Manganese-Iron Mixed Oxides of Spinel Structure as Soot Combustion Catalysts

Page: [43 - 49] Pages: 7

  • * (Excluding Mailing and Handling)

Abstract

Background: An abatement of emission of particulate matter (mainly soot) is a challenge for the scientific community. An active and cheap catalytic system for soot combustion can help solve this problem.

Objective: The aim of this study was to investigate the influence of the composition of a series of Mn3-xFexO4 (x = 0 - 3) oxides of spinel structure on their catalytic properties in soot combustion.

Methods: Samples were synthesized by coprecipitation followed by a consecutive thermal treatment. Their structure was verified by X-ray diffraction and Raman spectroscopy. The obtained catalysts were tested in model soot oxidation (Printex U) in both tight and loose contact modes.

Results: It was found that different mechanisms of soot combustion occurred dependently on a chosen contact mode.

Conclusion: It was confirmed that in the case of tight contact (TC), a coexistence of divalent manganese and iron species was decisive for the catalytic activity, whereas a presence of trivalent manganese centers was crucial in the case of loose contact (LC). Mn1.2Fe1.8O4 was found to be the most active catalyst.

Graphical Abstract

[1]
van Setten, B.A.A.L.; Makkee, M.; Moulijn, J.A. Science and technology of catalytic diesel particulate filters. Catal. Rev., Sci. Eng., 2001, 43(4), 489-564.
[http://dx.doi.org/10.1081/CR-120001810]
[2]
Stanmore, B.R.; Brilhac, J.F.; Gilot, P. The oxidation of soot: A review of experiments, mechanisms and models. Carbon, 2001, 39(15), 2247-2268.
[http://dx.doi.org/10.1016/S0008-6223(01)00109-9]
[3]
Prasad, R.; Bella, V.R. A review on diesel soot emission, its effect and control. Bull. Chem. React. Eng. Catal., 2011, 5(2), 69-86.
[http://dx.doi.org/10.9767/bcrec.5.2.794.69-86]
[4]
Johnson, T. Vehicular emissions in review. SAE Int. J. Engines, 2016, 9(2), 1258-1275.
[http://dx.doi.org/10.4271/2016-01-0919]
[5]
Guan, B; Zhan, R; Lin, H; Huang, Z Review of the state-of-the-art of exhaust particulate filter technology in internal combustion engines. J. Environ. Manage, 2015, 154, 225-58.
[http://dx.doi.org/10.1016/j.jenvman.2015.02.027]
[6]
Hernández-Giménez, A.; Castelló, D.; Bueno-López, A. Diesel soot combustion catalysts: Review of active phases. Chem. Pap., 2014, 68(9), 1154-1168.
[http://dx.doi.org/10.2478/s11696-013-0469-7]
[7]
Fino, D.; Bensaid, S.; Piumetti, M.; Russo, N. A review on the catalytic combustion of soot in Diesel particulate filters for automotive applications: From powder catalysts to structured reactors. Appl. Catal. A Gen., 2016, 509, 75-96.
[http://dx.doi.org/10.1016/j.apcata.2015.10.016]
[8]
Graves, P.R.; Johnston, C.; Campaniello, J.J. Raman scattering in spinel structure ferrites. Mater. Res. Bull., 1988, 23(11), 1651-1660.
[http://dx.doi.org/10.1016/0025-5408(88)90255-3]
[9]
Lahiri, P.; Sengupta, S.K. Physico-chemical properties and catalytic activities of the spinel series Mnx Fe3 -x O4 towards peroxide decomposition. J. Chem. Soc., Faraday Trans., 1995, 91(19), 3489-3494.
[http://dx.doi.org/10.1039/FT9959103489]
[10]
Sahu, S.K.; Huang, B.; Lilova, K.; Woodfield, B.F.; Navrotsky, A. Thermodynamics of Fe3O4-Co3O4 and Fe3O4-Mn3O4 spinel solid solutions at the bulk and nanoscale. Phys. Chem. Chem. Phys., 2015, 17(34), 22286-22295.
