Discovering the Potential of Plants in Wound Healing: A Mechanistic Review

Article ID: e200123212957 Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Plants are admired for their taste, fragrance, and therapeutic characteristics. Herbs are used in multiple traditions, including cooking, medicine, and spirituality. Medicinal plants have been used to treat a number of illnesses and disorders from ancient times to the present day. The main reason for this is that therapeutic plants have no negative side effects. With a diverse spectrum of plant species and widespread access to traditional medical practices, India is one of the world's largest biodiversity reservoirs. According to WHO data and other relevant sources, herbal medicinal products are used by more than 80% of the world's population. The goal of this review article is to describe the importance of herbal agents in therapeutics, such as the use of crude plant extract for the medicinal purpose. Complex interaction of blood cells, tissues, soluble mediators, cytokines, and numerous growth factors is required for wound healing, whether it is accidental or surgical. Plants have enormous potential for wound management and therapy, as well as regeneration of damaged tissues, due to the presence of a variety of useful active phytoconstituents. This review presents comprehensive data on some important plants and their extracts used in wound healing along with their mechanism of action and the scientific research reported on these plants.

[1]
Chah, K.F.; Eze, C.A.; Emuelosi, C.E.; Esimone, C.O. Antibacterial and wound healing properties of methanolic extracts of some Nigerian medicinal plants. J. Ethnopharmacol., 2006, 104(1-2), 164-167.
[http://dx.doi.org/10.1016/j.jep.2005.08.070] [PMID: 16226414]
[2]
Fabricant, D.S.; Farnsworth, N.R. The value of plants used in traditional medicine for drug discovery. Environ. Health Perspect., 2001, 109(Suppl. 1), 69-75.
[http://dx.doi.org/10.1289/ehp.01109s169] [PMID: 11250806]
[3]
Principe, P.P. Monetizing the pharmacological benefits of plants. Medicinal Resources of the Tropical Forest: Biodiversity and Its Importance to Human Health; Balick, M.J.; Elisabetsky, E.; Laird, S.A., Eds.; Columbia University Press, 1996, pp. 191-219.
[4]
Jiang, X. Effect of Bauhinia championii (Benth.) Benth extract on Streptococcus mutants in vitro. Biomed. Res., 2016, 27(3), 758-761.
[5]
Gurib-Fakim, A. Medicinal plants: Traditions of yesterday and drugs of tomorrow. Mol. Aspects Med., 2006, 27(1), 1-93.
[http://dx.doi.org/10.1016/j.mam.2005.07.008] [PMID: 16105678]
[6]
Senthil Kumar, M.; Sripriya, R.; Vijaya Raghavan, H.; Sehgal, P.K. Wound healing potential of Cassia fistula on infected albino rat model. J. Surg. Res., 2006, 131(2), 283-289.
[http://dx.doi.org/10.1016/j.jss.2005.08.025] [PMID: 16242721]
[7]
Singh, M.; Govindarajan, R.; Nath, V.; Rawat, A.K.S.; Mehrotra, S. Antimicrobial, wound healing and antioxidant activity of Plagiochasma appendiculatum Lehm. et Lind. J. Ethnopharmacol., 2006, 107(1), 67-72.
[http://dx.doi.org/10.1016/j.jep.2006.02.007] [PMID: 16600543]
[8]
Enoch, S.; Leaper, D.J. Basic science of wound healing. Surgery, 2008, 26(2), 31-37.
[http://dx.doi.org/10.1016/j.mpsur.2007.11.005]
[9]
Sumitra, M.; Manikandan, P.; Suguna, L. Efficacy of Butea monosperma on dermal wound healing in rats. Int. J. Biochem. Cell Biol., 2005, 37(3), 566-573.
[http://dx.doi.org/10.1016/j.biocel.2004.08.003] [PMID: 15618014]
[10]
Krishnan, P. The scientific study of herbal wound healing therapies: Current state of play. Curr. Anaesth. Crit. Care, 2006, 17(1-2), 21-27.
[http://dx.doi.org/10.1016/j.cacc.2006.02.009]
[11]
Nejati, R.; Kovacic, D.; Slominski, A. Neuro-ImmuneEndocrine Functions ofTe Skin: An Overview; Taylor & Francis, 2013.
[12]
Pasparakis, M.; Haase, I.; Nestle, F.O. Mechanisms regulating skin immunity and inflammation. Nat. Rev. Immunol., 2014, 14(5), 289-301.
