinutuzumab in Chinese patients with B-cell lymphomas: A secondary analysis of the GERSHWIN trial. Cancer Commun (Lond) 2018; 38(1): 31.
[http://dx.doi.org/10.1186/s40880-018-0300-5] [PMID: 29843792]
[304]
Hiddemann W, Barbui AM, Canales MA, et al. Immunochemotherapy with obinutuzumab or rituximab for previously untreated follicular lymphoma in the GALLIUM Study: Influence of chemotherapy on efficacy and safety. J Clin Oncol 2018; 36(23): 2395-404.
[http://dx.doi.org/10.1200/JCO.2017.76.8960] [PMID: 29856692]
[305]
Vitolo U, Trněný M, Belada D, et al. Obinutuzumab or rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone in previously untreated diffuse large b-cell lymphoma. J Clin Oncol 2017; 35(31): 3529-37.
[http://dx.doi.org/10.1200/JCO.2017.73.3402] [PMID: 28796588]
[306]
Sehn LH, Chua N, Mayer J, et al. Obinutuzumab plus bendamustine versus bendamustine monotherapy in patients with rituximab-refractory indolent non-Hodgkin lymphoma (GADOLIN): A randomised, controlled, open-label, multicentre, phase 3 trial. Lancet Oncol 2016; 17(8): 1081-93.
[http://dx.doi.org/10.1016/S1470-2045(16)30097-3] [PMID: 27345636]
[307]
Byrd JC, Flynn JM, Kipps TJ, et al. Randomized phase 2 study of obinutuzumab monotherapy in symptomatic, previously untreated chronic lymphocytic leukemia. Blood 2016; 127(1): 79-86.
[http://dx.doi.org/10.1182/blood-2015-03-634394] [PMID: 26472752]
[308]
Byrd JC, Hillmen P, O’Brien S, et al. Long-term follow-up of the RESONATE phase 3 trial of ibrutinib vs. ofatumumab. Blood 2019; 133(19): 2031-42.
[http://dx.doi.org/10.1182/blood-2018-08-870238] [PMID: 30842083]
[309]
Rosenbaum CA, Jung SH, Pitcher B, et al. Phase 2 multicentre study of single‐agent ofatumumab in previously untreated follicular lymphoma: CALGB 50901 (Alliance). Br J Haematol 2019; 185(1): 53-64.
[http://dx.doi.org/10.1111/bjh.15768] [PMID: 30723894]
[310]
van Oers M, Smolej L, Petrini M, et al. Ofatumumab maintenance prolongs progression-free survival in relapsed chronic lymphocytic leukemia: final analysis of the PROLONG study. Blood Cancer J 2019; 9(12): 98.
[http://dx.doi.org/10.1038/s41408-019-0260-2] [PMID: 31801940]
[311]
Blum KA, Polley MY, Jung SH, et al. Randomized trial of ofatumumab and bendamustine versus ofatumumab, bendamustine, and bortezomib in previously untreated patients with high‐risk follicular lymphoma: CALGB 50904 (Alliance). Cancer 2019; 125(19): 3378-89.
[http://dx.doi.org/10.1002/cncr.32289] [PMID: 31174236]
[312]
Lampson BL, Kim HT, Davids MS, et al. Efficacy results of a phase 2 trial of first-line idelalisib plus ofatumumab in chronic lymphocytic leukemia. Blood Adv 2019; 3(7): 1167-74.
[http://dx.doi.org/10.1182/bloodadvances.2018030221] [PMID: 30967392]
[313]
Chen CI, Paul H, Le LW, et al. A phase 2 study of ofatumumab (Arzerra ®) in combination with a pan-AKT inhibitor (afuresertib) in previously treated patients with chronic lymphocytic leukemia (CLL). Leuk Lymphoma 2019; 60(1): 92-100.
[http://dx.doi.org/10.1080/10428194.2018.1468892] [PMID: 29916761]
[314]
Flinn IW, Hillmen P, Montillo M, et al. The phase 3 DUO trial: duvelisib vs ofatumumab in relapsed and refractory CLL/SLL. Blood 2018; 132(23): 2446-55.
[http://dx.doi.org/10.1182/blood-2018-05-850461] [PMID: 30287523]
[315]
Kiesewetter B, Neuper O, Mayerhoefer ME, et al. A pilot phase II study of ofatumumab monotherapy for extranodal marginal zone B-cell lymphoma of the mucosa-associated lymphoid tissue (MALT) lymphoma. Hematol Oncol 2018; 36(1): 49-55.
[http://dx.doi.org/10.1002/hon.2454] [PMID: 28695630]
[316]
Hatake K, Ogura M, Takada K, et al. Ofatumumab combined with chlorambucil for previously untreated chronic lymphocytic leukemia: a phase I/II, open-label study in Japan. Int J Hematol 2017; 106(2): 240-7.
[http://dx.doi.org/10.1007/s12185-017-2233-1] [PMID: 28421390]
[317]
Jones JA, Robak T, Brown JR, et al. Efficacy and safety of idelalisib in combination with ofatumumab for previously treated chronic lymphocytic leukaemia: an open-label, randomised phase 3 trial. Lancet Haematol 2017; 4(3): e114-26.
[http://dx.doi.org/10.1016/S2352-3026(17)30019-4] [PMID: 28257752]
[318]
Robak T, Warzocha K, Govind Babu K, et al. Ofatumumab plus fludarabine and cyclophosphamide in relapsed chronic lymphocytic leukemia: results from the COMPLEMENT 2 trial. Leuk Lymphoma 2017; 58(5): 1084-93.
