Molecular Targets for Chalcones in Antileishmanial Drug Discovery

Page: [1414 - 1434] Pages: 21

  • * (Excluding Mailing and Handling)

Abstract

Leishmaniases are infectious diseases caused by flagellated protozoan parasites belonging to the genus Leishmania that infect cells of the mononuclear phagocytic system. These parasites are transmitted to humans by biting an infected female sandfly belonging to the genera Phlebotomus in the Old World and Lutzomyia in the New World. Despite representing a major public health problem, the therapeutic options are old and have several disadvantages. Given this scenario, developing vaccines or drugs for oral administration is necessary. Therefore, integrating computational and experimental strategies into the studies on molecular targets essential for the survival and virulence of the parasite is fundamental in researching and developing new treatments for leishmaniasis. In the effort to develop new vaccines and drugs, molecular docking methods are widely used as they explore the adopted conformations of small molecules within the binding sites of macromolecular targets and estimate the free energy of target-ligand binding. Privileged structures have been widely used as an effective model in medicinal chemistry for drug discovery. Chalcones are a common simple scaffold found in many compounds of natural and synthetic origin, where studies demonstrate the great pharmacological potential in treating leishmaniasis. This review is based on scientific articles published in the last ten years on molecular docking of chalcone derivatives for essential molecular targets of Leishmania. Thus, this review emphasizes how versatile chalcone derivatives can be used in developing new inhibitors of important molecular targets involved in the survival, growth, cell differentiation, and infectivity of the parasites that cause leishmaniasis.

Graphical Abstract

[1]
Bates, P.A. Transmission of Leishmania metacyclic promastigotes by phlebotomine sand flies. Int. J. Parasitol., 2007, 37(10), 1097-1106.
[http://dx.doi.org/10.1016/j.ijpara.2007.04.003] [PMID: 17517415]
[2]
Kaye, P.M.; Cruz, I.; Picado, A.; Van Bocxlaer, K.; Croft, S.L. Leishmaniasis immunopathology-impact on design and use of vaccines, diagnostics and drugs. Semin. Immunopathol., 2020, 42(3), 247-264.
[http://dx.doi.org/10.1007/s00281-020-00788-y] [PMID: 32152715]
[3]
Alvar, J.; Vélez, I.D.; Bern, C.; Herrero, M.; Desjeux, P.; Cano, J.; Jannin, J.; Boer, M. Leishmaniasis worldwide and global estimates of its incidence. PLoS One, 2012, 7(5), e35671.
[http://dx.doi.org/10.1371/journal.pone.0035671] [PMID: 22693548]
[4]
World Health Organization. Leishmaniasis; , 2022. Available from:https://www.who.int/news-room/fact-sheets/detail/leishmaniasis
[5]
Elmahallawy, E.; Agil, A. Treatment of leishmaniasis: A review and assessment of recent research. Curr. Pharm. Des., 2015, 21(17), 2259-2275.
[http://dx.doi.org/10.2174/1381612821666141231163053] [PMID: 25543123]
[6]
Ghorbani, M.; Farhoudi, R. Leishmaniasis in humans: Drug or vaccine therapy? Drug Des. Devel. Ther., 2017, 12, 25-40.
[http://dx.doi.org/10.2147/DDDT.S146521] [PMID: 29317800]
[7]
Anderson, A.C. The process of structure-based drug design. Chem. Biol., 2003, 10(9), 787-797.
[http://dx.doi.org/10.1016/j.chembiol.2003.09.002]
[8]
Wang, X.; Song, K.; Li, L.; Chen, L. Structure-based drug design strategies and challenges. Curr. Top. Med. Chem., 2018, 18(12), 998-1006.
[http://dx.doi.org/10.2174/1568026618666180813152921] [PMID: 30101712]
[9]
Meng, X.Y.; Zhang, H.X.; Mezei, M.; Cui, M. Molecular docking: A powerful approach for structure-based drug discovery. Curr. Computeraided Drug Des., 2011, 7(2), 146-157.
[http://dx.doi.org/10.2174/157340911795677602] [PMID: 21534921]
[10]
Zhuang, C.; Zhang, W.; Sheng, C.; Zhang, W.; Xing, C.; Miao, Z. Chalcone: A privileged structure in medicinal chemistry. Chem. Rev., 2017, 117(12), 7762-7810.
[http://dx.doi.org/10.1021/acs.chemrev.7b00020] [PMID: 28488435]
[11]
Tajuddeen, N.; Isah, M.B.; Suleiman, M.A.; van Heerden, F.R.; Ibrahim, M.A. The chemotherapeutic potential of chalcones against leish-maniases: A review. Int. J. Antimicrob. Agents, 2018, 51(3), 311-318.
[http://dx.doi.org/10.1016/j.ijantimicag.2017.06.010] [PMID: 28668673]
[12]
Chen, M.; Christensen, S.B.; Theander, T.G.; Kharazmi, A. Antileishmanial activity of licochalcone A in mice infected with Leishmania major and in hamsters infected with Leishmania donovani. Antimicrob. Agents Chemother., 1994, 38(6), 1339-1344.