[http://dx.doi.org/10.1038/nri3646] [PMID: 24722477]
[13]
Rousselle, P.; Braye, F.; Dayan, G. Re-epithelialization of adult skin wounds: Cellular mechanisms and therapeutic strategies. Adv. Drug Deliv. Rev., 2019, 146, 344-365.
[PMID: 29981800]
[14]
Kupper, T.S.; Fuhlbrigge, R.C. Immune surveillance in the skin: mechanisms and clinical consequences. Nat. Rev. Immunol., 2004, 4(3), 211-222.
[http://dx.doi.org/10.1038/nri1310] [PMID: 15039758]
[15]
Emami-Razavi, H Effect of bentonite on skin wound healing experimental study in the rat model. Acta Med. Iran., 2006, 44(4), 235-240.
[16]
Clark, R.A.F. Cutaneous tissue repair: Basic biologic considerations. I. J. Am. Acad. Dermatol., 1985, 13(5), 701-725.
[http://dx.doi.org/10.1016/S0190-9622(85)70213-7] [PMID: 2416789]
[17]
Arunachalam, Kantha Preliminary phytochemical Investigation and wound healing activity of Myristica andamanica leaves in Swiss albino mice. J. Med. Plants Res., 2011, 5(7), 1095-1106.
[18]
Dan, M.M.; Sarmah, P.; Vana, D.R.; Dattatreya, A. Wound Healing: Concepts and updates in herbal medicine. Int. J. Med. Res. Health Sci., 2018, 7(1), 170-181.
[19]
Marume, A.; Matope, G.; Katsande, S.; Khoza, S.; Mutingwende, I.; Mduluza, T.; Munodawafa-Taderera, T.; Ndhlala, A.R. Wound healing properties of selected plants used in ethnoveterinary medicine. Front. Pharmacol., 2017, 8, 544.
[http://dx.doi.org/10.3389/fphar.2017.00544] [PMID: 28932192]
[20]
Flanagan, M. The physiology of wound healing. J. Wound Care, 2000, 9(6), 299-300.
[http://dx.doi.org/10.12968/jowc.2000.9.6.25994] [PMID: 11933346]
[21]
Lawrence, W.T. Physiology of the acute wound. Clin. Plast. Surg., 1998, 25(3), 321-340.
[http://dx.doi.org/10.1016/S0094-1298(20)32467-6] [PMID: 9696896]
[22]
Hunt, T.K.; Hopf, H.; Hussain, Z. Physiology of wound healing. Adv. Skin Wound Care, 2000, 13(2)(Suppl.), 6-11.
[PMID: 11074996]
[23]
Diegelmann, R.F.; Evans, M.C. Wound healing: an overview of acute, fibrotic and delayed healing. Front. Biosci., 2004, 9(1-3), 283-289.
[http://dx.doi.org/10.2741/1184] [PMID: 14766366]
[24]
Servold, S.A. Growth factor impact on wound healing. Clin. Podiatr. Med. Surg., 1991, 8(4), 937-953.
[PMID: 1933739]
[25]
Baum, C.L.; Arpey, C.J. Normal cutaneous wound healing: clinical correlation with cellular and molecular events. Dermatol. Surg., 2005, 31(6), 674-686.
[http://dx.doi.org/10.1097/00042728-200506000-00011] [PMID: 15996419]
[26]
Greenhalgh, D.G. The role of apoptosis in wound healing. Int. J. Biochem. Cell Biol., 1998, 30(9), 1019-1030.
[http://dx.doi.org/10.1016/S1357-2725(98)00058-2] [PMID: 9785465]
[27]
Clark, R.A.F. Regulation of fibroplasia in cutaneous wound repair. Am. J. Med. Sci., 1993, 306(1), 42-48.
[http://dx.doi.org/10.1097/00000441-199307000-00011] [PMID: 8328509]
[28]
Leach, M.J. Calendula officinalis and wound healing: A systematic review. Wounds Evidence-Based Compl Alter Med, 2008, 20(8), 236-243.
[29]
Fronza, M.; Heinzmann, B.; Hamburger, M.; Laufer, S.; Merfort, I. Determination of the wound healing effect of Calendula extracts using the scratch assay with 3T3 fibroblasts. J. Ethnopharmacol., 2009, 126(3), 463-467.
[http://dx.doi.org/10.1016/j.jep.2009.09.014] [PMID: 19781615]
[30]
Dinda, M.; Dasgupta, U.; Singh, N.; Bhattacharyya, D.; Karmakar, P. PI3K-mediated proliferation of fibroblasts by Calendula officinalis tincture: Implication in wound healing. Phytother. Res., 2015, 29(4), 607-616.
