Probing into the Flap-dimer Dynamics of the Mycobacterium tuberculosis Kasa Enzyme Binding Landscape Provides the Underlying Inhibitory Mechanisms of JSF-3285 and 5G

Page: [1065 - 1080] Pages: 16

  • * (Excluding Mailing and Handling)

Abstract

Background: β-ketoacyl-ACP synthase I (KasA I) enzyme is crucial in mycolic acid synthesis via catalytic condensation reactions, hence implicated in M. tuberculosis’s virulence and drug resistance. Presently, there is no known potent KasA inhibitor; thiolactomycin lacks potency. Recently reported indazole compounds JSF-3285/tr1DG167 and 5G/tr2DG167 inhibit the KasA through binding to the substrate cavity. However, the molecular mechanism is still unclear, and the unknown resistance mechanisms raise concerns about JSF-3285's novelty.

Methods: This study is the first to report the flap dimer opening and closing of the KasA pocket using combined metrics to define the symmetry impact of the flap-dimer motions and investigate the underlying inhibitory mechanism of tr1DG167 andtr2DG167 using all-atom MD simulation.

Results: The distance/d1 between the flap (PRO147) and dimer (LEU205) residues; TriC-α angle (θ1: PRO147-VAL83-LEU205 & θ2: PRO147-GLU199-LEU205); and the dihedral angle (Φ) were applied to investigate the flap “twisting” and dimer shift closing due to concerted motion by adjacent glycine-rich and glutamic acid-rich loops around the active site during the binding pocket’s opening. The full flap-dimer of the unbound opens at 230 ns (d1 = 21.51 Å), corresponding to the largest TriC-α angle θ1 44.5° as θ2 is unreliable to describe the flap-dimer motion. The overall averages θ1 and θ2 for the bounds were ~23.13° and ~23.31°, respectively. Thus, the degree of KasA flap dimer opening is best investigated by distance and θ1. BFE (Kcal/mol) of -44.05 (tr1DG167) showed a higher affinity for the pocket than tr2DG167-KasA (-32.16). Both tr1DG167 and tr2DG167 formed hydrophobic interactions with LEU116, GLY117, ALA119, and tr1DG167 formed strong H-bonds with GLU199. The average RMSD of 2.80 Å (Apo) and RoG of 20.97 Å showed that KasA is less stable and less tightly packed without the inhibitors.

Conclusion: These findings provide a background for a new structure-based design of novel KasA inhibitors.