[http://dx.doi.org/10.1128/AAC.38.6.1339] [PMID: 8092835]
[13]
de Mello, T.F.P.; Cardoso, B.M.; Lopes, S.N.; Bitencourt, H.R.; Voltarelli, E.M.; Hernandes, L.; Aristides, S.M.A.; Lonardoni, M.V.C.; Silveira, T.G.V. Activity of synthetic chalcones in hamsters experimentally infected with Leishmania (Viannia) braziliensis. Parasitol. Res., 2015, 114(10), 3587-3600.
[http://dx.doi.org/10.1007/s00436-015-4581-1] [PMID: 26096827]
[14]
Batovska, D.; Todorova, I. Trends in utilization of the pharmacological potential of chalcones. Curr. Clin. Pharmacol., 2010, 5(1), 1-29.
[http://dx.doi.org/10.2174/157488410790410579] [PMID: 19891604]
[15]
de Mello, M.V.P.; Abrahim-Vieira, B.A.; Domingos, T.F.S.; de Jesus, J.B.; de Sousa, A.C.C.; Rodrigues, C.R.; Souza, A.M.T. A com-prehensive review of chalcone derivatives as antileishmanial agents. Eur. J. Med. Chem., 2018, 150, 920-929.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.047] [PMID: 29602038]
[16]
Ouyang, Y.; Li, J.; Chen, X.; Fu, X.; Sun, S.; Wu, Q. Chalcone derivatives: Role in anticancer therapy. Biomolecules, 2021, 11(6), 894.
[http://dx.doi.org/10.3390/biom11060894] [PMID: 34208562]
[17]
Cheng, P.; Yang, L.; Huang, X.; Wang, X.; Gong, M. Chalcone hybrids and their antimalarial activity. Arch. Pharm., 2020, 353(4), 1900350.
[http://dx.doi.org/10.1002/ardp.201900350] [PMID: 32003489]
[18]
Mahapatra, D.K.; Bharti, S.K.; Asati, V. Chalcone derivatives: Anti-inflammatory potential and molecular targets perspectives. Curr. Top. Med. Chem., 2017, 17(28), 3146-3169.
[http://dx.doi.org/10.2174/1568026617666170914160446] [PMID: 28914193]
[19]
Martins, T.; Fonseca, B.M.; Rebelo, I. Antioxidant effects of chalcones during the inflammatory response: An overall review. Curr. Med. Chem., 2021, 28(37), 7658-7713.
[http://dx.doi.org/10.2174/0929867328666210511014949] [PMID: 33992052]
[20]
Xu, M.; Wu, P.; Shen, F.; Ji, J.; Rakesh, K.P. Chalcone derivatives and their antibacterial activities: Current development. Bioorg. Chem., 2019, 91, 103133.
[http://dx.doi.org/10.1016/j.bioorg.2019.103133] [PMID: 31374524]
[21]
Thapa, P.; Upadhyay, S.P.; Suo, W.Z.; Singh, V.; Gurung, P.; Lee, E.S.; Sharma, R.; Sharma, M. Chalcone and its analogs: Therapeutic and diagnostic applications in Alzheimer’s disease. Bioorg. Chem., 2021, 108, 104681.
[http://dx.doi.org/10.1016/j.bioorg.2021.104681] [PMID: 33571811]
[22]
Sahu, N.K.; Balbhadra, S.S.; Choudhary, J.; Kohli, D.V. Exploring pharmacological significance of chalcone scaffold: A review. Curr. Med. Chem., 2012, 19(2), 209-225.
[http://dx.doi.org/10.2174/092986712803414132] [PMID: 22320299]
[23]
Rudrapal, M.; Khan, J.; Dukhyil, A.A.B.; Alarousy, R.M.I.I.; Attah, E.I.; Sharma, T.; Khairnar, S.J.; Bendale, A.R. Chalcone scaffolds, bioprecursors of flavonoids: Chemistry, bioactivities, and pharmacokinetics. Molecules, 2021, 26(23), 7177.
[http://dx.doi.org/10.3390/molecules26237177] [PMID: 34885754]
[24]
Wang, Z.F.; Liu, J.; Yang, Y.A.; Zhu, H.L.; Review, A. A review: the anti-inflammatory, anticancer and antibacterial properties of four kinds of licorice flavonoids isolated from licorice. Curr. Med. Chem., 2020, 27(12), 1997-2011.
[http://dx.doi.org/10.2174/0929867325666181001104550] [PMID: 30277142]
[25]
Ugan, R.A.; Un, H. The protective roles of butein on indomethacin induced gastric ulcer in mice. Eurasian J. Med., 2020, 52(3), 265-270.
[http://dx.doi.org/10.5152/eurasianjmed.2020.20022] [PMID: 33209079]
[26]
Jayasooriya, R.G.P.T.; Molagoda, I.M.N.; Park, C.; Jeong, J.W.; Choi, Y.H.; Moon, D.O.; Kim, M.O.; Kim, G.Y. Molecular chemotherapeutic potential of butein: A concise review. Food Chem. Toxicol., 2018, 112, 1-10.
[http://dx.doi.org/10.1016/j.fct.2017.12.028] [PMID: 29258953]
[27]
Tuli, H.S.; Aggarwal, V.; Parashar, G.; Aggarwal, D.; Parashar, N.C.; Tuorkey, M.J.; Varol, M.; Sak, K.; Kumar, M.; Buttar, H.S. Xant-hohumol: A metabolite with promising anti-neoplastic potential. Anticancer. Agents Med. Chem., 2022, 22(3), 418-432.