[http://dx.doi.org/10.1039/C5CP02972D] [PMID: 26245233]
[11]
Fang, F.; Feng, N.; Wang, L.; Meng, J.; Liu, G.; Zhao, P.; Gao, P.; Ding, J.; Wan, H.; Guan, G. Fabrication of perovskite-type macro/mesoporous La1-xKxFeO3-δ nanotubes as an efficient catalyst for soot combustion. Appl. Catal. B., 2018, 236, 184-194.
[http://dx.doi.org/10.1016/j.apcatb.2018.05.030]
[12]
Hernández, W.Y.; Lopez-Gonzalez, D.; Ntais, S.; Zhao, C.; Boréave, A.; Vernoux, P. Silver-modified manganite and ferrite perovskites for catalyzed gasoline particulate filters. Appl. Catal. B., 2018, 226, 202-212.
[http://dx.doi.org/10.1016/j.apcatb.2017.12.029]
[13]
Hu, C.; Chen, Z.; Wei, C.; Wan, X.; Li, W.; Lin, Q. Au nanoparticles supported on iron-based oxides for soot oxidation: Physicochemical properties before and after the reaction. ACS Omega, 2021, 6(17), 11510-11518.
[http://dx.doi.org/10.1021/acsomega.1c00619] [PMID: 34056306]
[14]
Khan, A.U.; Ullah, S.; Yuan, Q.; Ali, S.; Ahmad, A.; Khan, Z.U.H.; Rahman, A.U. In situ fabrication of Au-CoFe2O4: an efficient catalyst for soot oxidation. Appl. Nanosci., 2020, 10(10), 3901-3910.
[http://dx.doi.org/10.1007/s13204-020-01502-y]
[15]
Sabet Sarvestani, N.; Tabasizadeh, M.; Hossein Abbaspour-Fard, M.; Nayebzadeh, H.; Karimi-Maleh, H.; Chu Van, T.; Jafari, M.; Ristovski, Z.; Brown, R.J. Influence of doping Mg cation in Fe3O4 lattice on its oxygen storage capacity to use as a catalyst for reducing emissions of a compression ignition engine. Fuel, 2020, 272, 117728.
[http://dx.doi.org/10.1016/j.fuel.2020.117728]
[16]
Figueredo, M.J.M.; Cocuzza, C.; Bensaid, S.; Fino, D.; Piumetti, M.; Russo, N. Catalytic abatement of volatile organic compounds and soot over manganese oxide catalysts. Materials (Basel), 2021, 14(16), 4534.
[http://dx.doi.org/10.3390/ma14164534] [PMID: 34443062]
[17]
Xu, K.; Wang, M.; Zhang, Y.; Shan, W.; He, H. Promotion effects of barium and cobalt on manganese oxide catalysts for soot oxidation. Ind. Eng. Chem. Res., 2021, 60(30), 11412-11420.
[http://dx.doi.org/10.1021/acs.iecr.1c01524]
[18]
Fedyna, M.; Legutko, P.; Gryboś, J.; Janas, J.; Yu, X.; Zhao, Z.; Kotarba, A.; Sojka, Z. Screening investigations into the effect of cryptomelane doping with 3d transition metal cations on the catalytic activity in soot oxidation, NO2 formation and SO2 resistance. Appl. Catal. A Gen., 2021, 624, 118302.
[http://dx.doi.org/10.1016/j.apcata.2021.118302]
[19]
Wang, J.; Zhang, C.; Wang, Y.; Chen, W.; Li, Z.; Feng, Y. The effect of synthesis methods on active oxygen species of MnOx-CuO in soot combustion. Catal. Lett., 2021, 151(11), 3261-3272.
[http://dx.doi.org/10.1007/s10562-021-03558-z]
[20]
Neelapala, SD; Shetty, A; Gaggar, G; Mall, R; Dasari, H Development of Iron (Fe) doped Manganese (III) oxide (Mn2O3) Mn2-xFexO3 catalysts for soot oxidation applications. Int. J. Appl. Eng., 2018, 13(1), 245-251.
[http://dx.doi.org/10.15242/DiRPUB.DIR1017201]
[21]
Jakubek, T.; Kaspera, W.; Legutko, P.; Stelmachowski, P.; Kotarba, A. How to efficiently promote transition metal oxides by alkali towards catalytic soot oxidation. Top. Catal., 2016, 59(10-12), 1083-1089.
[http://dx.doi.org/10.1007/s11244-016-0595-x]
[22]
Gillot, B.; Laarj, M.; Kacim, S. Reactivity towards oxygen and cation distribution of manganese iron spinel Mn3−xFexO4 (0≤x≤3) fine powders studied by thermogravimetry and IR spectroscopy. J. Mater. Chem., 1997, 7(5), 827-831.
