Perspectives on Agmatine Neurotransmission in Acute and Chronic Stressrelated Conditions

Page: [1560 - 1574] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Adaptive responses to stressful stimuli in the environment are believed to restore homeostasis after stressful events. Stress activates the hypothalamic-pituitary-adrenocortical (HPA) axis, which releases glucocorticoids (GCs) into the bloodstream. Recently, agmatine, an endogenous monoamine was discovered to have the potential as a pharmacotherapy for stress. Agmatine is released in response to certain stress conditions, especially those involving GCs, and participates in establishing homeostasis disturbed by stress following GC activation. The therapeutic potential of agmatine for the management of psychological diseases involving stress and depression is promising based on a significant amount of literature. When exogenously applied, agmatine leads to reductions in levels of GCs and counteracts stress-related morphologic, synaptic, and molecular changes. However, the exact mechanism of action by which agmatine modifies the effects resulting from stress hormone secretion is not fully understood. This review aims to present the most possible mechanisms by which agmatine reduces the harmful effects of chronic and acute stress. Several studies suggest chronic stress exposure and repeated corticosteroid treatment lower agmatine levels, contributing to stress-related symptoms. Agmatine acts as an antistress agent by activating mTOR signaling, inhibiting NMDA receptors, suppressing iNOS, and maintaining bodyweight by activating α-2adrenergic receptors. Exogenous administration that restores agmatine levels may provide protection against stress-induced changes by reducing GCs release, stimulating anti-inflammatory processes, and releasing neuroprotective factors, which are not found in all therapies currently being used to treat stress-related disorders. The administration of exogenous agmatine should also be considered a therapeutic element that is capable of triggering a neural protective response that counters the effects of chronic stress. When combined with existing treatment strategies, this may have synergistic beneficial effects.

Graphical Abstract

[1]
McEwen, B.S. Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol. Rev., 2007, 87(3), 873-904.
[http://dx.doi.org/10.1152/physrev.00041.2006] [PMID: 17615391]
[2]
Herman, J.P.; Figueiredo, H.; Mueller, N.K.; Ulrich-Lai, Y.; Ostrander, M.M.; Choi, D.C.; Cullinan, W.E. Central mechanisms of stress integration: hierarchical circuitry controlling hypothalamo–pituitary–adrenocortical responsiveness. Front. Neuroendocrinol., 2003, 24(3), 151-180.
[http://dx.doi.org/10.1016/j.yfrne.2003.07.001] [PMID: 14596810]
[3]
Aricioglu, F.; Regunathan, S.; Piletz, J.E. Is agmatine an endogenous factor against stress? Ann. N. Y. Acad. Sci., 2003, 1009(1), 127-132.
[http://dx.doi.org/10.1196/annals.1304.012] [PMID: 15028576]
[4]
Herman, J.P.; Ostrander, M.M.; Mueller, N.K.; Figueiredo, H. Limbic system mechanisms of stress regulation: Hypothalamo-pituitary-adrenocortical axis. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2005, 29(8), 1201-1213.
[http://dx.doi.org/10.1016/j.pnpbp.2005.08.006] [PMID: 16271821]
[5]
de Kloet, E.R.; Joëls, M.; Holsboer, F. Stress and the brain: from adaptation to disease. Nat. Rev. Neurosci., 2005, 6(6), 463-475.
[http://dx.doi.org/10.1038/nrn1683] [PMID: 15891777]
[6]
Armario, A. The hypothalamic-pituitary-adrenal axis: what can it tell us about stressors? CNS Neurol. Disord. Drug Targets, 2006, 5(5), 485-501.
[http://dx.doi.org/10.2174/187152706778559336]
[7]
Holsboer, F. The corticosteroid receptor hypothesis of depression. Neuropsychopharmacology, 2000, 23(5), 477-501.
[http://dx.doi.org/10.1016/S0893-133X(00)00159-7] [PMID: 11027914]
[8]
de Kloet, E.R. Hormones, brain and stress. Endocr. Regul., 2003, 37(2), 51-68.
[PMID: 12932191]
[9]
Keller-Wood, M. hypothalamic-pituitary-adrenal axis-feedback control. Compr. Physiol., 2015, 5(3), 1161-1182.
[http://dx.doi.org/10.1002/cphy.c140065] [PMID: 26140713]
[10]
Zhu, M.Y.; Wang, W.P.; Cai, Z.W.; Regunathan, S.; Ordway, G. Exogenous agmatine has neuroprotective effects against restraint-induced structural changes in the rat brain. Eur. J. Neurosci., 2008, 27(6), 1320-1332.
[http://dx.doi.org/10.1111/j.1460-9568.2008.06104.x] [PMID: 18364017]
[11]
Zhu, M.; Iyo, A.; Piletz, J.E.; Regunathan, S. Expression of human arginine decarboxylase, the biosynthetic enzyme for agmatine. Biochim. Biophys. Acta, Gen. Subj., 2004, 1670(2), 156-164.
[http://dx.doi.org/10.1016/j.bbagen.2003.11.006] [PMID: 14738999]
[12]
Xu, W.; Gao, L.; Li, T.; Shao, A.; Zhang, J. Neuroprotective role of agmatine in neurological diseases. Curr. Neuropharmacol., 2018, 16(9), 1296-1305.
[http://dx.doi.org/10.2174/1570159X15666170808120633] [PMID: 28786346]
[13]
Piletz, J.E.; Aricioglu, F.; Cheng, J.T.; Fairbanks, C.A.; Gilad, V.H.; Haenisch, B.; Halaris, A.; Hong, S.; Lee, J.E.; Li, J.; Liu, P.; Molderings, G.J.; Rodrigues, A.L.S.; Satriano, J.; Seong, G.J.; Wilcox, G.; Wu, N.; Gilad, G.M. Agmatine: clinical applications after 100 years in translation. Drug Discov. Today, 2013, 18(17-18), 880-893.
[http://dx.doi.org/10.1016/j.drudis.2013.05.017] [PMID: 23769988]
[14]
Reis, D.J.; Regunathan, S. Is agmatine a novel neurotransmitter in brain? Trends Pharmacol. Sci., 2000, 21(5), 187-193.
[http://dx.doi.org/10.1016/S0165-6147(00)01460-7] [PMID: 10785653]
[15]
Moretti, M.; Matheus, F.C.; de Oliveira, P.A.; Neis, V.B.; Ben, J.; Walz, R.; Rodrigues, A.L.; Prediger, R.D. Role of agmatine in neurodegenerative diseases and epilepsy. Front. Biosci. (Elite Ed.), 2014, E6(2), 341-359.