[http://dx.doi.org/10.2174/1871520621666210223095021] [PMID: 33622230]
[28]
Harish, V.; Haque, E.; Śmiech, M.; Taniguchi, H.; Jamieson, S.; Tewari, D.; Bishayee, A. xanthohumol for human malignancies: chemis-try, pharmacokinetics and molecular targets. Int. J. Mol. Sci., 2021, 22(9), 4478.
[http://dx.doi.org/10.3390/ijms22094478] [PMID: 33923053]
[29]
Ammaji, S.; Masthanamma, S.; Bhandare, R.R.; Annadurai, S.; Shaik, A.B. Antitubercular and antioxidant activities of hydroxy and chloro substituted chalcone analogues: Synthesis, biological and computational studies. Arab. J. Chem., 2022, 15(2), 103581.
[http://dx.doi.org/10.1016/j.arabjc.2021.103581]
[30]
Li, Z.; Zhao, H.; Han, H.; Liu, Y.; Song, J.; Guo, W.; Chu, W.; Sun, Z. Graphene-supported ZnO nanoparticles: An efficient heterogeneous catalyst for the Claisen-Schmidt condensation reaction without additional base. Tetrahedron Lett., 2017, 58(42), 3984-3988.
[http://dx.doi.org/10.1016/j.tetlet.2017.09.011]
[31]
Ke, F.; Qiu, L.G.; Zhu, J. Fe3O4 @MOF core–shell magnetic microspheres as excellent catalysts for the Claisen-Schmidt condensation reaction. Nanoscale, 2014, 6(3), 1596-1601.
[http://dx.doi.org/10.1039/C3NR05051C] [PMID: 24336813]
[32]
Adnan, D.; Singh, B.; Mehta, S.K.; Kumar, V.; Kataria, R. Simple and solvent free practical procedure for chalcones: An expeditious, mild and greener approach. CRGSC Chem., 2020, 3, 100041.
[http://dx.doi.org/10.1016/j.crgsc.2020.100041]
[33]
Halpani, C.G.; Mishra, S. Lewis acid catalyst system for Claisen-Schmidt reaction under solvent free condition. Tetrahedron Lett., 2020, 61(31), 152175.
[http://dx.doi.org/10.1016/j.tetlet.2020.152175]
[34]
Rammohan, A.; Reddy, J.S.; Sravya, G.; Rao, C.N.; Zyryanov, G.V. Chalcone synthesis, properties and medicinal applications: A review. Environ. Chem. Lett., 2020, 18(2), 433-458.
[http://dx.doi.org/10.1007/s10311-019-00959-w]
[35]
Kumar, A.; Sharma, S.; Tripathi, V.D.; Srivastava, S. Synthesis of chalcones and flavanones using Julia–Kocienski olefination. Tetrahedron, 2010, 66(48), 9445-9449.
[http://dx.doi.org/10.1016/j.tet.2010.09.089]
[36]
Xu, C.; Chen, G.; Huang, X. Chalcones by the wittig reaction of a stable ylide with aldehydes under microwave irradiation. Org. Prep. Proced. Int., 1995, 27(5), 559-561.
[http://dx.doi.org/10.1080/00304949509458500]
[37]
Bałczewski, P.; Szczęsna, D.; Koprowski, M.; Różycka-Sokołowska, E.; Marciniak, B. Selective horner–wittig/nazarov vs. knoevena-gel/nazarov reactions in the synthesis of biologically active 3-aryl-substituted 1-indanones. Synlett, 2016, 28(1), 113-116.
[http://dx.doi.org/10.1055/s-0036-1588599]
[38]
Batalha, P.N.; Sagrillo, F.S.; Gama, I.L.; Cross-coupling, C-C. C-C cross-coupling: new methodologies, applications and discoveries over the last few years. Rev. Virtual Quím., 2014, 6(2), 494-550.
[http://dx.doi.org/10.5935/1984-6835.20140034]
[39]
Yang, Z.; Gong, P.X.; Han, W.; Chen, J.; Zhang, J.; Gong, X. Ligand-free palladium-catalyzed carbonylative suzuki couplings of vinyl iodides with arylboronic acids under substoichiometric base conditions. Synlett, 2021, 32(12), 1207-1212.
[http://dx.doi.org/10.1055/a-1511-0435]
[40]
Wu, X.F.; Neumann, H.; Beller, M. Palladium-catalyzed coupling reactions: carbonylative Heck reactions to give chalcones. Angew. Chem. Int. Ed., 2010, 49(31), 5284-5288.
[http://dx.doi.org/10.1002/anie.201002155] [PMID: 20572234]
[41]
Rao, M.L.N.; Venkatesh, V.; Jadhav, D.N. A palladium catalyzed atom-efficient cross-coupling reactivity of triarylbismuths with α,β-unsaturated acyl chlorides. J. Organomet. Chem., 2008, 693(15), 2494-2498.
[http://dx.doi.org/10.1016/j.jorganchem.2008.05.012]
[42]
Ogawa, D.; Hyodo, K.; Suetsugu, M.; Li, J.; Inoue, Y.; Fujisawa, M.; Iwasaki, M.; Takagi, K.; Nishihara, Y. Palladium-catalyzed and cop-per-mediated cross-coupling reaction of aryl- or alkenylboronic acids with acid chlorides under neutral conditions: efficient synthetic methods for diaryl ketones and chalcones at room temperature. Tetrahedron, 2013, 69(12), 2565-2571.