[http://dx.doi.org/10.1080/10428194.2016.1233536] [PMID: 27731748]
[319]
Peyrade F, Bologna S, Delwail V, et al. Combination of ofatumumab and reduced-dose CHOP for diffuse large B-cell lymphomas in patients aged 80 years or older: an open-label, multicentre, single-arm, phase 2 trial from the LYSA group. Lancet Haematol 2017; 4(1): e46-55.
[http://dx.doi.org/10.1016/S2352-3026(16)30171-5] [PMID: 28041583]
[320]
Flinn IW, Panayiotidis P, Afanasyev B, et al. A phase 2, multicenter study investigating ofatumumab and bendamustine combination in patients with untreated or relapsed CLL. Am J Hematol 2016; 91(9): 900-6.
[http://dx.doi.org/10.1002/ajh.24430] [PMID: 27222473]
[321]
Vitale C, Falchi L, ten Hacken E, et al. Ofatumumab and lenalidomide for patients with relapsed or refractory chronic lymphocytic leukemia: Correlation between responses and immune characteristics. Clin Cancer Res 2016; 22(10): 2359-67.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-2476] [PMID: 26733610]
[322]
Zelenetz AD, Popplewell LL, Noy A, et al. Phase 2 study of iodine-131 tositumomab plus chemotherapy in patients with previously untreated mantle-cell lymphoma. Clin Lymphoma Myeloma Leuk 2020; 20(11): 749-756.e1.
[http://dx.doi.org/10.1016/j.clml.2019.04.010] [PMID: 32800518]
[323]
Barr PM, Li H, Burack WR, et al. R-CHOP, radioimmunotherapy, and maintenance rituximab in untreated follicular lymphoma (SWOG S0801): a single-arm, phase 2, multicentre study. Lancet Haematol 2018; 5(3): e102-8.
[http://dx.doi.org/10.1016/S2352-3026(18)30001-2] [PMID: 29396094]
[324]
Shadman M, Li H, Rimsza L, et al. Continued excellent outcomes in previously untreated patients with follicular lymphoma after treatment with CHOP plus rituximab or CHOP plus 131 I-Tositumomab: Long-term follow-up of phase III randomized study SWOG-S0016. J Clin Oncol 2018; 36(7): 697-703.
[http://dx.doi.org/10.1200/JCO.2017.74.5083] [PMID: 29356608]
[325]
Leonard JP, Gregory SA, Smith H, et al. CHOP chemotherapy followed by tositumomab and iodine-131 tositumomab for previously untreated diffuse large b-cell lymphoma. Clin Lymphoma Myeloma Leuk 2016; 16(4): 191-6.
[http://dx.doi.org/10.1016/j.clml.2015.12.011] [PMID: 26832194]
[326]
Miura K, Tsujimura H, Masaki Y, et al. Consolidation with (90) Yttrium-ibritumomab tiuxetan after bendamustine and rituximab for relapsed follicular lymphoma. Hematol Oncol 2020.
[PMID: 32978820]
[327]
Samaniego F, McLaughlin P, Sattva SN, et al. Initial report of a phase II study with R-FND followed by ibritumomab tiuxetan radioimmunotherapy and rituximab maintenance in patients with untreated high-risk follicular lymphoma. Leuk Lymphoma 2021; 62(1): 58-67.
[PMID: 32924687]
[328]
Lugtenburg PJ, Zijlstra JM, Doorduijn JK, et al. Rituximab‐ PECC induction followed by 90 Y‐ibritumomab tiuxetan consolidation in relapsed or refractory DLBCL patients who are ineligible for or have failed ASCT: Results from a phase II HOVON study. Br J Haematol 2019; 187(3): 347-55.
[http://dx.doi.org/10.1111/bjh.16087] [PMID: 31290569]
[329]
Lansigan F, Costa CA, Zaki BI, et al. Multicenter, open-label, phase ii study of bendamustine and rituximab followed by 90-yttrium (Y) ibritumomab tiuxetan for untreated follicular lymphoma (Fol-BRITe). Clin Cancer Res 2019; 25(20): 6073-9.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-3755] [PMID: 31243122]
[330]
Jurczak W, Gruszka AM, Sowa Staszczak A, et al. Consolidation with 90 Y ibritumomab tiuxetan radioimmunotherapy in mantle cell lymphoma patients ineligible for high dose therapy: results of the phase II multicentre Polish Lymphoma Research Group trial, after 8-year long follow-up. Leuk Lymphoma 2019; 60(11): 2689-96.
[http://dx.doi.org/10.1080/10428194.2019.1602261] [PMID: 30961415]
[331]
Berinstein NL, Pennell NM, Weerasinghe R, et al. Management of newly diagnosed high-risk and intermediate-risk follicular lymphoma with 90 Y ibritumomab tiuxetan in a phase II study. Hematol Oncol 2018; 36(3): 525-32.
[http://dx.doi.org/10.1002/hon.2513] [PMID: 29709062]
[332]
Ciochetto C, Botto B, Passera R, et al. Yttrium-90 ibritumomab tiuxetan (Zevalin) followed by BEAM (Z-BEAM) conditioning regimen and autologous stem cell transplantation (ASCT) in relapsed or refractory high-risk B-cell non-Hodgkin lymphoma (NHL): A single institution Italian experience. Ann Hematol 2018; 97(9): 1619-26.