[http://dx.doi.org/10.2741/710] [PMID: 24896210]
[16]
Aricioglu, F.; Regunathan, S. Agmatine attenuates stress- and lipopolysaccharide-induced fever in rats. Physiol. Behav., 2005, 85(3), 370-375.
[http://dx.doi.org/10.1016/j.physbeh.2005.05.004] [PMID: 15936786]
[17]
Raasch, W.; Regunathan, S.; Li, G.; Reis, D.J. Agmatine, the bacterial amine, is widely distributed in mammalian tissues. Life Sci., 1995, 56(26), 2319-2330.
[http://dx.doi.org/10.1016/0024-3205(95)00226-V] [PMID: 7791519]
[18]
Raghavan, S.; Dikshit, M. Vascular regulation by the L-arginine metabolites, nitric oxide and agmatine. Pharmacol. Res., 2004, 49(5), 397-414.
[http://dx.doi.org/10.1016/j.phrs.2003.10.008] [PMID: 14998549]
[19]
Popolo, A.; Adesso, S.; Pinto, A.; Autore, G.; Marzocco, S. l-Arginine and its metabolites in kidney and cardiovascular disease. Amino Acids, 2014, 46(10), 2271-2286.
[http://dx.doi.org/10.1007/s00726-014-1825-9] [PMID: 25161088]
[20]
Uzbay, T.I. The pharmacological importance of agmatine in the brain. Neurosci. Biobehav. Rev., 2012, 36(1), 502-519.
[http://dx.doi.org/10.1016/j.neubiorev.2011.08.006] [PMID: 21893093]
[21]
Wang, C.C.; Chio, C.C.; Chang, C.H.; Kuo, J.R.; Chang, C.P. Beneficial effect of agmatine on brain apoptosis, astrogliosis, and edema after rat transient cerebral ischemia. BMC Pharmacol., 2010, 10(1), 11.
[http://dx.doi.org/10.1186/1471-2210-10-11] [PMID: 20815926]
[22]
Wang, W.P.; Iyo, A.H.; Miguel-Hidalgo, J.; Regunathan, S.; Zhu, M.Y. Agmatine protects against cell damage induced by NMDA and glutamate in cultured hippocampal neurons. Brain Res., 2006, 1084(1), 210-216.
[http://dx.doi.org/10.1016/j.brainres.2006.02.024] [PMID: 16546145]
[23]
Iyo, A.H.; Zhu, M.Y.; Ordway, G.A.; Regunathan, S. Expression of arginine decarboxylase in brain regions and neuronal cells. J. Neurochem., 2006, 96(4), 1042-1050.
[http://dx.doi.org/10.1111/j.1471-4159.2005.03544.x] [PMID: 16445852]
[24]
Gawali, N.B.; Bulani, V.D.; Gursahani, M.S.; Deshpande, P.S.; Kothavade, P.S.; Juvekar, A.R. Agmatine attenuates chronic unpredictable mild stress-induced anxiety, depression-like behaviours and cognitive impairment by modulating nitrergic signalling pathway. Brain Res., 2017, 1663, 66-77.
[http://dx.doi.org/10.1016/j.brainres.2017.03.004] [PMID: 28302445]
[25]
Zheng, T.; Zhang, R.; Zhang, T.; Zhang, M.N.; Xu, B.; Song, J.; Li, N.; Tang, H.H.; Wang, P.; Wang, R.; Fang, Q. CB 1 cannabinoid receptor agonist mouse VD-hemopressin(α) produced supraspinal analgesic activity in the preclinical models of pain. Brain Res., 2018, 1680, 155-164.
[http://dx.doi.org/10.1016/j.brainres.2017.12.013] [PMID: 29274880]
[26]
Piletz, J.E.; Chikkala, D.N.; Ernsberger, P. Comparison of the properties of agmatine and endogenous clonidine-displacing substance at imidazoline and alpha-2 adrenergic receptors. J. Pharmacol. Exp. Ther., 1995, 272(2), 581-587.
[PMID: 7853171]
[27]
Halaris, A.; Zhu, H.; Feng, Y.; Piletz, J. Plasma agmatine and platelet imidazoline receptors in depression. Ann. N. Y. Acad. Sci., 1999, 881(1 IMIDAZOLINE R), 445-451.
[http://dx.doi.org/ 10.1111/j.1749-6632.1999.tb09392.x] [PMID: 10415948]
[28]
Halaris, A.; Plietz, J. Agmatine. CNS Drugs, 2007, 21(11), 885-900.
[http://dx.doi.org/10.2165/00023210-200721110-00002] [PMID: 17927294]
[29]
Kuo, J.R.; Lo, C.J.; Chang, C.P.; Lin, K.C.; Lin, M.T.; Chio, C.C. Agmatine-promoted angiogenesis, neurogenesis, and inhibition of gliosis-reduced traumatic brain injury in rats. J. Trauma, 2011, 71(4), E87-E93.
[http://dx.doi.org/10.1097/TA.0b013e31820932e2] [PMID: 21427621]
[30]
Sastre, M.; Regunathan, S.; Reis, D.J. Uptake of agmatine into rat brain synaptosomes: Possible role of cation channels. J. Neurochem., 1997, 69(6), 2421-2426.
[http://dx.doi.org/10.1046/j.1471-4159.1997.69062421.x] [PMID: 9375674]
[31]
Otake, K.; Ruggiero, D.A.; Regunathan, S.; Wang, H.; Milner, T.A.; Reis, D.J. Regional localization of agmatine in the rat brain: An immunocytochemical study. Brain Res., 1998, 787(1), 1-14.
[http://dx.doi.org/10.1016/S0006-8993(97)01200-6] [PMID: 9518530]
[32]
Taksande, B.G.; Kotagale, N.R.; Tripathi, S.J.; Ugale, R.R.; Chopde, C.T. Antidepressant like effect of selective serotonin reuptake inhibitors involve modulation of imidazoline receptors by agmatine. Neuropharmacology, 2009, 57(4), 415-424.
[http://dx.doi.org/10.1016/j.neuropharm.2009.06.035] [PMID: 19589348]
[33]
Neis, V.B.; Moretti, M.; Bettio, L.E.B.; Ribeiro, C.M.; Rosa, P.B.; Gonçalves, F.M.; Lopes, M.W.; Leal, R.B.; Rodrigues, A.L.S. Agmatine produces antidepressant-like effects by activating AMPA receptors and mTOR signaling. Eur. Neuropsychopharmacol., 2016, 26(6), 959-971.