[http://dx.doi.org/10.1016/j.tet.2013.01.058]
[43]
Unoh, Y.; Hirano, K.; Satoh, T.; Miura, M. Palladium-catalyzed decarboxylative arylation of benzoylacrylic acids toward the synthesis of chalcones. J. Org. Chem., 2013, 78(10), 5096-5102.
[http://dx.doi.org/10.1021/jo400716e] [PMID: 23617270]
[44]
Zhang, N.; Yang, D.; Wei, W.; Yuan, L.; Nie, F.; Tian, L.; Wang, H. Silver-catalyzed double-decarboxylative cross-coupling of α-keto acids with cinnamic acids in water: A strategy for the preparation of chalcones. J. Org. Chem., 2015, 80(6), 3258-3263.
[http://dx.doi.org/10.1021/jo502642n] [PMID: 25699630]
[45]
Elkanzi, N.A.A.; Hrichi, H.; Alolayan, R.A.; Derafa, W.; Zahou, F.M.; Bakr, R.B. Synthesis of chalcones derivatives and their biological activities: A Review. ACS Omega, 2022, 7(32), 27769-27786.
[http://dx.doi.org/10.1021/acsomega.2c01779] [PMID: 35990442]
[46]
Singh, P.; Anand, A.; Kumar, V. Recent developments in biological activities of chalcones: A mini review. Eur. J. Med. Chem., 2014, 85, 758-777.
[http://dx.doi.org/10.1016/j.ejmech.2014.08.033] [PMID: 25137491]
[47]
Aucamp, J.; N’Da, D.D. In vitro antileishmanial efficacy of antiplasmodial active aminoquinoline-chalcone hybrids. Exp. Parasitol., 2022, 236-237, 108249.
[http://dx.doi.org/10.1016/j.exppara.2022.108249] [PMID: 35318066]
[48]
Shivahare, R.; Korthikunta, V.; Chandasana, H.; Suthar, M.K.; Agnihotri, P.; Vishwakarma, P.; Chaitanya, T.K.; Kancharla, P.; Khaliq, T.; Gupta, S.; Bhatta, R.S.; Pratap, J.V.; Saxena, J.K.; Gupta, S.; Tadigoppula, N. Synthesis, structure-activity relationships, and biological studies of chromenochalcones as potential antileishmanial agents. J. Med. Chem., 2014, 57(8), 3342-3357.
[http://dx.doi.org/10.1021/jm401893j] [PMID: 24635539]
[49]
Gutteridge, C.; Vo, J.; Tillett, C.; Vigilante, J.; Dettmer, J.; Patterson, S.; Werbovetz, K.; Capers, J.; Nichols, D.; Bhattacharjee, A.; Gerena, L. Antileishmanial and antimalarial chalcones: synthesis, efficacy and cytotoxicity of pyridinyl and naphthalenyl analogs. Med. Chem., 2007, 3(2), 115-119.
[http://dx.doi.org/10.2174/157340607780059530] [PMID: 17348849]
[50]
Gupta, S.; Shivahare, R.; Korthikunta, V.; Singh, R.; Gupta, S.; Tadigoppula, N. Synthesis and biological evaluation of chalcones as potential antileishmanial agents. Eur. J. Med. Chem., 2014, 81, 359-366.
[http://dx.doi.org/10.1016/j.ejmech.2014.05.034] [PMID: 24858541]
[51]
Monga, V.; Goyal, K.; Steindel, M.; Malhotra, M.; Rajani, D.P.; Rajani, S.D. Synthesis and evaluation of new chalcones, derived pyrazoline and cyclohexenone derivatives as potent antimicrobial, antitubercular and antileishmanial agents. Med. Chem. Res., 2014, 23(4), 2019-2032.
[http://dx.doi.org/10.1007/s00044-013-0803-1]
[52]
Aponte, J.C.; Castillo, D.; Estevez, Y.; Gonzalez, G.; Arevalo, J.; Hammond, G.B.; Sauvain, M. In vitro and in vivo anti-Leishmania activity of polysubstituted synthetic chalcones. Bioorg. Med. Chem. Lett., 2010, 20(1), 100-103.
[http://dx.doi.org/10.1016/j.bmcl.2009.11.033] [PMID: 19962891]
[53]
Boeck, P.; Bandeira Falcão, C.A.; Leal, P.C.; Yunes, R.A.; Filho, V.C.; Torres-Santos, E.C.; Rossi-Bergmann, B. Synthesis of chalcone analogues with increased antileishmanial activity. Bioorg. Med. Chem., 2006, 14(5), 1538-1545.
[http://dx.doi.org/10.1016/j.bmc.2005.10.005] [PMID: 16386424]
[54]
Cuellar, J.E.; Quiñones, W.; Robledo, S.; Gil, J.; Durango, D. Coumaro-chalcones synthesized under solvent-free conditions as potential agents against malaria, leishmania and trypanosomiasis. Heliyon, 2022, 8(2), e08939.