[http://dx.doi.org/10.1039/a607179a]
[23]
Rieck, G.D.; Driessens, F.C.M. The structure of manganese-iron-oxygen spinels. Acta Crystallogr., 1966, 20(4), 521-525.
[http://dx.doi.org/10.1107/S0365110X66001178]
[24]
Shi, F.; Li, Y.; Zhang, Q.; Wang, H. Synthesis of Fe3O4/C/TiO2 magnetic photocatalyst via vapor phase hydrolysis. Int. J. Photoenergy, 2012, 2012, 1-8.
[http://dx.doi.org/10.1155/2012/365401]
[25]
Li, N.; Tian, Y.; Zhao, J.; Zhang, J.; Zhang, J.; Zuo, W.; Ding, Y. Efficient removal of chromium from water by Mn3O4 @ZnO/Mn3O4 composite under simulated sunlight irradiation: Synergy of photocatalytic reduction and adsorption. Appl. Catal. B, 2017, 214, 126-136.
[http://dx.doi.org/10.1016/j.apcatb.2017.05.041]
[26]
Shebanova, O.N.; Lazor, P. Raman spectroscopic study of magnetite (FeFe2O4): A new assignment for the vibrational spectrum. J. Solid State Chem., 2003, 174(2), 424-430.
[http://dx.doi.org/10.1016/S0022-4596(03)00294-9]
[27]
Freire, R.M.; Ribeiro, T.S.; Vasconcelos, I.F.; Denardin, J.C.; Barros, E.B.; Mele, G.; Carbone, L.; Mazzetto, S.E.; Fechine, P.B.A. MZnFe2O4 (M = Ni, Mn) cubic superparamagnetic nanoparticles obtained by hydrothermal synthesis. J. Nanopart. Res., 2013, 15(5), 1616.
[http://dx.doi.org/10.1007/s11051-013-1616-3]
[28]
Liu, L.; Sun, J.; Ding, J.; Zhang, Y.; Sun, T.; Jia, J. Highly active Mn 3- x Fex O4 spinel with defects for toluene mineralization: insights into regulation of the oxygen vacancy and active metals. Inorg. Chem., 2019, 58(19), 13241-13249.
[http://dx.doi.org/10.1021/acs.inorgchem.9b02105] [PMID: 31496227]
[29]
Larbi, T.; Doll, K.; Manoubi, T. Density functional theory study of ferromagnetically and ferrimagnetically ordered spinel oxide Mn3O4. A quantum mechanical simulation of their IR and Raman spectra. J. Alloys Compd., 2016, 688, 692-698.
[http://dx.doi.org/10.1016/j.jallcom.2016.07.041]
[30]
Legutko, P.; Pęza, J.; Villar Rossi, A.; Marzec, M.; Jakubek, T.; Kozieł, M.; Adamski, A. Elucidation of unexpectedly weak catalytic effect of doping with cobalt of the cryptomelane and birnessite systems active in soot combustion. Top. Catal., 2019, 62(7-11), 599-610.
[http://dx.doi.org/10.1007/s11244-019-01132-x]
[31]
Battault, T.; Legros, R.; Rousset, A. Structural and electrical properties of iron manganite spinels in relation with cationic distribution. J. Eur. Ceram. Soc., 1995, 15(11), 1141-1147.
[http://dx.doi.org/10.1016/0955-2219(95)00088-C]
[32]
Legutko, P.; Jakubek, T.; Kaspera, W.; Stelmachowski, P.; Sojka, Z.; Kotarba, A. Soot oxidation over K-doped manganese and iron spinels - How potassium precursor nature and doping level change the catalyst activity. Catal. Commun., 2014, 43, 34-37.
[http://dx.doi.org/10.1016/j.catcom.2013.08.021]
[33]
Legutko, P.; Kaspera, W.; Jakubek, T.; Stelmachowski, P.; Kotarba, A. Influence of potassium and NO addition on catalytic activity in soot combustion and surface properties of iron and manganese spinels. Top. Catal., 2013, 56(9-10), 745-749.
[http://dx.doi.org/10.1007/s11244-013-0026-1]
[34]
Legutko, P.; Kaspera, W.; Stelmachowski, P.; Sojka, Z.; Kotarba, A. Boosting the catalytic activity of magnetite in soot oxidation by surface alkali promotion. Catal. Commun., 2014, 56, 139-142.
[http://dx.doi.org/10.1016/j.catcom.2014.07.020]