Dose-dependent Effects of PRC2 and HDAC Inhibitors on Cardiomyocyte Hypertrophy Induced by Phenylephrine

Page: [371 - 378] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Introduction: Postnatal cardiomyocytes respond to stress signals by hypertrophic growth and fetal gene reprogramming, which involves epigenetic remodeling mediated by histone methyltransferase polycomb repressive complex 2 (PRC2) and histone deacetylases (HDACs). However, it remains unclear to what extent these histone modifiers contribute to the development of cardiomyocyte hypertrophy.

Methods: Neonatal rat ventricular myocytes (NRVMs) were stimulated by phenylephrine (PE; 50μM) to induce hypertrophy in the presence or absence of the PRC2 inhibitor GSK126 or the HDACs inhibitor Trichostatin A (TSA). Histone methylation and acetylation were measured by Western blot. Cell size was determined by wheat germ agglutinin (WGA) staining. Cardiac hypertrophy markers were quantified by quantitative reverse transcription polymerase chain reaction (qRT-PCR).

Results: PE treatment induced the expression of cardiac hypertrophy markers, including natriuretic peptide A (Nppa), natriuretic peptide B (Nppb), and myosin heavy chain 7 (Myh7), in a time-dependent manner in NRVMs. Histone modifications, including H3K27me3, H3K9ac, and H3K27ac, were dynamically altered after PE treatment. Treatment with TSA and GSK126 dose-dependently repressed histone acetylation and methylation, respectively. While TSA reversed the PE-induced cell size enlargement in a wide range of concentrations, cardiomyocyte hypertrophy was only inhibited by GSK126 at a higher dose (1μM). Consistently, TSA dose-dependently suppressed the induction of Nppa, Nppb, and Myh7/Myh6 ratio, while these indexes were only inhibited by GSK126 at 1μM. However, TSA, but not GSK126, caused pro-hypertrophic expression of pathological genes at the basal level.

Conclusion: Our data demonstrate diversified effects of TSA and GSK126 on PE-induced cardiomyocyte hypertrophy, and shed light on epigenetic reprogramming in the pathogenesis of cardiac hypertrophy.