[http://dx.doi.org/10.1016/j.euroneuro.2016.03.009] [PMID: 27061850]
[34]
Galea, E.; Regunathan, S.; Eliopoulos, V.; Feinstein, D.L.; Reis, D.J. Inhibition of mammalian nitric oxide synthases by agmatine, an endogenous polyamine formed by decarboxylation of arginine. Biochem. J., 1996, 316(1), 247-249.
[http://dx.doi.org/10.1042/bj3160247] [PMID: 8645212]
[35]
Berkels, R.; Taubert, D.; Gründemann, D. Schömig, E. Agmatine signaling: odds and threads. Cardiovasc. Drug Rev., 2004, 22(1), 7-16.
[http://dx.doi.org/10.1111/j.1527-3466.2004.tb00128.x] [PMID: 14978515]
[36]
Gorbatyuk, O.S.; Milner, T.A.; Wang, G.; Regunathan, S.; Reis, D.J. Localization of agmatine in vasopressin and oxytocin neurons of the rat hypothalamic paraventricular and supraoptic nuclei. Exp. Neurol., 2001, 171(2), 235-245.
[http://dx.doi.org/10.1006/exnr.2001.7746] [PMID: 11573976]
[37]
Wang, G.; Gorbatyuk, O.S.; Dayanithi, G.; Ouyang, W.; Wang, J.; Milner, T.A.; Regunathan, S.; Reis, D.J. Evidence for endogenous agmatine in hypothalamo-neurohypophysial tract and its modulation on vasopressin release and Ca2+ channels. Brain Res., 2002, 932(1-2), 25-36.
[http://dx.doi.org/10.1016/S0006-8993(02)02260-6] [PMID: 11911858]
[38]
Zhu, M.Y.; Wang, W.P.; Huang, J.; Regunathan, S. Chronic treatment with glucocorticoids alters rat hippocampal and prefrontal cortical morphology in parallel with endogenous agmatine and arginine decarboxylase levels. J. Neurochem., 2007, 103(5), 1811-1820.
[http://dx.doi.org/10.1111/j.1471-4159.2007.04867.x] [PMID: 17760863]
[39]
Taksande, B.G.; Faldu, D.S.; Dixit, M.P.; Sakaria, J.N.; Aglawe, M.M.; Umekar, M.J.; Kotagale, N.R. Agmatine attenuates chronic unpredictable mild stress induced behavioral alteration in mice. Eur. J. Pharmacol., 2013, 720(1-3), 115-120.
[http://dx.doi.org/10.1016/j.ejphar.2013.10.041] [PMID: 24183973]
[40]
Taksande, B.G.; Chopde, C.T.; Umekar, M.J.; Kotagale, N.R. Agmatine attenuates hyperactivity and weight loss associated with activity-based anorexia in female rats. Pharmacol. Biochem. Behav., 2015, 132, 136-141.
[http://dx.doi.org/10.1016/j.pbb.2015.03.005] [PMID: 25782747]
[41]
Freitas, A.E.; Bettio, L.E.B.; Neis, V.B.; Santos, D.B.; Ribeiro, C.M.; Rosa, P.B.; Farina, M.; Rodrigues, A.L.S. Agmatine abolishes restraint stress-induced depressive-like behavior and hippocampal antioxidant imbalance in mice. Prog. Neuropsychopharmacol. Biol. Psychiat., 2014, 50, 143-150.
[http://dx.doi.org/10.1016/j.pnpbp.2013.12.012] [PMID: 24370459]
[42]
Baltzer Nielsen, S.; Stanislaus, S. Saunamäki, K.; Grøndahl, C.; Banner, J.; Jørgensen, M.B. Can acute stress be fatal? A systematic cross-disciplinary review. Stress, 2019, 22(3), 286-294.
[http://dx.doi.org/10.1080/10253890.2018.1561847] [PMID: 30767612]
[43]
Desborough, J.P. The stress response to trauma and surgery. Br. J. Anaesth., 2000, 85(1), 109-117.
[http://dx.doi.org/10.1093/bja/85.1.109] [PMID: 10927999]
[44]
Trevisi, E.; Bertoni, G. Some physiological and biochemical methods for acute and chronic stress evaluationin dairy cows. Ital. J. Anim. Sci., 2009, 8(sup1), 265-286.
[http://dx.doi.org/10.4081/ijas.2009.s1.265]
[45]
Sabers, C.J.; Martin, M.M.; Brunn, G.J.; Williams, J.M.; Dumont, F.J.; Wiederrecht, G.; Abraham, R.T. Isolation of a protein target of the FKBP12-rapamycin complex in mammalian cells. J. Biol. Chem., 1995, 270(2), 815-822.
[http://dx.doi.org/10.1074/jbc.270.2.815] [PMID: 7822316]
[46]
Lipton, J.O.; Sahin, M. The neurology of mTOR. Neuron, 2014, 84(2), 275-291.
[http://dx.doi.org/10.1016/j.neuron.2014.09.034] [PMID: 25374355]
[47]
Kennedy, B.K.; Lamming, D.W. The mechanistic target of rapamycin: The grand conductor of metabolism and aging. Cell Metab., 2016, 23(6), 990-1003.
[http://dx.doi.org/10.1016/j.cmet.2016.05.009] [PMID: 27304501]
[48]
Duman, R.S.; Li, N.; Liu, R.J.; Duric, V.; Aghajanian, G. Signaling pathways underlying the rapid antidepressant actions of ketamine. Neuropharmacology, 2012, 62(1), 35-41.
[http://dx.doi.org/10.1016/j.neuropharm.2011.08.044] [PMID: 21907221]
[49]
Lazarevic, V.; Yang, Y.; Flais, I.; Svenningsson, P. Ketamine decreases neuronally released glutamate via retrograde stimulation of presynaptic adenosine A1 receptors. Mol. Psychiat., 2021, 26(12), 7425-7435.
[http://dx.doi.org/10.1038/s41380-021-01246-3] [PMID: 34376822]
[50]
Olescowicz, G.; Sampaio, T.B.; de Paula Nascimento-Castro, C.; Brocardo, P.S.; Gil-Mohapel, J.; Rodrigues, A.L.S. Protective effects of agmatine against corticosterone-induced impairment on hippocampal mTOR signaling and cell death. Neurotox. Res., 2020, 38(2), 319-329.