[http://dx.doi.org/10.1016/j.heliyon.2022.e08939] [PMID: 35198789]
[55]
Raj, S.; Sasidharan, S.; Balaji, S.N.; Saudagar, P. An overview of biochemically characterized drug targets in metabolic pathways of Leishmania parasite. Parasitol. Res., 2020, 119(7), 2025-2037.
[http://dx.doi.org/10.1007/s00436-020-06736-x] [PMID: 32504119]
[56]
Jain, S.; Sahu, U.; Kumar, A.; Khare, P. Metabolic pathways of leishmania parasite: source of pertinent drug targets and potent drug candidates. Pharmaceutics, 2022, 14(8), 1590.
[http://dx.doi.org/10.3390/pharmaceutics14081590] [PMID: 36015216]
[57]
Bakker, B.M.; Westerhoff, H.V.; Opperdoes, F.R.; Michels, P.A.M. Metabolic control analysis of glycolysis in trypanosomes as an approach to improve selectivity and effectiveness of drugs. Mol. Biochem. Parasitol., 2000, 106(1), 1-10.
[http://dx.doi.org/10.1016/S0166-6851(99)00197-8] [PMID: 10743606]
[58]
Michels, P.A.M.; Hannaert, V.; Bringaud, F. Metabolic aspects of glycosomes in trypanosomatidae - new data and views. Parasitol. Today, 2000, 16(11), 482-489.
[http://dx.doi.org/10.1016/S0169-4758(00)01810-X] [PMID: 11063859]
[59]
Suresh, S.; Turley, S.; Opperdoes, F.R.; Michels, P.A.M.; Hol, W.G.J. A potential target enzyme for trypanocidal drugs revealed by the crystal structure of NAD-dependent glycerol-3-phosphate dehydrogenase from Leishmania mexicana. Structure, 2000, 8(5), 541-552.
[http://dx.doi.org/10.1016/S0969-2126(00)00135-0] [PMID: 10801498]
[60]
Marché, S.; Michels, P.A.M.; Opperdoes, F.R. Comparative study of Leishmania mexicana and Trypanosoma brucei NAD-dependent gly-cerol-3-phosphate dehydrogenase. Mol. Biochem. Parasitol., 2000, 106(1), 83-91.
[http://dx.doi.org/10.1016/S0166-6851(99)00204-2] [PMID: 10743613]
[61]
Kovářová, J.; Barrett, M.P. The pentose phosphate pathway in parasitic trypanosomatids. Trends Parasitol., 2016, 32(8), 622-634.
[http://dx.doi.org/10.1016/j.pt.2016.04.010]
[62]
Choe, J.; Guerra, D.; Michels, P.A.M.; Hol, W.G.J. Leishmania mexicana glycerol-3-phosphate dehydrogenase showed conformational changes upon binding a bi-substrate adduct. J. Mol. Biol., 2003, 329(2), 335-349.
[http://dx.doi.org/10.1016/S0022-2836(03)00421-2] [PMID: 12758080]
[63]
Passalacqua, T.G.; Torres, F.A.E.; Nogueira, C.T.; de Almeida, L.; Del Cistia, M.L.; dos Santos, M.B.; Regasini, L.O.; Graminha, M.A.S.; Marchetto, R.; Zottis, A.; Marchetto, R.; Zottis, A. The 2′,4′-dihydroxychalcone could be explored to develop new inhibitors against the glycerol-3-phosphate dehydrogenase from Leishmania species. Bioorg. Med. Chem. Lett., 2015, 25(17), 3564-3568.
[http://dx.doi.org/10.1016/j.bmcl.2015.06.085] [PMID: 26169126]
[64]
da Silva, M.F.L.; Zampieri, R.A.; Muxel, S.M.; Beverley, S.M.; Floeter-Winter, L.M. Leishmania amazonensis arginase compartmentalization in the glycosome is important for parasite infectivity. PLoS One, 2012, 7(3), e34022.
[http://dx.doi.org/10.1371/journal.pone.0034022] [PMID: 22479507]
[65]
D’Antonio, E.L.; Ullman, B.; Roberts, S.C.; Dixit, U.G.; Wilson, M.E.; Hai, Y.; Christianson, D.W. Crystal structure of arginase from Leishmania mexicana and implications for the inhibition of polyamine biosynthesis in parasitic infections. Arch. Biochem. Biophys., 2013, 535(2), 163-176.
[http://dx.doi.org/10.1016/j.abb.2013.03.015] [PMID: 23583962]
[66]
Christianson, D.W. Arginase: structure, mechanism, and physiological role in male and female sexual arousal. Acc. Chem. Res., 2005, 38(3), 191-201.
[http://dx.doi.org/10.1021/ar040183k] [PMID: 15766238]
[67]
da Silva, M.F.L.; Floeter-Winter, L.M. Arginase in Leishmania. In: Proteins and Proteomics of Leishmania and Trypanosoma; Santos, A.L.S.; Branquinha, M.H.; d’Avila-Levy, C.M.; Kneipp, L.F.; Sodré, C.L., Eds.; Springer Netherlands: Dordrecht, 2014; pp. 103-117.
[http://dx.doi.org/10.1007/978-94-007-7305-9_4]
[68]
Carter, N.S.; Stamper, B.D.; Elbarbry, F.; Nguyen, V.; Lopez, S.; Kawasaki, Y.; Poormohamadian, R.; Roberts, S.C. Natural products that target the arginase in Leishmania parasites hold therapeutic promise. Microorganisms, 2021, 9(2), 267.