Graphical Abstract

[1]
World Health Organization WHO Global tuberculosis Report., 2021. Available from: https://www.who.int/teams/global-tuberculosis-programme/tb-reports
[2]
Zimmer, A.J.; Klinton, J.S.; Oga-Omenka, C.; Heitkamp, P.; Nawina Nyirenda, C.; Furin, J.; Pai, M. Tuberculosis in times of COVID-19. J. Epidemiol. Community Health, 2022, 76(3), 310-316.
[http://dx.doi.org/10.1136/jech-2021-217529] [PMID: 34535539]
[3]
Pai, M.; Kasaeva, T.; Swaminathan, S. Covid-19’s devastating effect on tuberculosis care - a path to recovery. N. Engl. J. Med., 2022, 386(16), 1490-1493.
[http://dx.doi.org/10.1056/NEJMp2118145] [PMID: 34986295]
[4]
PAHO & WHO Pan American Health Organisation (PAHO). World Tuberculosis Day, 2022. Pan American Health Organization (PAHO)., 2022. Available from: https://www.paho.org/en/campaigns/world-tuberculosis-day-2022
[5]
Kumar, P.; Capodagli, G.C.; Awasthi, D.; Shrestha, R.; Maharaja, K.; Sukheja, P.; Li, S.G.; Inoyama, D.; Zimmerman, M.; Ho Liang, H.P.; Sarathy, J.; Mina, M.; Rasic, G.; Russo, R.; Perryman, A.L.; Richmann, T.; Gupta, A.; Singleton, E.; Verma, S.; Husain, S.; Soteropoulos, P.; Wang, Z.; Morris, R.; Porter, G.; Agnihotri, G.; Salgame, P.; Ekins, S.; Rhee, K.Y.; Connell, N.; Dartois, V.; Neiditch, M.B.; Freundlich, J.S.; Alland, D. Synergistic lethality of a binary inhibitor of Mycobacterium tuberculosis kasA. MBio, 2018, 9(6), e02101-17.
[http://dx.doi.org/10.1128/mBio.02101-17] [PMID: 30563908]
[6]
Inoyama, D. A Preclinical candidate targeting Mycobacterium tuberculosis KasA. Cell Chem. Biol., 2020, 27(5), 560-570.e10.
[http://dx.doi.org/10.1016/j.chembiol.2020.02.007]
[7]
Karubiu, W.; Bhakat, S.; McGillewie, L.; Soliman, M.E.S. Flap dynamics of plasmepsin proteases: insight into proposed parameters and molecular dynamics. Mol. Biosyst., 2015, 11(4), 1061-1066.
[http://dx.doi.org/10.1039/C4MB00631C] [PMID: 25630418]
[8]
Ishima, R.; Freedberg, D.I.; Wang, Y.X.; Louis, J.M.; Torchia, D.A. Flap opening and dimer-interface flexibility in the free and inhibitor-bound HIV protease, and their implications for function. Structure, 1999, 7(9), 1047-S12.
[http://dx.doi.org/10.1016/S0969-2126(99)80172-5] [PMID: 10508781]
[9]
Kremer, L.; Douglas, J.D.; Baulard, A.R.; Morehouse, C.; Guy, M.R.; Alland, D.; Dover, L.G.; Lakey, J.H.; Jacobs, W.R., Jr; Brennan, P.J.; Minnikin, D.E.; Besra, G.S. Thiolactomycin and related analogues as novel anti-mycobacterial agents targeting KasA and KasB condensing enzymes in Mycobacterium tuberculosis. J. Biol. Chem., 2000, 275(22), 16857-16864.
[http://dx.doi.org/10.1074/jbc.M000569200] [PMID: 10747933]
[10]
Brown, A.K.; Taylor, R.C.; Bhatt, A.; Fütterer, K.; Besra, G.S. Platensimycin activity against mycobacterial beta-ketoacyl-ACP synthases. PLoS One, 2009, 4(7), e6306.
[http://dx.doi.org/10.1371/journal.pone.0006306] [PMID: 19609444]
[11]
Schiebel, J.; Kapilashrami, K.; Fekete, A.; Bommineni, G.R.; Schaefer, C.M.; Mueller, M.J.; Tonge, P.J.; Kisker, C. Structural basis for the recognition of mycolic acid precursors by KasA, a condensing enzyme and drug target from Mycobacterium tuberculosis. J. Biol. Chem., 2013, 288(47), 34190-34204.
[http://dx.doi.org/10.1074/jbc.M113.511436] [PMID: 24108128]
[12]
Oh, S.; Trifonov, L.; Yadav, V.D.; Barry, C.E., III; Boshoff, H.I. Tuberculosis drug discovery: A decade of hit assessment for defined targets. Front. Cell. Infect. Microbiol., 2021, 11, 611304.
[http://dx.doi.org/10.3389/fcimb.2021.611304] [PMID: 33791235]
[13]
Lin, X.; Li, X.; Lin, X. A review on applications of computational methods in drug screening and design. Molecules, 2020, 25(6), 1375.