[http://dx.doi.org/10.1007/s12640-020-00212-1] [PMID: 32399718]
[51]
Neis, V.B.; Bettio, L.E.B.; Moretti, M.; Rosa, P.B.; Ribeiro, C.M.; Freitas, A.E.; Gonçalves, F.M.; Leal, R.B.; Rodrigues, A.L.S. Acute agmatine administration, similar to ketamine, reverses depressive-like behavior induced by chronic unpredictable stress in mice. Pharmacol. Biochem. Behav., 2016, 150-151, 108-114.
[http://dx.doi.org/10.1016/j.pbb.2016.10.004] [PMID: 27743829]
[52]
Valverde, A.P.; Camargo, A.; Rodrigues, A.L.S. Agmatine as a novel candidate for rapid-onset antidepressant response. World J. Psychiatry, 2021, 11(11), 981-996.
[http://dx.doi.org/10.5498/wjp.v11.i11.981] [PMID: 34888168]
[53]
Neis, V.B.; Bettio, L.B.; Moretti, M.; Rosa, P.B.; Olescowicz, G.; Fraga, D.B.; Gonçalves, F.M.; Freitas, A.E.; Heinrich, I.A.; Lopes, M.W.; Leal, R.B.; Rodrigues, A.L.S. Single administration of agmatine reverses the depressive-like behavior induced by corticosterone in mice: Comparison with ketamine and fluoxetine. Pharmacol. Biochem. Behav., 2018, 173, 44-50.
[http://dx.doi.org/10.1016/j.pbb.2018.08.005] [PMID: 30125592]
[54]
Inoki, K.; Ouyang, H.; Zhu, T.; Lindvall, C.; Wang, Y.; Zhang, X.; Yang, Q.; Bennett, C.; Harada, Y.; Stankunas, K.; Wang, C.; He, X.; MacDougald, O.A.; You, M.; Williams, B.O.; Guan, K.L. TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell, 2006, 126(5), 955-968.
[http://dx.doi.org/10.1016/j.cell.2006.06.055] [PMID: 16959574]
[55]
Ota, K.T.; Liu, R.J.; Voleti, B.; Maldonado-Aviles, J.G.; Duric, V.; Iwata, M.; Dutheil, S.; Duman, C.; Boikess, S.; Lewis, D.A.; Stockmeier, C.A.; DiLeone, R.J.; Rex, C.; Aghajanian, G.K.; Duman, R.S. REDD1 is essential for stress-induced synaptic loss and depressive behavior. Nat. Med., 2014, 20(5), 531-535.
[http://dx.doi.org/10.1038/nm.3513] [PMID: 24728411]
[56]
Zomkowski, A.D.E.; Hammes, L.; Lin, J.; Calixto, J.B.; Santos, A.R.S.; Rodrigues, A.L.S. Agmatine produces antidepressant-like effects in two models of depression in mice. Neuroreport, 2002, 13(4), 387-391.
[http://dx.doi.org/10.1097/00001756-200203250-00005] [PMID: 11930146]
[57]
Neis, V.B.; Moretti, M.; Manosso, L.M.; Lopes, M.W.; Leal, R.B.; Rodrigues, A.L.S. Agmatine enhances antidepressant potency of MK-801 and conventional antidepressants in mice. Pharmacol. Biochem. Behav., 2015, 130, 9-14.
[http://dx.doi.org/10.1016/j.pbb.2014.12.009] [PMID: 25553821]
[58]
Meylan, E.M.; Breuillaud, L.; Seredenina, T.; Magistretti, P.J.; Halfon, O.; Luthi-Carter, R.; Cardinaux, J-R. Involvement of the agmatinergic system in the depressive-like phenotype of the Crtc1 knockout mouse model of depression. Transl. Psychiatry, 2016, 6(7), e852.
[http://dx.doi.org/10.1038/tp.2016.116] [PMID: 27404284]
[59]
Olmos, G.; DeGregorio-Rocasolano, N.; Regalado, M.P.; Gasull, T.; Boronat, M.A.; Trullas, R.; Villarroel, A.; Lerma, J. García- Sevilla, J.A. Protection by imidazol(ine) drugs and agmatine of glutamate-induced neurotoxicity in cultured cerebellar granule cells through blockade of NMDA receptor. Br. J. Pharmacol., 1999, 127(6), 1317-1326.
[http://dx.doi.org/10.1038/sj.bjp.0702679] [PMID: 10455281]
[60]
Kim, J.Y.; Lee, Y.W.; Kim, J.H.; Lee, W.T.; Park, K.A.; Lee, J.E. Agmatine attenuates brain edema and apoptotic cell death after traumatic brain injury. J. Korean Med. Sci., 2015, 30(7), 943-952.
[http://dx.doi.org/10.3346/jkms.2015.30.7.943] [PMID: 26130959]
[61]
Abe, K.; Abe, Y.; Saito, H. Agmatine suppresses nitric oxide production in microglia. Brain Res., 2000, 872(1-2), 141-148.
[http://dx.doi.org/10.1016/S0006-8993(00)02517-8] [PMID: 10924686]
[62]
Peineau, S.; Taghibiglou, C.; Bradley, C.; Wong, T.P.; Liu, L.; Lu, J.; Lo, E.; Wu, D.; Saule, E.; Bouschet, T.; Matthews, P.; Isaac, J.T.R.; Bortolotto, Z.A.; Wang, Y.T.; Collingridge, G.L. LTP inhibits LTD in the hippocampus via regulation of GSK3beta. Neuron, 2007, 53(5), 703-717.
[http://dx.doi.org/10.1016/j.neuron.2007.01.029] [PMID: 17329210]
[63]
Dwyer, J.M.; Duman, R.S. Activation of mammalian target of rapamycin and synaptogenesis: Role in the actions of rapid-acting antidepressants. Biol. Psychiatry, 2013, 73(12), 1189-1198.
[http://dx.doi.org/10.1016/j.biopsych.2012.11.011] [PMID: 23295207]
[64]
Zhou, J.J. Shao, J.Y.; Chen, S.R.; Li, D.P.; Pan, H.L. α2δ-1–dependent nmda receptor activity in the hypothalamus is an effector of genetic-environment interactions that drive persistent hypertension. J. Neurosci., 2021, 41(30), 6551-6563.