[http://dx.doi.org/10.3390/microorganisms9020267] [PMID: 33525448]
[69]
Colotti, G.; Ilari, A. Polyamine metabolism in Leishmania: from arginine to trypanothione. Amino Acids, 2011, 40(2), 269-285.
[http://dx.doi.org/10.1007/s00726-010-0630-3] [PMID: 20512387]
[70]
Acuña, S.M.; Aoki, J.I.; Laranjeira-Silva, M.F.; Zampieri, R.A.; Fernandes, J.C.R.; Muxel, S.M.; Floeter-Winter, L.M. Arginase expression modulates nitric oxide production in Leishmania (Leishmania) amazonensis. PLoS One, 2017, 12(11), e0187186.
[http://dx.doi.org/10.1371/journal.pone.0187186] [PMID: 29135983]
[71]
Pessenda, G.; Silva, J.S. Arginase and its mechanisms in Leishmania persistence. Parasite Immunol., 2020, 42(7), e12722.
[http://dx.doi.org/10.1111/pim.12722] [PMID: 32294247]
[72]
Stenger, S.; Thüring, H.; Röllinghoff, M.; Bogdan, C. Tissue expression of inducible nitric oxide synthase is closely associated with resis-tance to Leishmania major. J. Exp. Med., 1994, 180(3), 783-793.
[http://dx.doi.org/10.1084/jem.180.3.783] [PMID: 7520472]
[73]
Reguera, R.M.; Balaña-Fouce, R.; Showalter, M.; Hickerson, S.; Beverley, S.M. Leishmania major lacking arginase (ARG) are auxotrophic for polyamines but retain infectivity to susceptible BALB/c mice. Mol. Biochem. Parasitol., 2009, 165(1), 48-56.
[http://dx.doi.org/10.1016/j.molbiopara.2009.01.001] [PMID: 19393161]
[74]
Gaur, U.; Roberts, S.C.; Dalvi, R.P.; Corraliza, I.; Ullman, B.; Wilson, M.E. An Effect of parasite-encoded arginase on the outcome of murine cutaneous leishmaniasis. J. Immunol., 2007, 179(12), 8446-8453.
[http://dx.doi.org/10.4049/jimmunol.179.12.8446]
[75]
Garcia, A.R.; Oliveira, D.M.P.; Jesus, J.B.; Souza, A.M.T.; Sodero, A.C.R.; Vermelho, A.B.; Leal, I.C.R.; Souza, R.O.M.A.; Miranda, L.S.M.; Pinheiro, A.S.; Rodrigues, I.A. Identification of chalcone derivatives as inhibitors of Leishmania infantum Arginase and promising antileishmanial agents. Front. Chem., 2021, 8, 624678.
[http://dx.doi.org/10.3389/fchem.2020.624678] [PMID: 33520939]
[76]
Vázquez, K.; Paulino, M.; Salas, C.O.; Zarate-Ramos, J.J.; Vera, B.; Rivera, G. Trypanothione reductase: A target for the development of anti- trypanosoma cruzi drugs. Mini Rev. Med. Chem., 2017, 17(11), 939-946.
[http://dx.doi.org/10.2174/1389557517666170315145410] [PMID: 28302040]
[77]
Fairlamb, A.H.; Cerami, A. Metabolism and functions of trypanothione in the Kinetoplastida. Annu. Rev. Microbiol., 1992, 46(1), 695-729.
[http://dx.doi.org/10.1146/annurev.mi.46.100192.003403] [PMID: 1444271]
[78]
Battista, T.; Colotti, G.; Ilari, A.; Fiorillo, A. Targeting trypanothione reductase, a key enzyme in the redox trypanosomatid metabolism, to develop new drugs against leishmaniasis and trypanosomiases. Molecules, 2020, 25(8), 1924.
[http://dx.doi.org/10.3390/molecules25081924] [PMID: 32326257]
[79]
Leichus, B.N.; Bradley, M.; Nadeau, K.; Walsh, C.T.; Blanchard, J.S. Kinetic isotope effect analysis of the reaction catalyzed by Trypanosoma congolense trypanothione reductase. Biochemistry, 1992, 31(28), 6414-6420.
[http://dx.doi.org/10.1021/bi00143a008] [PMID: 1633154]
[80]
Müller, S.; Liebau, E.; Walter, R.D.; Krauth-Siegel, R.L. Thiolbased redox metabolism of protozoan parasites. Trends Parasitol., 2003, 19(7), 320-328.
[http://dx.doi.org/10.1016/S1471-4922(03)00141-7] [PMID: 12855383]
[81]
Ortalli, M.; Ilari, A.; Colotti, G.; De Ionna, I.; Battista, T.; Bisi, A.; Gobbi, S.; Rampa, A.; Di Martino, R.M.C.; Gentilomi, G.A.; Varani, S.; Belluti, F. Identification of chalcone-based antileishmanial agents targeting trypanothione reductase. Eur. J. Med. Chem., 2018, 152, 527-541.