[http://dx.doi.org/10.3390/molecules25061375] [PMID: 32197324]
[14]
Ejalonibu, M.A.; Ogundare, S.A.; Elrashedy, A.A.; Ejalonibu, M.A.; Lawal, M.M.; Mhlongo, N.N.; Kumalo, H.M. Drug discovery for Mycobacterium tuberculosis using structure-based computer-aided drug design approach. Int. J. Mol. Sci., 2021, 22(24), 13259.
[http://dx.doi.org/10.3390/ijms222413259] [PMID: 34948055]
[15]
McGillewie, L.; Soliman, M.E. Flap flexibility amongst plasmepsins I, II, III, IV, and V: Sequence, structural, and molecular dynamics analyses. Proteins, 2015, 83(9), 1693-1705.
[http://dx.doi.org/10.1002/prot.24855] [PMID: 26146842]
[16]
Soremekun, O.S.; Omolabi, K.F.; Adewumi, A.T.; Soliman, M.E.S. Exploring the effect of ritonavir and TMC-310911 on SARS-CoV-2 and SARS-CoV main proteases: potential from a molecular perspective. Future Sci. OA, 2021, 7(1), FSO640.
[http://dx.doi.org/10.2144/fsoa-2020-0079] [PMID: 33432269]
[17]
Pettersen, E.F. UCSF Chimera - A visualization system for exploratory research and analysis. J. Chem., 2004, 25, 1605-1612.
[http://dx.doi.org/10.1002/jcc.20084]
[18]
Adewumi, A.T.; Ramharack, P.; Soremekun, O.S.; Soliman, M.E.S. Delving into the characteristic features of “Menace” Mycobacterium tuberculosis homologs: a structural dynamics and proteomics perspectives. Protein J., 2020, 39(2), 118-132.
[http://dx.doi.org/10.1007/s10930-020-09890-4] [PMID: 32162114]
[19]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256]
[20]
Thomsen, R.; Christensen, M.H. MolDock: a new technique for high-accuracy molecular docking. J. Med. Chem., 2006, 49(11), 3315-3321.
[http://dx.doi.org/10.1021/jm051197e] [PMID: 16722650]
[21]
Ciccone, L.; Petrarolo, G.; Barsuglia, F.; Fruchart-Gaillard, C.; Cassar Lajeunesse, E.; Adewumi, A.T.; Soliman, M.E.S.; La Motta, C.; Orlandini, E.; Nencetti, S. Nature-Inspired O-Benzyl Oxime-Based derivatives as new dual-acting agents targeting aldose reductase and oxidative stress. Biomolecules, 2022, 12(3), 448.
[http://dx.doi.org/10.3390/biom12030448] [PMID: 35327641]
[22]
Lee, T.S.; Cerutti, D.S.; Mermelstein, D.; Lin, C.; LeGrand, S.; Giese, T.J.; Roitberg, A.; Case, D.A.; Walker, R.C.; York, D.M. GPU-accelerated molecular dynamics and free energy methods in amber18: Performance enhancements and new features. J. Chem. Inf. Model., 2018, 58(10), 2043-2050.
[http://dx.doi.org/10.1021/acs.jcim.8b00462] [PMID: 30199633]
[23]
Case, D.A.; Cheatham, T.E., III; Darden, T.; Gohlke, H.; Luo, R.; Merz, K.M., Jr; Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R.J. The Amber biomolecular simulation programs. J. Comput. Chem., 2005, 26(16), 1668-1688.
[http://dx.doi.org/10.1002/jcc.20290] [PMID: 16200636]
[24]
Adewumi, A.T.; Elrashedy, A.; Soremekun, O.S.; Ajadi, M.B.; Soliman, M.E.S. Weak spots inhibition in the Mycobacterium tuberculosis antigen 85C target for antitubercular drug design through selective irreversible covalent inhibitor-SER124. J. Biomol. Struct. Dyn., 2020, 2020, 1844061.
[http://dx.doi.org/10.1080/07391102.2020.1844061] [PMID: 33155529]
[25]
Zheng, S.; Tang, Q.; He, J.; Du, S.; Xu, S.; Wang, C.; Xu, Y.; Lin, F. VFFDT: A new software for preparing AMBER force field parameters for metal-containing molecular systems. J. Chem. Inf. Model., 2016, 56(4), 811-818.
[http://dx.doi.org/10.1021/acs.jcim.5b00687] [PMID: 26998926]
[26]
Oluyemi, W.M.; Samuel, B.B.; Adewumi, A.T.; Adekunle, Y.A.; Soliman, M.E.S.; Krenn, L. An allosteric inhibitory potential of triterpenes from Combretum racemosum on the structural and functional dynamics of Plasmodium falciparum lactate dehydrogenase binding landscape. Chem. Biodivers., 2022, 19(2), 1-20.
[http://dx.doi.org/10.1002/cbdv.202100646]