[http://dx.doi.org/10.1523/JNEUROSCI.0346-21.2021] [PMID: 34193557]
[65]
Zhou, J.J.; Gao, Y.; Zhang, X.; Kosten, T.A.; Li, D.P. Enhanced hypothalamic NMDA receptor activity contributes to hyperactivity of HPA axis in chronic stress in male rats. Endocrinology, 2018, 159(3), 1537-1546.
[http://dx.doi.org/10.1210/en.2017-03176] [PMID: 29390057]
[66]
Middeldorp, C.M.; Slof-Op ’t Landt, M.C.T.; Medland, S.E.; van Beijsterveldt, C.E.M.; Bartels, M.; Willemsen, G.; Hottenga, J.J.; de Geus, E.J.C.; Suchiman, H.E.D.; Dolan, C.V.; Neale, M.C.; Slagboom, P.E.; Boomsma, D.I. Anxiety and depression in children and adults: influence of serotonergic and neurotrophic genes? Genes Brain Behav., 2010, 9(7), 808-816.
[http://dx.doi.org/10.1111/j.1601-183X.2010.00619.x] [PMID: 20633049]
[67]
Uys, J.D.K.; Marais, L.; Faure, J.; Prevoo, D.; Swart, P.; Mohammed, A.H.; Stein, D.J.; Daniels, W.M. Developmental trauma is associated with behavioral hyperarousal, altered HPA axis activity, and decreased hippocampal neurotrophin expression in the adult rat. Ann. N. Y. Acad. Sci., 2006, 1071(1), 542-546.
[http://dx.doi.org/10.1196/annals.1364.060] [PMID: 16891615]
[68]
Sen, S.; Duman, R.; Sanacora, G. Serum brain-derived neurotrophic factor, depression, and antidepressant medications: meta-analyses and implications. Biol. Psychiatry, 2008, 64(6), 527-532.
[http://dx.doi.org/10.1016/j.biopsych.2008.05.005] [PMID: 18571629]
[69]
Castrén, E. Võikar, V.; Rantamäki, T. Role of neurotrophic factors in depression. Curr. Opin. Pharmacol., 2007, 7(1), 18-21.
[http://dx.doi.org/10.1016/j.coph.2006.08.009] [PMID: 17049922]
[70]
Murakami, S.; Imbe, H.; Morikawa, Y.; Kubo, C.; Senba, E. Chronic stress, as well as acute stress, reduces BDNF mRNA expression in the rat hippocampus but less robustly. Neurosci. Res., 2005, 53(2), 129-139.
[http://dx.doi.org/10.1016/j.neures.2005.06.008] [PMID: 16024125]
[71]
Lepack, A.E.; Fuchikami, M.; Dwyer, J.M.; Banasr, M.; Duman, R.S. BDNF release is required for the behavioral actions of ketamine. Int. J. Neuropsychopharmacol., 2015, 18(1), pyu033.
[http://dx.doi.org/10.1093/ijnp/pyu033] [PMID: 25539510]
[72]
Abdallah, C.G.; Sanacora, G.; Duman, R.S.; Krystal, J.H. Ketamine and rapid-acting antidepressants: a window into a new neurobiology for mood disorder therapeutics. Annu. Rev. Med., 2015, 66(1), 509-523.
[http://dx.doi.org/10.1146/annurev-med-053013-062946] [PMID: 25341010]
[73]
Huang, K.; Fingar, D.C. Growing knowledge of the mTOR signaling network. Semin. Cell Dev. Biol., 2014, 36, 79-90.
[http://dx.doi.org/10.1016/j.semcdb.2014.09.011] [PMID: 25242279]
[74]
Freitas, A.E.; Egea, J.; Buendia, I. Gómez-Rangel, V.; Parada, E.; Navarro, E.; Casas, A.I.; Wojnicz, A.; Ortiz, J.A.; Cuadrado, A.; Ruiz-Nuño, A.; Rodrigues, A.L.S.; Lopez, M.G. Agmatine, by improving neuroplasticity markers and inducing Nrf2, prevents corticosterone-induced depressive-like behavior in mice. Mol. Neurobiol., 2016, 53(5), 3030-3045.
[http://dx.doi.org/10.1007/s12035-015-9182-6] [PMID: 25966970]
[75]
Bilge, S.S.; Günaydin, C. Önger, M.E.; Bozkurt, A.; Avci, B. Neuroprotective action of agmatine in rotenone-induced model of Parkinson’s disease: Role of BDNF/cREB and ERK pathway. Behav. Brain Res., 2020, 392, 112692.
[http://dx.doi.org/10.1016/j.bbr.2020.112692] [PMID: 32479847]
[76]
Neis, V.B.; Manosso, L.M.; Moretti, M.; Freitas, A.E.; Daufenbach, J.; Rodrigues, A.L.S. Depressive-like behavior induced by tumor necrosis factor-α is abolished by agmatine administration. Behav. Brain Res., 2014, 261, 336-344.
[http://dx.doi.org/10.1016/j.bbr.2013.12.038] [PMID: 24406719]
[77]
MacMillan, L.B.; Hein, L.; Smith, M.S.; Piascik, M.T.; Limbird, L.E. Central hypotensive effects of the α2a-adrenergic receptor subtype. Science, 1996, 273(5276), 801-803.
[http://dx.doi.org/10.1126/science.273.5276.801] [PMID: 8670421]
[78]
Aantaa, R.; Scheinin, M. Alpha 2 -adrenergic agents in anaesthesia. Acta Anaesthesiol. Scand., 1993, 37(5), 433-448.
[http://dx.doi.org/10.1111/j.1399-6576.1993.tb03743.x] [PMID: 8395129]
[79]
Bremner, J.D.; Krystal, J.H.; Southwick, S.M.; Charney, D.S. Noradrenergic mechanisms in stress and anxiety: I. preclinical studies. Synapse, 1996, 23(1), 28-38.
[http://dx.doi.org/10.1002/(SICI)1098-2396(199605)23:1<28::AID-SYN4>3.0.CO;2-J] [PMID: 8723133]
[80]
Haller, J.; Kiem, D.T.; Makara, G.B. Do alpha-2 adrenoceptors modify coping strategies in rats? Psychopharmacology (Berl.), 1995, 122(4), 379-385.
[http://dx.doi.org/10.1007/BF02246270] [PMID: 8657837]
[81]
Arnsten, A.F.T.; Steere, J.C.; Hunt, R.D. The contribution of α 2-noradrenergic mechanisms of prefrontal cortical cognitive function. Potential significance for attention-deficit hyperactivity disorder. Arch. Gen. Psychiatry, 1996, 53(5), 448-455.