[http://dx.doi.org/10.1007/s00277-018-3328-3] [PMID: 29663029]
[333]
Puvvada SD, Guillén-Rodríguez JM, Yan J, et al. Yttrium-90-ibritumomab tiuxetan (Zevalin®) radioimmunotherapy after cytoreduction with eshap chemotherapy in patients with relapsed follicular non-hodgkin lymphoma: Final results of a phase II study. Oncology 2018; 94(5): 274-80.
[http://dx.doi.org/10.1159/000486788] [PMID: 29471300]
[334]
Krishnan AY, Palmer J, Nademanee AP, et al. Phase II study of yttrium-90 ibritumomab tiuxetan plus high-dose bcnu, etoposide, cytarabine, and melphalan for non-hodgkin lymphoma: The role of histology. Biol Blood Marrow Transplant 2017; 23(6): 922-9.
[http://dx.doi.org/10.1016/j.bbmt.2017.03.004] [PMID: 28267593]
[335]
Karmali R, Larson ML, Shammo JM, Gregory SA, O’Brien T, Venugopal P. Phase 2 study of CHOP-R-14 followed by 90Y-ibritumomab tiuxetan in patients with previously untreated diffuse large B-cell lymphoma. Mol Clin Oncol 2017; 6(4): 627-33.
[http://dx.doi.org/10.3892/mco.2017.1169] [PMID: 28413681]
[336]
Cabrero M, Martin A, Briones J, et al. Phase II study of yttrium-90-ibritumomab tiuxetan as part of reduced-intensity conditioning (with Melphalan, Fludarabine ± Thiotepa) for allogeneic transplantation in relapsed or refractory aggressive b cell lymphoma: A GELTAMO trial. Biol Blood Marrow Transplant 2017; 23(1): 53-9.
[http://dx.doi.org/10.1016/j.bbmt.2016.10.003] [PMID: 27771496]
[337]
Stefoni V, Casadei B, Bottelli C, et al. Short-course R-CHOP followed by 90Y-Ibritumomab tiuxetan in previously untreated high-risk elderly diffuse large B-cell lymphoma patients: 7-year long-term results. Blood Cancer J 2016; 6(5): e425.
[http://dx.doi.org/10.1038/bcj.2016.29] [PMID: 27176801]
[338]
Berger MD, Branger G, Klaeser B, et al. Zevalin and BEAM (Z-BEAM) versus rituximab and BEAM (R-BEAM) conditioning chemotherapy prior to autologous stem cell transplantation in patients with mantle cell lymphoma. Hematol Oncol 2016; 34(3): 133-9.
[http://dx.doi.org/10.1002/hon.2197] [PMID: 25689832]
[339]
Casadei B, Pellegrini C, Pulsoni A, et al. 90‐yttrium‐ibritumomab tiuxetan consolidation of fludarabine, mitoxantrone, rituximab in intermediate/high‐risk follicular lymphoma: updated long‐term results after a median follow‐up of 7 years. Cancer Med 2016; 5(6): 1093-7.
[http://dx.doi.org/10.1002/cam4.684] [PMID: 26990782]
[340]
Sharman JP, Brander DM, Mato AR, et al. Effect of adding ublituximab to ibrutinib on PFS, ORR, and MRD negativity in previously treated high-risk chronic lymphocytic leukemia: Final results of the GENUINE phase III study. J Clin Oncol 2020; 38(15_suppl): 8022-2.
[http://dx.doi.org/10.1200/JCO.2020.38.15_suppl.8022]
[341]
Nastoupil LJ, Lunning MA, Vose JM, et al. Tolerability and activity of ublituximab, umbralisib, and ibrutinib in patients with chronic lymphocytic leukaemia and non-Hodgkin lymphoma: a phase 1 dose escalation and expansion trial. Lancet Haematol 2019; 6(2): e100-9.
[http://dx.doi.org/10.1016/S2352-3026(18)30216-3] [PMID: 30709431]
[342]
Sharman JP, Farber CM, Mahadevan D, et al. Ublituximab (TG-1101), a novel glycoengineered anti-CD20 antibody, in combination with ibrutinib is safe and highly active in patients with relapsed and/or refractory chronic lymphocytic leukaemia: results of a phase 2 trial. Br J Haematol 2017; 176(3): 412-20.
[http://dx.doi.org/10.1111/bjh.14447] [PMID: 27982425]
[343]
Coyle L, Morley NJ, Rambaldi A, et al. Open-Label, phase 2 study of blinatumomab as second salvage therapy in adults with relapsed/refractory aggressive B-cell non-Hodgkin lymphoma. Leuk Lymphoma 2020; 61(9): 2103-12.
[http://dx.doi.org/10.1080/10428194.2020.1759055] [PMID: 32546071]
[344]
Hijazi Y. Pharmacokinetic and pharmacodynamic relationship of blinatumomab in patients with non-hodgkin lymphoma. Curr Clin Pharmacol 2018; 13(1): 55-64.
[345]
Goebeler ME, Knop S, Viardot A, et al. Bispecific T-cell engager (BiTE) antibody construct blinatumomab for the treatment of patients with relapsed/refractory non-hodgkin lymphoma: final results from a phase I study. J Clin Oncol 2016; 34(10): 1104-11.