[27]
Florová, P.; Sklenovský, P.; Banáš, P.; Otyepka, M. Explicit water models affect the specific solvation and dynamics of unfolded peptides while the conformational behavior and flexibility of folded peptides remain intact. J. Chem. Theory Comput., 2010, 6(11), 3569-3579.
[http://dx.doi.org/10.1021/ct1003687] [PMID: 26617103]
[28]
Ryckaert, J.P.; Ciccotti, G.; Berendsen, H.J.C. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys., 1977, 23(3), 327-341.
[http://dx.doi.org/10.1016/0021-9991(77)90098-5]
[29]
Adewumi, Adeniyi .T.; Soremekun, Opeyemi ..S.; Ajadi, Mary.B.; Soliman, Mahmoud ..E.S. Thompson loop: opportunities for antitubercular demethylmenaquinone methyltransferase protein. RSC Advances, 2020, 10, 23466-23483.
[http://dx.doi.org/10.1039/D0RA03206A]
[30]
Kufareva, I.; Abagyan, R. Methods of protein structure comparison. Methods Mol. Biol., 2011, 857, 231-257.
[http://dx.doi.org/10.1007/978-1-61779-588-6_10] [PMID: 22323224]
[31]
Dong, Y.; Liao, M.; Meng, X.; Somero, G.N. Structural flexibility and protein adaptation to temperature: Molecular dynamics analysis of malate dehydrogenases of marine molluscs. Proc. Natl. Acad. Sci. USA, 2018, 115(6), 1274-1279.
[http://dx.doi.org/10.1073/pnas.1718910115] [PMID: 29358381]
[32]
Post, M.; Wolf, S.; Stock, G. Principal component analysis of nonequilibrium molecular dynamics simulations. J. Chem. Phys., 2019, 150(20), 204110.
[http://dx.doi.org/10.1063/1.5089636] [PMID: 31153204]
[33]
Genheden, S.; Ryde, U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin. Drug Discov., 2015, 10(5), 449-461.
[http://dx.doi.org/10.1517/17460441.2015.1032936] [PMID: 25835573]
[34]
Gapsys, V.; Michielssens, S.; Peters, J.H.; de Groot, B.L.; Leonov, H. Calculation of binding free energies. Methods Mol. Biol., 2015, 1215, 173-209.
[http://dx.doi.org/10.1007/978-1-4939-1465-4]
[35]
Aier, I.; Varadwaj, P.K.; Raj, U. Structural insights into conformational stability of both wild-type and mutant EZH2 receptor. Sci. Rep., 2016, 6(1), 34984.
[http://dx.doi.org/10.1038/srep34984] [PMID: 27713574]
[36]
Emmanuel, I.A.; Olotu, F.; Agoni, C.; Soliman, M.E.S. Broadening the horizon: Integrative pharmacophore-based and cheminformatics screening of novel chemical modulators of mitochondria ATP synthase towards interventive Alzheimer’s disease therapy. Med. Hypotheses, 2019, 130, 109277.
[http://dx.doi.org/10.1016/j.mehy.2019.109277] [PMID: 31383337]
[37]
Durham, E.; Dorr, B.; Woetzel, N.; Staritzbichler, R.; Meiler, J. Solvent accessible surface area approximations for rapid and accurate protein structure prediction. J. Mol. Model., 2009, 15(9), 1093-1108.
[http://dx.doi.org/10.1007/s00894-009-0454-9] [PMID: 19234730]
[38]
Mukherjee, S.; Bahadur, R.P. An account of solvent accessibility in protein-RNA recognition. Sci. Rep., 2018, 8(1), 10546.
[http://dx.doi.org/10.1038/s41598-018-28373-2] [PMID: 30002431]
[39]
Issahaku, A.R.; Agoni, C.; Kumi, R.O.; Olotu, F.A.; Soliman, M.E.S. Lipid-embedded molecular dynamics simulation model for exploring the reverse prostaglandin D2 agonism of CT-133 towards CRTH2 in the treatment of type-2 inflammation dependent diseases. Chem. Biodivers., 2020, 17(3), e1900548.
[http://dx.doi.org/10.1002/cbdv.201900548] [PMID: 32034875]
[40]
Agoni, C.; Salifu, E.Y.; Munsamy, G.; Olotu, F.A.; Soliman, M. CF3-pyridinyl substitution on anti-malarial therapeutics: Probing differential ligand binding and dynamical inhibitory effects of a novel triazolopyrimidine-based inhibitor on Plasmodium falciparum Dihydroorotate dehydrogenase. Chem. Biodivers., 2019, 16(12), e1900365.
[http://dx.doi.org/10.1002/cbdv.201900365] [PMID: 31589372]