[http://dx.doi.org/10.1001/archpsyc.1996.01830050084013] [PMID: 8624188]
[82]
Ciranna, L.; Licata, F.; Li Volsi, G.; Santangelo, F. Alpha2- and beta-adrenoceptors differentially modulate GABAA- and GABAB-mediated inhibition of red nucleus neuronal firing. Exp. Neurol., 2004, 185(2), 297-304.
[http://dx.doi.org/10.1016/j.expneurol.2003.10.007] [PMID: 14736511]
[83]
Zhang, W.; Ordway, G.A. The α2C-adrenoceptor modulates GABA release in mouse striatum. Brain Res. Mol. Brain Res., 2003, 112(1-2), 24-32.
[http://dx.doi.org/10.1016/S0169-328X(03)00026-3] [PMID: 12670699]
[84]
Alachkar, A. Brotchie, J.; Jones, O.T. α2-Adrenoceptor-mediated modulation of the release of GABA and noradrenaline in the rat substantia nigra pars reticulata. Neurosci. Lett., 2006, 395(2), 138-142.
[http://dx.doi.org/10.1016/j.neulet.2005.10.069] [PMID: 16356632]
[85]
Olgiati, V.R.; Netti, C.; Guidobono, F.; Pecile, A. The central GABAergic system and control of food intake under different experimental conditions. Psychopharmacology (Berl.), 1980, 68(2), 163-167.
[http://dx.doi.org/10.1007/BF00432135] [PMID: 6776560]
[86]
Li, D.P.; Atnip, L.M.; Chen, S.R.; Pan, H.L. Regulation of synaptic inputs to paraventricular-spinal output neurons by α2 adrenergic receptors. J. Neurophysiol., 2005, 93(1), 393-402.
[http://dx.doi.org/10.1152/jn.00564.2004] [PMID: 15356178]
[87]
Han, S.K.; Chong, W.; Li, L.H.; Lee, I.S.; Murase, K.; Ryu, P.D. Noradrenaline excites and inhibits GABAergic transmission in parvocellular neurons of rat hypothalamic paraventricular nucleus. J. Neurophysiol., 2002, 87(5), 2287-2296.
[http://dx.doi.org/10.1152/jn.2002.87.5.2287] [PMID: 11976368]
[88]
Divya; Chhikara, P.; Mahajan, V.S.; Datta Gupta, S.; Chauhan, S.S. Differential activity of cathepsin L in human placenta at two different stages of gestation. Placenta, 2002, 23(1), 59-64.
[http://dx.doi.org/10.1053/plac.2001.0748] [PMID: 11869092]
[89]
Hörtnagl, H.; Tasan, R.O.; Wieselthaler, A.; Kirchmair, E.; Sieghart, W.; Sperk, G. Patterns of mRNA and protein expression for 12 GABAA receptor subunits in the mouse brain. Neuroscience, 2013, 236, 345-372.
[http://dx.doi.org/10.1016/j.neuroscience.2013.01.008] [PMID: 23337532]
[90]
Kokare, D.M.; Patole, A.M.; Carta, A.; Chopde, C.T.; Subhedar, N.K. GABAA receptors mediate orexin-A induced stimulation of food intake. Neuropharmacology, 2006, 50(1), 16-24.
[http://dx.doi.org/10.1016/j.neuropharm.2005.07.019] [PMID: 16168444]
[91]
Taksande, B.G.; Sharma, O.; Aglawe, M.M.; Kale, M.B.; Gawande, D.Y.; Umekar, M.J.; Kotagale, N.R. Acute orexigenic effect of agmatine involves interaction between central α2-adrenergic and GABAergic receptors. Biomed. Pharmacother., 2017, 93, 939-947.
[http://dx.doi.org/10.1016/j.biopha.2017.07.004] [PMID: 28715875]
[92]
Zhang, L.; Hernandez-Sanchez, D.; Herzog, H. Regulation of feeding-related behaviors by arcuate neuropeptide Y neurons. Endocrinology, 2019, 160(6), 1411-1420.
[PMID: 31089694]
[93]
Pu, S.; Jain, M.R.; Horvath, T.L.; Diano, S.; Kalra, P.S.; Kalra, S.P. Interactions between neuropeptide Y and gamma-aminobutyric acid in stimulation of feeding: a morphological and pharmacological analysis. Endocrinology, 1999, 140(2), 933-940.
[http://dx.doi.org/10.1210/endo.140.2.6495] [PMID: 9927326]
[94]
Hannestad, J.; DellaGioia, N.; Bloch, M. The effect of antidepressant medication treatment on serum levels of inflammatory cytokines: a meta-analysis. Neuropsychopharmacology, 2011, 36(12), 2452-2459.
[http://dx.doi.org/10.1038/npp.2011.132] [PMID: 21796103]
[95]
Iwata, M.; Ota, K.T.; Duman, R.S. The inflammasome: Pathways linking psychological stress, depression, and systemic illnesses. Brain Behav. Immun., 2013, 31, 105-114.
[http://dx.doi.org/10.1016/j.bbi.2012.12.008] [PMID: 23261775]
[96]
Ogura, Y.; Sutterwala, F.S.; Flavell, R.A. The inflammasome: first line of the immune response to cell stress. Cell, 2006, 126(4), 659-662.
[http://dx.doi.org/10.1016/j.cell.2006.08.002] [PMID: 16923387]
[97]
Chakraborty, S.; Kaushik, D.K.; Gupta, M.; Basu, A. Inflammasome signaling at the heart of central nervous system pathology. J. Neurosci. Res., 2010, 88(8), NA.
[http://dx.doi.org/10.1002/jnr.22343] [PMID: 20127816]
[98]
Alcocer-Gómez, E.; de Miguel, M.; Casas-Barquero, N.; Núñez- Vasco, J.; Sánchez-Alcazar, J.A.; Fernández-Rodríguez, A.; Cordero, M.D. NLRP3 inflammasome is activated in mononuclear blood cells from patients with major depressive disorder. Brain Behav. Immun., 2014, 36, 111-117.
[http://dx.doi.org/10.1016/j.bbi.2013.10.017] [PMID: 24513871]
[99]
Sahin, C.; Albayrak, O.; Akdeniz, T.F.; Akbulut, Z.; Yanikkaya Demirel, G.; Aricioglu, F. agmatine reverses sub-chronic stress induced nod-like receptor protein 3 (nlrp3) activation and cytokine response in rats. Basic Clin. Pharmacol. Toxicol., 2016, 119(4), 367-375.