[http://dx.doi.org/10.1200/JCO.2014.59.1586] [PMID: 26884582]
[346]
Ribrag V, Dupuis J, Tilly H, et al. A dose-escalation study of SAR3419, an anti-CD19 antibody maytansinoid conjugate, administered by intravenous infusion once weekly in patients with relapsed/refractory b-cell non-hodgkin lymphoma. Clin Cancer Res 2013; 20(1): 213-20.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-0580] [PMID: 24132920]
[347]
Jurczak W, Zinzani PL, Gaidano G, et al. Phase IIa study of the CD19 antibody MOR208 in patients with relapsed or refractory B-cell non-Hodgkin’s lymphoma. Ann Oncol 2018; 29(5): 1266-72.
[http://dx.doi.org/10.1093/annonc/mdy056] [PMID: 29444231]
[348]
Berkowitz JL, Janik JE, Stewart DM, et al. Safety, efficacy, and pharmacokinetics/pharmacodynamics of daclizumab (anti-CD25) in patients with adult T-cell leukemia/lymphoma. Clin Immunol 2014; 155(2): 176-87.
[http://dx.doi.org/10.1016/j.clim.2014.09.012] [PMID: 25267440]
[349]
Svoboda J, Bair SM, Landsburg DJ, et al. Brentuximab vedotin in combination with rituximab, cyclophosphamide, doxorubicin, and prednisone as frontline treatment for patients with CD30-positive B-cell lymphomas. Haematologica 2020.
[PMID: 32414850]
[350]
Kim SJ, Yoon DH, Kim JS, et al. Efficacy of brentuximab vedotin in relapsed or refractory high-CD30–expressing non-hodgkin lymphomas: Results of a multicenter, open-labeled phase II trial. Cancer Res Treat 2020; 52(2): 374-87.
[351]
Zinzani PL, Santoro A, Gritti G, et al. Nivolumab combined with brentuximab vedotin for relapsed/refractory primary mediastinal large B-cell lymphoma: efficacy and safety from the phase II CheckMate 436 study. J Clin Oncol 2019; 37(33): 3081-9.
[http://dx.doi.org/10.1200/JCO.19.01492] [PMID: 31398081]
[352]
Haran M, Mirkin V, Braester A, et al. A phase I-II clinical trial of the anti-CD74 monoclonal antibody milatuzumab in frail patients with refractory chronic lymphocytic leukaemia: A patient based approach. Br J Haematol 2018; 182(1): 125-8.
[http://dx.doi.org/10.1111/bjh.14726] [PMID: 28466956]
[353]
Pichard A, Marcatili S, Karam J, et al. The therapeutic effectiveness of 177Lu-lilotomab in B-cell non-Hodgkin lymphoma involves modulation of G2/M cell cycle arrest. Leukemia 2020; 34(5): 1315-28.
[http://dx.doi.org/10.1038/s41375-019-0677-4] [PMID: 31836849]
[354]
Malenge MM, Patzke S, Ree AH, et al. 177 Lu-lilotomab satetraxetan has the potential to counteract resistance to rituximab in non-hodgkin lymphoma. J Nucl Med 2020; 61(10): 1468-75.
[http://dx.doi.org/10.2967/jnumed.119.237230] [PMID: 32245896]
[355]
Kolstad A, Illidge T, Bolstad N, et al. Phase 1/2a study of 177Lu-lilotomab satetraxetan in relapsed/refractory indolent non-Hodgkin lymphoma. Blood Adv 2020; 4(17): 4091-101.
[http://dx.doi.org/10.1182/bloodadvances.2020002583] [PMID: 32877524]
[356]
Repetto-Llamazares AHV, Malenge MM, O’Shea A, et al. Combination of 177 Lu-lilotomab with rituximab significantly improves the therapeutic outcome in preclinical models of non-Hodgkin’s lymphoma. Eur J Haematol 2018; 101(4): 522-31.
[http://dx.doi.org/10.1111/ejh.13139] [PMID: 29993152]
[357]
Blakkisrud J, Løndalen A, Martinsen ACT, et al. Tumor-absorbed dose for non-Hodgkin lymphoma patients treated with the anti-CD37 antibody radionuclide conjugate 177Lu-lilotomab satetraxetan. J Nucl Med 2017; 58(1): 48-54.
[http://dx.doi.org/10.2967/jnumed.116.173922] [PMID: 27493270]
[358]
Aghevlian S, Boyle AJ, Reilly RM. Radioimmunotherapy of cancer with high linear energy transfer (LET) radiation delivered by radionuclides emitting α-particles or Auger electrons. Adv Drug Deliv Rev 2017; 109: 102-18.
[http://dx.doi.org/10.1016/j.addr.2015.12.003] [PMID: 26705852]
[359]
Witkowska M, Smolewski P, Robak T. Investigational therapies targeting CD37 for the treatment of B-cell lymphoid malignancies. Expert Opin Investig Drugs 2018; 27(2): 171-7.
[http://dx.doi.org/10.1080/13543784.2018.1427730] [PMID: 29323537]
[360]
Lidický O, Klener P, Machová D, et al. Overcoming resistance to rituximab in relapsed non-Hodgkin lymphomas by antibody-polymer drug conjugates actively targeted by anti-CD38 daratumumab. J Control Release 2020; 328: 160-70.
[http://dx.doi.org/10.1016/j.jconrel.2020.08.042] [PMID: 32860930]
[361]
Vockova P, Svaton M, Karolova J, Pokorna E, Vokurka M, Klener P. Anti-CD38 therapy with daratumumab for relapsed/refractory CD20-negative diffuse large b-cell lymphoma. Folia Biol (Praha) 2020; 66(1): 17-23.