Graphical Abstract

[1]
Nakamura M, Sadoshima J. Mechanisms of physiological and pathological cardiac hypertrophy. Nat Rev Cardiol 2018; 15(7): 387-407.
[http://dx.doi.org/10.1038/s41569-018-0007-y] [PMID: 29674714]
[2]
MacDonald MR, Petrie MC, Hawkins NM, et al. Diabetes, left ventricular systolic dysfunction, and chronic heart failure. Eur Heart J 2008; 29(10): 1224-40.
[http://dx.doi.org/10.1093/eurheartj/ehn156] [PMID: 18424786]
[3]
Bernardo BC, Weeks KL, Pretorius L, McMullen JR. Molecular distinction between physiological and pathological cardiac hypertrophy: Experimental findings and therapeutic strategies. Pharmacol Ther 2010; 128(1): 191-227.
[http://dx.doi.org/10.1016/j.pharmthera.2010.04.005] [PMID: 20438756]
[4]
Dadson K, Hauck L, Billia F. Molecular mechanisms in cardiomyopathy. Clin Sci (Lond) 2017; 131(13): 1375-92.
[http://dx.doi.org/10.1042/CS20160170] [PMID: 28645928]
[5]
Haque ZK, Wang DZ. How cardiomyocytes sense pathophysiological stresses for cardiac remodeling. Cell Mol Life Sci 2017; 74(6): 983-1000.
[http://dx.doi.org/10.1007/s00018-016-2373-0] [PMID: 27714411]
[6]
Akazawa H, Komuro I. Roles of cardiac transcription factors in cardiac hypertrophy. Circ Res 2003; 92(10): 1079-88.
[http://dx.doi.org/10.1161/01.RES.0000072977.86706.23] [PMID: 12775656]
[7]
Lei H, Hu J, Sun K, Xu D. The role and molecular mechanism of epigenetics in cardiac hypertrophy. Heart Fail Rev 2021; 26(6): 1505-14.
[http://dx.doi.org/10.1007/s10741-020-09959-3] [PMID: 32297065]
[8]
Renu K, v G A, P B TP, Arunachalam S. Molecular mechanism of doxorubicin-induced cardiomyopathy-An update. Eur J Pharmacol 2018; 818: 241-53.
[http://dx.doi.org/10.1016/j.ejphar.2017.10.043] [PMID: 29074412]
[9]
McKinsey TA, Olson EN. Dual roles of histone deacetylases in the control of cardiac growth. Novartis Found Symp 2008; 259: 132-45.
[http://dx.doi.org/10.1002/0470862637.ch9] [PMID: 15171251]
[10]
Papait R, Cattaneo P, Kunderfranco P, et al. Genome-wide analysis of histone marks identifying an epigenetic signature of promoters and enhancers underlying cardiac hypertrophy. Proc Natl Acad Sci USA 2013; 110(50): 20164-9.
[http://dx.doi.org/10.1073/pnas.1315155110] [PMID: 24284169]
[11]
Kalish JM, Jiang C, Bartolomei MS. Epigenetics and imprinting in human disease. Int J Dev Biol 2014; 58(2-3-4): 291-8.
[http://dx.doi.org/10.1387/ijdb.140077mb] [PMID: 25023695]
[12]
Schuettengruber B, Cavalli G. Recruitment of Polycomb group complexes and their role in the dynamic regulation of cell fate choice. Development 2009; 136(21): 3531-42.
[http://dx.doi.org/10.1242/dev.033902] [PMID: 19820181]
[13]
Delgado-Olguín P, Huang Y, Li X, et al. Epigenetic repression of cardiac progenitor gene expression by EZH2 is required for postnatal cardiac homeostasis. Nat Genet 2012; 44(3): 343-7.
[http://dx.doi.org/10.1038/ng.1068] [PMID: 22267199]
[14]
Stein AB, Jones TA, Herron TJ, et al. Loss of H3K4 methylation destabilizes gene expression patterns and physiological functions in adult murine cardiomyocytes. J Clin Invest 2011; 121(7): 2641-50.
[http://dx.doi.org/10.1172/JCI44641] [PMID: 21646717]
[15]
McKinsey TA. Therapeutic potential for HDAC inhibitors in the heart. Annu Rev Pharmacol Toxicol 2012; 52(1): 303-19.
[http://dx.doi.org/10.1146/annurev-pharmtox-010611-134712] [PMID: 21942627]
[16]
Olson EN, Backs J, McKinsey TA. Control of cardiac hypertrophy and heart failure by histone acetylation/deacetylation. Novartis Found Symp 2008; 274: 3-19.
[http://dx.doi.org/10.1002/0470029331.ch2] [PMID: 17019803]
[17]
Marks PA, Xu WS. Histone deacetylase inhibitors: Potential in cancer therapy. J Cell Biochem 2009; 107(4): 600-8.
[http://dx.doi.org/10.1002/jcb.22185] [PMID: 19459166]
[18]
Qin J, Guo N, Tong J, Wang Z. Function of histone methylation and acetylation modifiers in cardiac hypertrophy. J Mol Cell Cardiol 2021; 159: 120-9.
[http://dx.doi.org/10.1016/j.yjmcc.2021.06.011] [PMID: 34175302]
[19]
Zhang CL, McKinsey TA, Chang S, Antos CL, Hill JA, Olson EN. Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell 2002; 110(4): 479-88.
[http://dx.doi.org/10.1016/S0092-8674(02)00861-9] [PMID: 12202037]
[20]
Montgomery RL, Davis CA, Potthoff MJ, et al. Histone deacetylases 1 and 2 redundantly regulate cardiac morphogenesis, growth, and contractility. Genes Dev 2007; 21(14): 1790-802.
[http://dx.doi.org/10.1101/gad.1563807] [PMID: 17639084]
[21]
Backs J, Olson EN. Control of cardiac growth by histone acetylation/deacetylation. Circ Res 2006; 98(1): 15-24.
[http://dx.doi.org/10.1161/01.RES.0000197782.21444.8f] [PMID: 16397154]
[22]
Yap TA, Winter JN, Giulino-Roth L, et al. Phase I study of the novel enhancer of zeste homolog 2 (EZH2) inhibitor Gsk2816126 in patients with advanced hematologic and solid tumors. Clin Cancer Res 2019; 25(24): 7331-9.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-4121] [PMID: 31471312]
[23]
Kim KH, Roberts CWM. Targeting EZH2 in cancer. Nat Med 2016; 22(2): 128-34.
[http://dx.doi.org/10.1038/nm.4036] [PMID: 26845405]