[http://dx.doi.org/10.1111/bcpt.12604] [PMID: 27061450]
[100]
Tavares, M.K.; dos Reis, S.; Platt, N.; Heinrich, I.A.; Wolin, I.A.V.; Leal, R.B.; Kaster, M.P.; Rodrigues, A.L.S.; Freitas, A.E. Agmatine potentiates neuroprotective effects of subthreshold concentrations of ketamine via mTOR/S6 kinase signaling pathway. Neurochem. Int., 2018, 118, 275-285.
[http://dx.doi.org/10.1016/j.neuint.2018.05.006] [PMID: 29763645]
[101]
Gulati, K.; Joshi, J.C.; Ray, A. Recent advances in stress research: Focus on nitric oxide. Eur. J. Pharmacol., 2015, 765, 406-414.
[http://dx.doi.org/10.1016/j.ejphar.2015.08.055] [PMID: 26341014]
[102]
Hummel, S.G.; Fischer, A.J.; Martin, S.M.; Schafer, F.Q.; Buettner, G.R. Nitric oxide as a cellular antioxidant: A little goes a long way. Free Radic. Biol. Med., 2006, 40(3), 501-506.
[http://dx.doi.org/10.1016/j.freeradbiomed.2005.08.047] [PMID: 16443165]
[103]
Madrigal, J.L.M.; Moro, M.A.; Lizasoain, I.; Lorenzo, P.; Castrillo, A. Boscá, L.; Leza, J.C. Inducible nitric oxide synthase expression in brain cortex after acute restraint stress is regulated by nuclear factor κB-mediated mechanisms. J. Neurochem., 2001, 76(2), 532-538.
[http://dx.doi.org/10.1046/j.1471-4159.2001.00108.x] [PMID: 11208916]
[104]
Satriano, J.; Schwartz, D.; Ishizuka, S.; Lortie, M.J.; Thomson, S.C.; Gabbai, F.; Kelly, C.J.; Blantz, R.C. Suppression of inducible nitric oxide generation by agmatine aldehyde: Beneficial effects in sepsis. J. Cell. Physiol., 2001, 188(3), 313-320.
[http://dx.doi.org/10.1002/jcp.1119] [PMID: 11473357]
[105]
Auguet, M.; Viossat, I.; Marin, J.G.; Chabrier, P.E. Selective inhibition of inducible nitric oxide synthase by agmatine. Jpn. J. Pharmacol., 1995, 69(3), 285-287.
[http://dx.doi.org/10.1254/jjp.69.285] [PMID: 8699639]
[106]
Demady, D.R.; Jianmongkol, S.; Vuletich, J.L.; Bender, A.T.; Osawa, Y. Agmatine enhances the NADPH oxidase activity of neuronal NO synthase and leads to oxidative inactivation of the enzyme. Mol. Pharmacol., 2001, 59(1), 24-29.
[http://dx.doi.org/10.1124/mol.59.1.24] [PMID: 11125020]
[107]
Regunathan, S.; Piletz, J.E. Regulation of inducible nitric oxide synthase and agmatine synthesis in macrophages and astrocytes. Ann. N. Y. Acad. Sci., 2003, 1009(1), 20-29.
[http://dx.doi.org/10.1196/annals.1304.002] [PMID: 15028566]
[108]
Singh, V.B.; Corley, K.C.; Phan, T.H.; Boadle-Biber, M.C. Increases in the activity of tryptophan hydroxylase from rat cortex and midbrain in response to acute or repeated sound stress are blocked by adrenalectomy and restored by dexamethasone treatment. Brain Res., 1990, 516(1), 66-76.
[http://dx.doi.org/10.1016/0006-8993(90)90898-L] [PMID: 2364282]
[109]
Maswood, S.; Barter, J.E.; Watkins, L.R.; Maier, S.F. Exposure to inescapable but not escapable shock increases extracellular levels of 5-HT in the dorsal raphe nucleus of the rat. Brain Res., 1998, 783(1), 115-120.
[http://dx.doi.org/10.1016/S0006-8993(97)01313-9] [PMID: 9479059]
[110]
Bland, S.T.; Hargrave, D.; Pepin, J.L.; Amat, J.; Watkins, L.R.; Maier, S.F. Stressor controllability modulates stress-induced dopamine and serotonin efflux and morphine-induced serotonin efflux in the medial prefrontal cortex. Neuropsychopharmacology, 2003, 28(9), 1589-1596.
[http://dx.doi.org/10.1038/sj.npp.1300206] [PMID: 12784102]
[111]
Amat, J.; Baratta, M.V.; Paul, E.; Bland, S.T.; Watkins, L.R.; Maier, S.F. Medial prefrontal cortex determines how stressor controllability affects behavior and dorsal raphe nucleus. Nat. Neurosci., 2005, 8(3), 365-371.
[http://dx.doi.org/10.1038/nn1399] [PMID: 15696163]
[112]
Pei, Q.; Zetterstro¨m, T.; Fillenz, M. Tail pinch-induced changes in the turnover and release of dopamine and 5-hydroxytryptamine in different brain regions of the rat. Neuroscience, 1990, 35(1), 133-138.
[http://dx.doi.org/10.1016/0306-4522(90)90127-P] [PMID: 1694282]
[113]
Clement, H.W. Schäfer, F.; Ruwe, C.; Gemsa, D.; Wesemann, W. Stress-induced changes of extracellular 5-hydroxyindoleacetic acid concentrations followed in the nucleus raphe dorsalis and the frontal cortex of the rat. Brain Res., 1993, 614(1-2), 117-124.
[http://dx.doi.org/10.1016/0006-8993(93)91024-M] [PMID: 7688645]
[114]
Inoue, T.; Tsuchiya, K.; Koyama, T. Regional changes in dopamine and serotonin activation with various intensity of physical and psychological stress in the rat brain. Pharmacol. Biochem. Behav., 1994, 49(4), 911-920.
[http://dx.doi.org/10.1016/0091-3057(94)90243-7] [PMID: 7886107]
[115]
Man, M.S.; Young, A.H.; McAllister-Williams, R.H. Corticosterone modulation of somatodendritic 5-HT1A receptor function in mice. J. Psychopharmacol., 2002, 16(3), 245-252.