[PMID: 32512655]
[362]
Huang H, Kim W-S, Yao M, et al. Daratumumab monotherapy for patients with relapsed or refractory (R/R) natural killer/t-cell lymphoma (NKTCL), Nasal Type: Updated results from an open-label, single-arm, multicenter phase 2 study. Blood 2019; 134 (Suppl. 1): 1568-8.
[http://dx.doi.org/10.1182/blood-2019-123446]
[363]
Kinoshita T, Hatake K, Yamamoto K, et al. Safety and pharmacokinetics of polatuzumab vedotin in Japanese patients with relapsed/refractory B-cell non-Hodgkin lymphoma: a phase 1 dose-escalation study. Jpn J Clin Oncol 2021; 51(1): 70-7.
[http://dx.doi.org/10.1093/jjco/hyaa169] [PMID: 33029633]
[364]
Douglas M. Polatuzumab vedotin for the treatment of relapsed/refractory diffuse large b-cell lymphoma in transplant-ineligible patients. J Adv Pract Oncol 2020; 11(5): 521-8.
[PMID: 32974076]
[365]
Bourbon E, Salles G. Polatuzumab vedotin: an investigational anti-CD79b antibody drug conjugate for the treatment of diffuse large B-cell lymphoma. Expert Opin Investig Drugs 2020; 29(10): 1079-88.
[http://dx.doi.org/10.1080/13543784.2020.1800638] [PMID: 32700972]
[366]
Shemesh CS, Agarwal P, Lu T, et al. Pharmacokinetics of polatuzumab vedotin in combination with R/G-CHP in patients with B-cell non-Hodgkin lymphoma. Cancer Chemother Pharmacol 2020; 85(5): 831-42.
[http://dx.doi.org/10.1007/s00280-020-04054-8] [PMID: 32222808]
[367]
Lu D, Lu T, Gibiansky L, et al. Integrated two‐analyte population pharmacokinetic model of polatuzumab vedotin in patients with non‐Hodgkin lymphoma. CPT Pharmacometrics Syst Pharmacol 2020; 9(1): 48-59.
[http://dx.doi.org/10.1002/psp4.12482] [PMID: 31749251]
[368]
Voegeli M, Rondeau S, Berardi Vilei S, et al. Y 90 -Ibritumomab tiuxetan (Y 90 -IT) and high-dose melphalan as conditioning regimen before autologous stem cell transplantation for elderly patients with lymphoma in relapse or resistant to chemotherapy: a feasibility trial (SAKK 37/05). Hematol Oncol 2017; 35(4): 576-83.
[http://dx.doi.org/10.1002/hon.2348] [PMID: 27677906]
[369]
Martínez A, Martínez-Ramirez M, Martínez-Caballero D, et al. Radioinmunoterapia en el linfoma no Hodgkin, posicionamiento, seguridad y eficacia de 90Y-ibritumomab. Experiencia y seguimiento a los 10 años. Rev Esp Med Nucl Imagen Mol 2017; 36(1): 13-9.
[http://dx.doi.org/10.1016/j.remn.2016.05.004] [PMID: 27422155]
[370]
McKinney MS, Beaven AW. Yttrium-90 ibritumomab tiuxetan in the treatment of non-Hodgkin lymphoma. Blood Lymphatic Cancer Targets Ther 2014; 4: 45-59.
[371]
Andrade-Campos MM, Montes-Limón AE, Soro-Alcubierre G, et al. Long-term efficacy of 90Y ibritumomab tiuxetan therapy in follicular non-Hodgkin lymphoma and health-related quality of life. Ann Hematol 2014; 93(12): 1985-92.
[http://dx.doi.org/10.1007/s00277-014-2145-6] [PMID: 24985089]
[372]
Kaneko K, Choi I, Nakagawa M, Shinozaki K, Uike N. Does tumoral 111In-ibritumomab accumulation correlate with therapeutic effect and outcome in relapsed or refractory low-grade B-cell lymphoma patients undergoing 90Y-ibritumomab radioimmunotherapy? Eur Radiol 2014; 24(12): 3191-8.
[http://dx.doi.org/10.1007/s00330-014-3378-4] [PMID: 25117746]
[373]
Matesan M, Rajendran J, Press OW, et al. 90Y-ibritumomab tiuxetan therapy in allogeneic transplantation in B-cell lymphoma with extensive marrow involvement and chronic lymphocytic leukemia. Nucl Med Commun 2014; 35(11): 1132-42.
[http://dx.doi.org/10.1097/MNM.0000000000000172] [PMID: 25076159]
[374]
Devizzi L, Guidetti A, Seregni E, et al. Long-term results of autologous hematopoietic stem-cell transplantation after high-dose 90Y-ibritumomab tiuxetan for patients with poor-risk non-Hodgkin lymphoma not eligible for high-dose BEAM. J Clin Oncol 2013; 31(23): 2974-6.
[http://dx.doi.org/10.1200/JCO.2013.50.2922] [PMID: 23857974]
[375]
Andrade Campos MM, Montes Limón AE, Grasa JM, Lievano P, Baringo T, Giraldo P. RIT with Y90-ibritumomab tiuxetan in follicular non-hodgkin lymphoma: Evaluation of recent outcomes in a single institution. J Oncol 2012; 2012: 1-5.