[http://dx.doi.org/10.1016/j.ejmech.2018.04.057] [PMID: 29758517]
[82]
Wazir, H.; Saeed, A.; Jabeen, F.; Flörke, U.; Ain, Q-U.; Akhter, N. Synthesis, crystal structure, cytotoxic, antileishmanial and docking evaluation of 3-(4-Chloro-3-nitrophenyl)-1-phenylprop-2-en-1-one. Chinese J. Struct. Chem., 2018, 37, 1250-1258.
[http://dx.doi.org/10.14102/j.cnki.0254-5861.2011-1908]
[83]
Ünver, Y.; Tuluk, M.; Kahriman, N.; Emirik, M.; Bektaş, E.; Direkel, Ş. New chalcone derivatives with schiff base-thiophene: synthesis, biological activity, and molecular docking studies. Russ. J. Gen. Chem., 2019, 89(4), 794-799.
[http://dx.doi.org/10.1134/S107036321904025X]
[84]
Osman, M.S.; Awad, T.A.; Shantier, S.W.; Garelnabi, E.A.; Osman, W.; Mothana, R.A.; Nasr, F.A.; Elhag, R.I. Identification of some chal-cone analogues as potential antileishmanial agents: An integrated in vitro and in silico evaluation. Arab. J. Chem., 2022, 15(4), 103717.
[http://dx.doi.org/10.1016/j.arabjc.2022.103717]
[85]
Castro, H.; Romao, S.; Gadelha, F.R.; Tomás, A.M. Leishmania infantum: Provision of reducing equivalents to the mitochondrial trypare-doxin/tryparedoxin peroxidase system. Exp. Parasitol., 2008, 120(4), 421-423.
[http://dx.doi.org/10.1016/j.exppara.2008.09.002] [PMID: 18809403]
[86]
Fiorillo, A.; Colotti, G.; Boffi, A.; Baiocco, P.; Ilari, A. The crystal structures of the tryparedoxin-tryparedoxin peroxidase couple unveil the structural determinants of Leishmania detoxification pathway. PLoS Negl. Trop. Dis., 2012, 6(8), e1781.
[http://dx.doi.org/10.1371/journal.pntd.0001781] [PMID: 22928053]
[87]
Wood, Z.A.; Poole, L.B.; Karplus, P.A. Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science, 2003, 300(5619), 650-653.
[http://dx.doi.org/10.1126/science.1080405]
[88]
Suman, S.S.; Equbal, A.; Zaidi, A.; Ansari, M.Y.; Singh, K.P.; Singh, K.; Purkait, B.; Sahoo, G.C.; Bimal, S.; Das, P.; Ali, V. Upregulation of cytosolic tryparedoxin in Amp B resistant isolates of Leishmania donovani and its interaction with cytosolic tryparedoxin peroxidase. Biochimie, 2016, 121, 312-325.
[http://dx.doi.org/10.1016/j.biochi.2015.12.017] [PMID: 26743980]
[89]
Brindisi, M.; Brogi, S.; Relitti, N.; Vallone, A.; Butini, S.; Gemma, S.; Novellino, E.; Colotti, G.; Angiulli, G.; Di Chiaro, F.; Fiorillo, A.; Ilari, A.; Campiani, G. Structure-based discovery of the first non-covalent inhibitors of Leishmania major tryparedoxin peroxidase by high throughput docking. Sci. Rep., 2015, 5(1), 9705.
[http://dx.doi.org/10.1038/srep09705] [PMID: 25951439]
[90]
Escrivani, D.O.; Charlton, R.L.; Caruso, M.B.; Burle-Caldas, G.A.; Borsodi, M.P.G.; Zingali, R.B.; Arruda-Costa, N.; Palmeira-Mello, M.V.; de Jesus, J.B.; Souza, A.M.T.; Abrahim-Vieira, B.; Freitag-Pohl, S.; Pohl, E.; Denny, P.W.; Rossi-Bergmann, B.; Steel, P.G. Chalco-nes identify cTXNPx as a potential antileishmanial drug target. PLoS Negl. Trop. Dis., 2021, 15(11), e0009951.
[http://dx.doi.org/10.1371/journal.pntd.0009951] [PMID: 34780470]
[91]
Zhang, T.; Maekawa, Y.; Sakai, T.; Nakano, Y.; Ishii, K.; Hisaeda, H.; Kominami, E.; Katunuma, N.; Asao, T.; Himeno, K. Splenic cathep-sin L is maturated from the proform by interferon-γ after immunization with exogenous antigens. Biochem. Biophys. Res. Commun., 2001, 283(2), 499-506.
[http://dx.doi.org/10.1006/bbrc.2001.4795] [PMID: 11327729]
[92]
Williams, R.A.; Tetley, L.; Mottram, J.C.; Coombs, G.H. Cysteine peptidases CPA and CPB are vital for autophagy and differentiation in Leishmania mexicana. Mol. Microbiol., 2006, 61(3), 655-674.
[http://dx.doi.org/10.1111/j.1365-2958.2006.05274.x] [PMID: 16803590]
[93]
Soares, R.; dos Santos, A.L.; Bonaldo, M.C.; de Andrade, A.F.; Alviano, C.S.; Angluster, J.; Goldenberg, S. Leishmania (Leishmania) amazonensis: differential expression of proteinases and cell-surface polypeptides in avirulent and virulent promastigotes. Exp. Parasitol., 2003, 104(3-4), 104-112.