[http://dx.doi.org/10.1177/026988110201600310] [PMID: 12236633]
[116]
Klaassen, T.; Riedel, W.J.; van Praag, H.M.; Menheere, P.P.C.A.; Griez, E. Neuroendocrine response to meta-chlorophenylpiperazine and ipsapirone in relation to anxiety and aggression. Psychiatry Res., 2002, 113(1-2), 29-40.
[http://dx.doi.org/10.1016/S0165-1781(02)00250-0] [PMID: 12467943]
[117]
Jørgensen, H.; Knigge, U.; Kjær, A.; Vadsholt, T.; Warberg, J. Serotonergic involvement in stress-induced ACTH release. Brain Res., 1998, 811(1-2), 10-20.
[http://dx.doi.org/10.1016/S0006-8993(98)00901-9] [PMID: 9804868]
[118]
Heisler, L.K.; Pronchuk, N.; Nonogaki, K.; Zhou, L.; Raber, J.; Tung, L.; Yeo, G.S.H.; O’Rahilly, S.; Colmers, W.F.; Elmquist, J.K.; Tecott, L.H. Serotonin activates the hypothalamic-pituitary-adrenal axis via serotonin 2C receptor stimulation. J. Neurosci., 2007, 27(26), 6956-6964.
[http://dx.doi.org/10.1523/JNEUROSCI.2584-06.2007] [PMID: 17596444]
[119]
Dias Elpo Zomkowski, A.; Oscar Rosa, A.; Lin, J.; Santos, A.R.S.; Batista Calixto, J. Lúcia Severo Rodrigues, A. Evidence for serotonin receptor subtypes involvement in agmatine antidepressant like-effect in the mouse forced swimming test. Brain Res., 2004, 1023(2), 253-263.
[http://dx.doi.org/10.1016/j.brainres.2004.07.041] [PMID: 15374751]
[120]
Romero, L. Hervás, I.; Artigas, F. The 5-HT1A antagonist WAY-100635 selectively potentiates the presynaptic effects of serotonergic antidepressants in rat brain. Neurosci. Lett., 1996, 219(2), 123-126.
[http://dx.doi.org/10.1016/S0304-3940(96)13199-2] [PMID: 8971795]
[121]
Redrobe, J.P.; Bourin, M. Evidence of the activity of lithium on 5-HT 1B receptors in the mouse forced swimming test: comparison with carbamazepine and sodium valproate. Psychopharmacology (Berl.), 1999, 141(4), 370-377.
[http://dx.doi.org/10.1007/s002130050846] [PMID: 10090644]
[122]
Smith, J.C.E.; Whitton, P.S. Nitric oxide modulates N -methyl- d -aspartate-evoked serotonin release in the raphe nuclei and frontal cortex of the freely moving rat. Neurosci. Lett., 2000, 291(1), 5-8.
[http://dx.doi.org/10.1016/S0304-3940(00)01378-1] [PMID: 10962140]
[123]
Krass, M.; Wegener, G.; Vasar, E.; Volke, V. Antidepressant-like effect of agmatine is not mediated by serotonin. Behav. Brain Res., 2008, 188(2), 324-328.
[http://dx.doi.org/10.1016/j.bbr.2007.11.013] [PMID: 18177953]
[124]
Wang, B.X. Effects of agmatine on spatial reference memory of mice under normal and stress conditions. J. Int. Pharm. Res., 2020, 47(9), 722-730.
[125]
Bahremand, T.; Payandemehr, P.; Riazi, K.; Noorian, A.R.; Payandemehr, B.; Sharifzadeh, M.; Dehpour, A.R. Modulation of the anticonvulsant effect of swim stress by agmatine. Epilepsy Behav., 2018, 78, 142-148.
[http://dx.doi.org/10.1016/j.yebeh.2017.11.005] [PMID: 29195160]
[126]
Carlisle, M.A.; Smvth, D.D.; Glavin, G.B. Imidazoline receptor modulation of gastric acid secretion and experimental gastric mucosal injury. FASEB J., 1996, 10(3), 706.
[127]
Xiong, Z. Inhibitory effects of agmatine on stress-induced hyperthermia in rats. Chine. J. Appl. Phys., 2016, 32(3), 270-273.
[128]
Olescowicz, G.; Neis, V.B.; Fraga, D.B.; Rosa, P.B.; Azevedo, D.P.; Melleu, F.F.; Brocardo, P.S.; Gil-Mohapel, J.; Rodrigues, A.L.S. Antidepressant and pro-neurogenic effects of agmatine in a mouse model of stress induced by chronic exposure to corticosterone. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2018, 81, 395-407.
[http://dx.doi.org/10.1016/j.pnpbp.2017.08.017] [PMID: 28842257]
[129]
Ozden, A.; Angelos, H.; Feyza, A.; Elizabeth, W.; John, P. Altered plasma levels of arginine metabolites in depression. J. Psychiatr. Res., 2020, 120, 21-28.
[http://dx.doi.org/10.1016/j.jpsychires.2019.10.004] [PMID: 31629205]
[130]
Rafi, H.; Ahmad, F.; Anis, J.; Khan, R.; Rafiq, H.; Farhan, M. Comparative effectiveness of agmatine and choline treatment in rats with cognitive impairment induced by AlCl3 and forced swim stress. Curr. Clin. Pharmacol., 2020, 15(3), 251-264.
[http://dx.doi.org/10.2174/1574884714666191016152143] [PMID: 31622210]
[131]
Sahin Ozkartal, C.; Tuzun, E.; Kucukali, C.I.; Ulusoy, C.; Giris, M.; Aricioglu, F. Antidepressant-like effects of agmatine and NOS inhibitors in chronic unpredictable mild stress model of depression in rats: The involvement of NLRP inflammasomes. Brain Res., 2019, 1725, 146438.
[http://dx.doi.org/10.1016/j.brainres.2019.146438] [PMID: 31518574]
[132]
Li, Y.; Chen, H.; Liu, Y.; Zhang, Y.; Liu, Y.; Li, J. Agmatine increases proliferation of cultured hippocampal progenitor cells and hippocampal neurogenesis in chronically stressed mice. Acta Pharmacol. Sin., 2006, 27(11), 1395-1400.
[http://dx.doi.org/10.1111/j.1745-7254.2006.00429.x] [PMID: 17049113]
[133]
Chen, H.X. Effect of agmatine on the neurons and astrocytes in hippocampus of chronically stressed rats. Zhongguo Yaolixue Tongbao, 2009, 25(1), 21-25.