[http://dx.doi.org/10.1155/2012/412742] [PMID: 23049552]
[376]
Provencio Pulla M, Cruz Mora MA, Gomez Codina J, et al. Consolidation treatment with y90-ibritumomab tiuxetan after r-chop induction in high-risk patients with follicular lymphoma (FL) (GOTEL-FL1LC): A multicentric, prospective study. Ann Oncol 2012; 23: ix351.
[http://dx.doi.org/10.1016/S0923-7534(20)33628-0]
[377]
Ria R, Musto P, Reale A, et al. 90Y-ibritumomab tiuxetan as consolidation therapy after autologous stem cell transplantation in aggressive non-Hodgkin lymphoma. J Nucl Med 2011; 52(6): 891-5.
[http://dx.doi.org/10.2967/jnumed.110.084376] [PMID: 21571787]
[378]
Storto G, De Renzo A, Pellegrino T, et al. Assessment of metabolic response to radioimmunotherapy with 90Y-ibritumomab tiuxetan in patients with relapsed or refractory B-cell non-Hodgkin lymphoma. Radiology 2010; 254(1): 245-52.
[http://dx.doi.org/10.1148/radiol.09090603] [PMID: 20032155]
[379]
Caekelbergh K, Moeremans K. PCN130 quality of life, outcomes, and costs in the belgian population receiving 90y-zevalin for non-hodgkin lymphoma: A study for reimbursement revision. Value Health 2010; 13(7): A276.
[http://dx.doi.org/10.1016/S1098-3015(11)72025-3]
[380]
Luptakova K, Michelle K, Pamela E, et al. 90Y-Ibritumomab tiuxetan followed by rituximab is a safe treatment option for relapsed or refractory diffuse large b-cell non-hodgkin s lymphoma. Blood 2010; 116(21): 2866.
[http://dx.doi.org/10.1182/blood.V116.21.2866.2866]
[381]
Witzig TE, Tomblyn MB, Misleh JG, et al. Anti-CD22 90Y-epratuzumab tetraxetan combined with anti-CD20 veltuzumab: A phase I study in patients with relapsed/refractory, aggressive non-Hodgkin lymphoma. Haematologica 2014; 99(11): 1738-45.
[http://dx.doi.org/10.3324/haematol.2014.112110] [PMID: 25150258]
[382]
Kraeber-Bodéré F, Faiqre-chauvet A, Bodet-Milin C, et al. Fractionated radioimmunotherapy of non-hodgkin lymphoma with 90-y-labeled anti-CD22 antibody, epratuzumab tetraxetan. Therap Nucl Med 2012; pp. 551-6.
[http://dx.doi.org/10.1007/174_2012_709]
[383]
Gupta M, Maurer MJ, Wellik LE, et al. Expression of Myc, but not pSTAT3, is an adverse prognostic factor for diffuse large B-cell lymphoma treated with epratuzumab/R-CHOP. Blood 2012; 120(22): 4400-6.
[http://dx.doi.org/10.1182/blood-2012-05-428466] [PMID: 23018644]
[384]
Micallef INM, Maurer MJ, Wiseman GA, et al. Epratuzumab with rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone chemotherapy in patients with previously untreated diffuse large B-cell lymphoma. Blood 2011; 118(15): 4053-61.
[http://dx.doi.org/10.1182/blood-2011-02-336990] [PMID: 21673350]
[385]
Sangha R, Davies A, Dang NH, et al. Phase 1 study of inotuzumab ozogamicin combined with R-GDP for the treatment of patients with relapsed/refractory CD22+ B-cell non-Hodgkin lymphoma. J Drug Assess 2017; 6(1): 10-7.
[http://dx.doi.org/10.1080/21556660.2017.1315336] [PMID: 28959500]
[386]
Wagner-Johnston ND, Goy A, Rodriguez MA, et al. A phase 2 study of inotuzumab ozogamicin and rituximab, followed by autologous stem cell transplant in patients with relapsed/refractory diffuse large B-cell lymphoma. Leuk Lymphoma 2015; 56(10): 2863-9.
[http://dx.doi.org/10.3109/10428194.2015.1017821] [PMID: 25707288]
[387]
Fayad L, Offner F, Smith MR, et al. Safety and clinical activity of a combination therapy comprising two antibody-based targeting agents for the treatment of non-Hodgkin lymphoma: results of a phase I/II study evaluating the immunoconjugate inotuzumab ozogamicin with rituximab. J Clin Oncol 2013; 31(5): 573-83.
[http://dx.doi.org/10.1200/JCO.2012.42.7211] [PMID: 23295790]
[388]
Ogura M, Hatake K, Ando K, et al. Phase I study of anti-CD22 immunoconjugate inotuzumab ozogamicin plus rituximab in relapsed/refractory B-cell non-Hodgkin lymphoma. Cancer Sci 2012; 103(5): 933-8.
[http://dx.doi.org/10.1111/j.1349-7006.2012.02241.x] [PMID: 22335424]
[389]
Forero-Torres A, Bartlett N, Beaven A, et al. Pilot study of dacetuzumab in combination with rituximab and gemcitabine for relapsed or refractory diffuse large B-cell lymphoma. Leuk Lymphoma 2013; 54(2): 277-83.
[http://dx.doi.org/10.3109/10428194.2012.710328] [PMID: 22775314]
[390]
Furman RR, Forero-Torres A, Shustov A, Drachman JG. A phase I study of dacetuzumab (SGN-40, a humanized anti-CD40 monoclonal antibody) in patients with chronic lymphocytic leukemia. Leuk Lymphoma 2010; 51(2): 228-35.