[http://dx.doi.org/10.1016/S0014-4894(03)00135-8] [PMID: 14552857]
[94]
Mottram, J.C.; Brooks, D.R.; Coombs, G.H. Roles of cysteine proteinases of trypanosomes and Leishmania in host-parasite interactions. Curr. Opin. Microbiol., 1998, 1(4), 455-460.
[http://dx.doi.org/10.1016/S1369-5274(98)80065-9] [PMID: 10066510]
[95]
Mottram, J.C.; Coombs, G.H.; Alexander, J. Cysteine peptidases as virulence factors of Leishmania. Curr. Opin. Microbiol., 2004, 7(4), 375-381.
[http://dx.doi.org/10.1016/j.mib.2004.06.010] [PMID: 15358255]
[96]
Gomes, M.N.; Alcântara, L.M.; Neves, B.J.; Melo-Filho, C.C.; Freitas-Junior, L.H.; Moraes, C.B.; Ma, R.; Franzblau, S.G.; Muratov, E.; Andrade, C.H. Computer-aided discovery of two novel chalcone-like compounds active and selective against Leishmania infantum. Bioorg. Med. Chem. Lett., 2017, 27(11), 2459-2464.
[http://dx.doi.org/10.1016/j.bmcl.2017.04.010] [PMID: 28434763]
[97]
Nare, B.; Luba, J.; Hardy, L.W.; Beverley, S. New approaches to Leishmania chemotherapy: pteridine reductase 1 (PTR1) as a target and modulator of antifolate sensitivity. Parasitology, 1997, 114(S7), 101-110.
[http://dx.doi.org/10.1017/S0031182097001133] [PMID: 9309772]
[98]
Gourley, D.G.; Schüttelkopf, A.W.; Leonard, G.A.; Luba, J.; Hardy, L.W.; Beverley, S.M.; Hunter, W.N. Pteridine reductase mechanism correlates pterin metabolism with drug resistance in trypanosomatid parasites. Nat. Struct. Biol., 2001, 8(6), 521-525.
[http://dx.doi.org/10.1038/88584] [PMID: 11373620]
[99]
Cavazzuti, A.; Paglietti, G.; Hunter, W.N.; Gamarro, F.; Piras, S.; Loriga, M.; Allecca, S.; Corona, P.; McLuskey, K.; Tulloch, L.; Gibellini, F.; Ferrari, S.; Costi, M.P. Discovery of potent pteridine reductase inhibitors to guide antiparasite drug development. Proc. Natl. Acad. Sci., 2008, 105(5), 1448-1453.
[http://dx.doi.org/10.1073/pnas.0704384105] [PMID: 18245389]
[100]
Kumar, P.; Kumar, A.; Verma, S.S.; Dwivedi, N.; Singh, N.; Siddiqi, M.I.; Tripathi, R.P.; Dube, A.; Singh, N. Leishmania donovani pteridi-ne reductase 1: Biochemical properties and structure-modeling studies. Exp. Parasitol., 2008, 120(1), 73-79.
[http://dx.doi.org/10.1016/j.exppara.2008.05.005] [PMID: 18617167]
[101]
Rashid, U.; Sultana, R.; Shaheen, N.; Hassan, S.F.; Yaqoob, F.; Ahmad, M.J.; Iftikhar, F.; Sultana, N.; Asghar, S.; Yasinzai, M.; Ansari, F.L.; Qureshi, N.A. Structure based medicinal chemistrydriven strategy to design substituted dihydropyrimidines as potential antileishmanial agents. Eur. J. Med. Chem., 2016, 115, 230-244.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.022] [PMID: 27017551]
[102]
Wang, H.; Yan, Z.; Geng, J.; Kunz, S.; Seebeck, T.; Ke, H. Crystal structure of the Leishmania major phosphodiesterase LmjPDEB1 and insight into the design of the parasite-selective inhibitors. Mol. Microbiol., 2007, 66(4), 1029-1038.
[http://dx.doi.org/10.1111/j.1365-2958.2007.05976.x] [PMID: 17944832]
[103]
Bender, A.T.; Beavo, J.A. Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol. Rev., 2006, 58(3), 488-520.
[http://dx.doi.org/10.1124/pr.58.3.5] [PMID: 16968949]
[104]
Bhattacharya, A.; Biswas, A.; Das, P.K. Role of intracellular cAMP in differentiation-coupled induction of resistance against oxidative damage in Leishmania donovani. Free Radic. Biol. Med., 2008, 44(5), 779-794.
[http://dx.doi.org/10.1016/j.freeradbiomed.2007.10.059] [PMID: 18078824]
[105]
Saha, A.; Bhattacharjee, A.; Vij, A.; Das, P.K.; Bhattacharya, A.; Biswas, A. Evaluation of modulators of cAMP-response in terms of their impact on cell cycle and mitochondrial activity of Leishmania donovani. Front. Pharmacol., 2020, 11, 782.
[http://dx.doi.org/10.3389/fphar.2020.00782] [PMID: 32670055]
[106]
Ochoa, R.; García, E.; Robledo, S.M.; Cardona G, W. Virtual and experimental screening of phenylfuranchalcones as potential antiLeishmania candidates. J. Mol. Graph. Model., 2019, 91, 164-171.
[http://dx.doi.org/10.1016/j.jmgm.2019.06.015] [PMID: 31252366]