[24]
Halsall J, Gupta V, O’Neill LP, Turner BM, Nightingale KP. Genes are often sheltered from the global histone hyperacetylation induced by HDAC inhibitors. PLoS One 2012; 7(3): e33453.
[http://dx.doi.org/10.1371/journal.pone.0033453] [PMID: 22479401]
[25]
Rada-Iglesias A, Enroth S, Ameur A, et al. Butyrate mediates decrease of histone acetylation centered on transcription start sites and down-regulation of associated genes. Genome Res 2007; 17(6): 708-19.
[http://dx.doi.org/10.1101/gr.5540007] [PMID: 17567991]
[26]
Rafehi H, Balcerczyk A, Lunke S, et al. Vascular histone deacetylation by pharmacological HDAC inhibition. Genome Res 2014; 24(8): 1271-84.
[http://dx.doi.org/10.1101/gr.168781.113] [PMID: 24732587]
[27]
Antos CL, McKinsey TA, Dreitz M, et al. Dose-dependent blockade to cardiomyocyte hypertrophy by histone deacetylase inhibitors. J Biol Chem 2003; 278(31): 28930-7.
[http://dx.doi.org/10.1074/jbc.M303113200] [PMID: 12761226]
[28]
Cao DJ, Wang ZV, Battiprolu PK, et al. Histone deacetylase (HDAC) inhibitors attenuate cardiac hypertrophy by suppressing autophagy. Proc Natl Acad Sci USA 2011; 108(10): 4123-8.
[http://dx.doi.org/10.1073/pnas.1015081108] [PMID: 21367693]
[29]
Wang L, Yu P, Zhou B, et al. Single-cell reconstruction of the adult human heart during heart failure and recovery reveals the cellular landscape underlying cardiac function. Nat Cell Biol 2020; 22(1): 108-19.
[http://dx.doi.org/10.1038/s41556-019-0446-7] [PMID: 31915373]
[30]
Meier BC, Wagner BK. Inhibition of HDAC3 as a strategy for developing novel diabetes therapeutics. Epigenomics 2014; 6(2): 209-14.
[http://dx.doi.org/10.2217/epi.14.11] [PMID: 24811789]
[31]
Harrison IF, Dexter DT. Epigenetic targeting of histone deacetylase: Therapeutic potential in Parkinson’s disease? Pharmacol Ther 2013; 140(1): 34-52.
[http://dx.doi.org/10.1016/j.pharmthera.2013.05.010] [PMID: 23711791]
[32]
Bouyahya A, El Omari N, Bakha M, et al. Pharmacological properties of trichostatin A, focusing on the anticancer potential: A comprehensive review. Pharmaceuticals 2022; 15(10): 1235.
[http://dx.doi.org/10.3390/ph15101235] [PMID: 36297347]
[33]
Zhao L, Chen CN, Hajji N, et al. Histone deacetylation inhibition in pulmonary hypertension: Therapeutic potential of valproic acid and suberoylanilide hydroxamic acid. Circulation 2012; 126(4): 455-67.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.112.103176] [PMID: 22711276]
[34]
Lee E, Lee HA, Kim M, et al. Upregulation of C/EBPβ and TSC2 by an HDAC inhibitor CG200745 protects heart from DOCA-induced hypertrophy. Clin Exp Pharmacol Physiol 2019; 46(3): 226-36.
[http://dx.doi.org/10.1111/1440-1681.13022] [PMID: 30099761]
[35]
Kook H, Lepore JJ, Gitler AD, et al. Cardiac hypertrophy and histone deacetylase–dependent transcriptional repression mediated by the atypical homeodomain protein Hop. J Clin Invest 2003; 112(6): 863-71.
[http://dx.doi.org/10.1172/JCI19137] [PMID: 12975471]
[36]
Cho YK, Eom GH, Kee HJ, et al. Sodium valproate, a histone deacetylase inhibitor, but not captopril, prevents right ventricular hypertrophy in rats. Circ J 2010; 74(4): 760-70.
[http://dx.doi.org/10.1253/circj.CJ-09-0580] [PMID: 20208383]
[37]
Margueron R, Reinberg D. The Polycomb complex PRC2 and its mark in life. Nature 2011; 469(7330): 343-9.
[http://dx.doi.org/10.1038/nature09784] [PMID: 21248841]
[38]
He A, Ma Q, Cao J, et al. Polycomb repressive complex 2 regulates normal development of the mouse heart. Circ Res 2012; 110(3): 406-15.
[http://dx.doi.org/10.1161/CIRCRESAHA.111.252205] [PMID: 22158708]
[39]
Dobreva G, Braun T. When silence is broken: Polycomb group proteins in heart development. Circ Res 2012; 110(3): 372-4.
[http://dx.doi.org/10.1161/CIRCRESAHA.111.263145] [PMID: 22302750]
[40]
Wang Z, Zhang XJ, Ji YX, et al. The long noncoding RNA Chaer defines an epigenetic checkpoint in cardiac hypertrophy. Nat Med 2016; 22(10): 1131-9.
[http://dx.doi.org/10.1038/nm.4179] [PMID: 27618650]
[41]
Wang S, Guo N, Li S, et al. EZH2 dynamically associates with non-coding rnas in mouse hearts after acute Angiotensin II treatment. Front Cardiovasc Med 2021; 8: 585691.
[http://dx.doi.org/10.3389/fcvm.2021.585691] [PMID: 33732733]
[42]
Lachner M, Jenuwein T. The many faces of histone lysine methylation. Curr Opin Cell Biol 2002; 14(3): 286-98.
[http://dx.doi.org/10.1016/S0955-0674(02)00335-6] [PMID: 12067650]
[43]
Gilsbach R, Preissl S, Grüning BA, et al. Dynamic DNA methylation orchestrates cardiomyocyte development, maturation and disease. Nat Commun 2014; 5(1): 5288.
[http://dx.doi.org/10.1038/ncomms6288] [PMID: 25335909]
[44]
Hang CT, Yang J, Han P, et al. Chromatin regulation by Brg1 underlies heart muscle development and disease. Nature 2010; 466(7302): 62-7.
[http://dx.doi.org/10.1038/nature09130] [PMID: 20596014]
[45]
Han P, Li W, Lin CH, et al. A long noncoding RNA protects the heart from pathological hypertrophy. Nature 2014; 514(7520): 102-6.
[http://dx.doi.org/10.1038/nature13596] [PMID: 25119045]