[http://dx.doi.org/10.3109/10428190903440946] [PMID: 20038235]
[391]
Byrd JC, Kipps TJ, Flinn IW, et al. Phase I study of the anti-CD40 humanized monoclonal antibody lucatumumab (HCD122) in relapsed chronic lymphocytic leukemia. Leuk Lymphoma 2012; 53(11): 2136-42.
[http://dx.doi.org/10.3109/10428194.2012.681655] [PMID: 22475052]
[392]
Lansigan F, Barak I, Pitcher B, et al. The prognostic significance of PFS24 in follicular lymphoma following firstline immunotherapy: A combined analysis of 3 CALGB trials. Cancer Med 2019; 8(1): 165-73.
[http://dx.doi.org/10.1002/cam4.1918] [PMID: 30575311]
[393]
Leonard JP, Friedberg JW, Younes A, et al. A phase I/II study of galiximab (an anti-CD80 monoclonal antibody) in combination with rituximab for relapsed or refractory, follicular lymphoma. Ann Oncol 2007; 18(7): 1216-23.
[http://dx.doi.org/10.1093/annonc/mdm114] [PMID: 17470451]
[394]
Burney C, Wadhera K, Breslin P, et al. BEAM-campath allogeneic stem cell transplant for patients with relapsed/refractory lymphoma: High incidence of long-term mixed donor-recipient chimerism and the response to donor lymphocyte infusions. Biol Blood Marrow Transplant 2020; 26(12): 2271-8.
[http://dx.doi.org/10.1016/j.bbmt.2020.08.028] [PMID: 32890747]
[395]
Horgan C, Elmoamly S, McIlroy G, et al. Reduced intensity alemtuzumab-containing allogeneic stem cell transplantation for relapsed/refractory low grade lymphoma: reflections on a single center experience. Leuk Lymphoma 2019; 60(12): 3075-7.
[http://dx.doi.org/10.1080/10428194.2019.1607323] [PMID: 31079514]
[396]
Brierley CK, Jones FM, Hanlon K, et al. Impact of graft‐versus‐lymphoma effect on outcomes after reduced intensity conditioned‐alemtuzumab allogeneic haematopoietic stem cell transplantation for patients with mature lymphoid malignancies. Br J Haematol 2019; 184(4): 547-57.
[http://dx.doi.org/10.1111/bjh.15685] [PMID: 30467838]
[397]
Truelove E, Fox C, Robinson S, et al. Carmustine, etoposide, cytarabine, and melphalan (BEAM)-campath allogeneic stem cell transplantation for aggressive non-hodgkin lymphoma: An analysis of outcomes from the British Society of Blood and Marrow Transplantation. Biol Blood Marrow Transplant 2015; 21(3): 483-8.
[http://dx.doi.org/10.1016/j.bbmt.2014.11.673] [PMID: 25490180]
[398]
Czajczynska A, Günther A, Repp R, et al. Allogeneic stem cell transplantation with BEAM and alemtuzumab conditioning immediately after remission induction has curative potential in advanced T-cell non-Hodgkin’s lymphoma. Biol Blood Marrow Transplant 2013; 19(11): 1632-7.
[http://dx.doi.org/10.1016/j.bbmt.2013.07.003] [PMID: 23850653]
[399]
van Besien K, Stock W, Rich E, et al. Phase I-II study of clofarabine-melphalan-alemtuzumab conditioning for allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant 2012; 18(6): 913-21.
[http://dx.doi.org/10.1016/j.bbmt.2011.10.041] [PMID: 22079470]
[400]
Stopeck AT, Unger JM, Rimsza LM, et al. A phase II trial of single agent bevacizumab in patients with relapsed, aggressive non-Hodgkin lymphoma: Southwest oncology group study S0108. Leuk Lymphoma 2009; 50(5): 728-35.
[http://dx.doi.org/10.1080/10428190902856808] [PMID: 19373598]
[401]
Davis KL, Fox E, Merchant MS, et al. Nivolumab in children and young adults with relapsed or refractory solid tumours or lymphoma (ADVL1412): a multicentre, open-label, single-arm, phase 1–2 trial. Lancet Oncol 2020; 21(4): 541-50.
[http://dx.doi.org/10.1016/S1470-2045(20)30023-1] [PMID: 32192573]
[402]
Ansell SM, Minnema MC, Johnson P, et al. Nivolumab for relapsed/refractory diffuse large B-cell lymphoma in patients ineligible for or having failed autologous transplantation: a single-arm, phase II study. J Clin Oncol 2019; 37(6): 481-9.
[http://dx.doi.org/10.1200/JCO.18.00766] [PMID: 30620669]
[403]
Nayak L, Iwamoto FM, LaCasce A, et al. PD-1 blockade with nivolumab in relapsed/refractory primary central nervous system and testicular lymphoma. Blood 2017; 129(23): 3071-3.
[http://dx.doi.org/10.1182/blood-2017-01-764209] [PMID: 28356247]
[404]
Kim S-J, Jiyeon H, Inju C, et al. Comparison of efficacy of pembrolizumab between Epstein-Barr virus.positive and.negative relapsed or refractory non-Hodgkin lymphomas. Cancer Res Treat 2019; 51(2): 611-22.
[http://dx.doi.org/10.4143/crt.2018.191]
[405]
Barta SK, Zain J, Macfarlane AW, et al. Phase II study of the PD-1 inhibitor pembrolizumab for the treatment of relapsed or refractory mature T-cell lymphoma. Clin Lymph Myel Leuk 2019; 19(6): 356-64.
[406]
Chen R, Zinzani PL, Fanale MA, et al. Phase II study of the efficacy and safety of pembrolizumab for relapsed/refractory classic Hodgkin lymphoma. J Clin Oncol 2017; 35(19): 2125-32.
[http://dx.doi.org/10.1200/JCO.2016.72.1316] [PMID: 28441111]
[407]
Zinzani PL, Ribrag V, Moskowitz CH, et al. Safety and tolerability of pembrolizumab in patients with relapsed/refractory primary mediastinal large B-cell lymphoma. Blood 2017; 130(3): 267-70.
[http://dx.doi.org/10.1182/blood-2016-12-758383] [PMID: 28490569]
[408]
Westin JR, Chu F, Zhang M, et al. Safety and activity of PD1 blockade by pidilizumab in combination with rituximab in patients with relapsed follicular lymphoma: a single group, open-label, phase 2 trial. Lancet Oncol 2014; 15(1): 69-77.
[http://dx.doi.org/10.1016/S1470-2045(13)70551-5] [PMID: 24332512]
[409]
Armand P, Nagler A, Weller EA, et al. Disabling immune tolerance by programmed death-1 blockade with pidilizumab after autologous hematopoietic stem-cell transplantation for diffuse large B-cell lymphoma: Results of an international phase II trial. J Clin Oncol 2013; 31(33): 4199-206.
[http://dx.doi.org/10.1200/JCO.2012.48.3685] [PMID: 24127452]
[410]
Herbaux C, Feugier P, Tilly H, et al. Safety and efficacy of atezolizumab, obinutuzumab and venetoclax combination for relapsed refractory non-Hodgkin lymphomas: Results from the safety-run of GATA, a LYSA study. Hematol Oncol 2019; 37: 332-2.
[http://dx.doi.org/10.1002/hon.144_2630]
[411]
Till BG, Park SI, Popplewell LL, et al. Safety and clinical activity of atezolizumab (anti-PDL1) in combination with obinutuzumab in patients with relapsed or refractory non-Hodgkin lymphoma. DC: American Society of Hematology Washington 2015.
[http://dx.doi.org/10.1182/blood.V126.23.5104.5104]
[412]
Herrera AF, Goy A, Mehta A, et al. Safety and activity of ibrutinib in combination with durvalumab in patients with relapsed or refractory follicular lymphoma or diffuse large B‐cell lymphoma. Am J Hematol 2020; 95(1): 18-27.
[http://dx.doi.org/10.1002/ajh.25659] [PMID: 31621094]
[413]
Ribrag V, Lee ST, Rizzeri D, et al. A phase 1b study to evaluate the safety and efficacy of durvalumab in combination with tremelimumab or danvatirsen in patients with relapsed or refractory diffuse large b-cell lymphoma. Clin Lymphoma Myeloma Leuk 2020.
[PMID: 33632668]
[414]
Shi Y, Su H, Song Y, et al. Safety and activity of sintilimab in patients with relapsed or refractory classical Hodgkin lymphoma (ORIENT-1): A multicentre, single-arm, phase 2 trial. Lancet Haematol 2019; 6(1): e12-9.
[http://dx.doi.org/10.1016/S2352-3026(18)30192-3] [PMID: 30612710]
[415]
Shi Y, Yongping S, Wenqi J, et al. Sintilimab (IBI308) in relapsed/refractory classical Hodgkin lymphoma: A multicenter, single-arm phase 2 trial in China (ORIENT-1 study). J Clin Oncol 36(15): 7536.
[416]
Zinzani PL, Karlin L, Radford J, et al. European phase II study of mogamulizumab, an anti-CCR4 monoclonal antibody, in relapsed/refractory peripheral T-cell lymphoma. Haematologica 2016; 101(10): e407-10.
[http://dx.doi.org/10.3324/haematol.2016.146977] [PMID: 27418646]
[417]
Duvic M, Pinter-Brown LC, Foss FM, et al. Phase 1/2 study of mogamulizumab, a defucosylated anti-CCR4 antibody, in previously treated patients with cutaneous T-cell lymphoma. Blood 2015; 125(12): 1883-9.
[http://dx.doi.org/10.1182/blood-2014-09-600924] [PMID: 25605368]
[418]
Ogura M, Ishida T, Hatake K, et al. Multicenter phase II study of mogamulizumab (KW-0761), a defucosylated anti-cc chemokine receptor 4 antibody, in patients with relapsed peripheral T-cell lymphoma and cutaneous T-cell lymphoma. J Clin Oncol 2014; 32(11): 1157-63.
[http://dx.doi.org/10.1200/JCO.2013.52.0924] [PMID: 24616310]
[419]
Tuscano JM, Maverakis E, Groshen S, et al. A phase I study of the combination of rituximab and ipilimumab in patients with relapsed/refractory B-cell lymphoma. Clin Cancer Res 2019; 25(23): 7004-13.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-0438] [PMID: 31481504]
[420]
Ansell SM, Hurvitz SA, Koenig PA, et al. Phase I study of ipilimumab, an anti-CTLA-4 monoclonal antibody, in patients with relapsed and refractory B-cell non-Hodgkin lymphoma. Clin Cancer Res 2009; 15(20): 6446-53.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-1339] [PMID: 19808874]