[http://dx.doi.org/10.1002/ptr.5293] [PMID: 25641010]
[31]
Dinda, M.; Mazumdar, S.; Das, S.; Ganguly, D.; Dasgupta, U.B.; Dutta, A.; Jana, K.; Karmakar, P. The water fraction of Calendula officinalis hydroethanol extract stimulates In Vitro and In Vivo proliferation of dermal fibroblasts in wound healing. Phytother. Res., 2016, 30(10), 1696-1707.
[http://dx.doi.org/10.1002/ptr.5678] [PMID: 27426257]
[32]
Parente, L.M.L.; Lino Júnior, R.S.; Tresvenzol, L.M.F.; Vinaud, M.C.; de Paula, J.R.; Paulo, N.M. Wound healing and anti-inflammatory effect in animal models of Calendula officinalis L. growing in Brazil. Evid. Based Complement. Alternat. Med., 2012, 2012, 1-7.
[http://dx.doi.org/10.1155/2012/375671] [PMID: 22315631]
[33]
Shivananda Nayak, B.; Sivachandra Raju, S.; Orette, F.A.; Chalapathi Rao, A.V. Effects of Hibiscus rosa sinensis L (Malvaceae) on wound healing activity: A preclinical study in a Sprague Dawley rat. Int. J. Low. Extrem. Wounds, 2007, 6(2), 76-81.
[http://dx.doi.org/10.1177/1534734607302840] [PMID: 17558005]
[34]
Adhirajan, N.; Ravi Kumar, T.; Shanmugasundaram, N.; Babu, M. In vivo and in vitro evaluation of hair growth potential of Hibiscus rosa-sinensis Linn. J. Ethnopharmacol., 2003, 88(2-3), 235-239.
[http://dx.doi.org/10.1016/S0378-8741(03)00231-9] [PMID: 12963149]
[35]
Ali, AA; Jusoh, NH Evaluation of Hibiscus rosa-sinensis leaves extracts as wound healing promoter on rats. 2014 IEEE Conference on Biomedical Engineering and Sciences (IECBES), Kuala Lumpur, Malaysia2014, pp. 352-355.
[http://dx.doi.org/10.1109/IECBES.2014.7047519]
[36]
Khan, Z.A.; Naqvi, S.A.; Mukhtar, A.; Hussain, Z.; Shahzad, S.A.; Mansha, A.; Ahmad, M.; Zahoor, A.F.; Bukhari, I.H.; Ashraf-Janjua, M.R.; Mahmood, N.; Yar, M. Antioxidant and antibacterial activities of Hibiscus Rosa-sinensis Linn flower extracts. Pak. J. Pharm. Sci., 2014, 27(3), 469-474.
[PMID: 24811803]
[37]
Shen, H.M.; Chen, C.; Jiang, J.Y.; Zheng, Y.L.; Cai, W.F.; Wang, B.; Ling, Z.; Tang, L.; Wang, Y.H.; Shi, G.G. The N-butyl alcohol extract from Hibiscus rosa-sinensis L. flowers enhances healing potential on rat excisional wounds. J. Ethnopharmacol., 2017, 198, 291-301.
[http://dx.doi.org/10.1016/j.jep.2017.01.016] [PMID: 28088494]
[38]
Shang, X.; Pan, H.; Li, M.; Miao, X.; Ding, H. Lonicera japonica Thunb.: Ethnopharmacology, phytochemistry and pharmacology of an important traditional Chinese medicine. J. Ethnopharmacol., 2011, 138(1), 1-21.
[http://dx.doi.org/10.1016/j.jep.2011.08.016] [PMID: 21864666]
[39]
Li, Y.; Cai, W.; Weng, X. Lonicerae Japonicae Flos and Lonicerae Flos: a systematic pharmacology review. Evidence-Based Complem Alter Med, 2015, 2015, 16.
[40]
Chen, W.C.; Liou, S.S.; Tzeng, T.F.; Lee, S.L.; Liu, I.M. Wound repair and anti-inflammatory potential of Lonicera japonica in excision wound-induced rats. BMC Complement. Altern. Med., 2012, 12(1), 226.
[http://dx.doi.org/10.1186/1472-6882-12-226] [PMID: 23173654]
[41]
Yang, D.; Xu, J.; Shi, R. Root extractive from Daphne genkwa benefits in wound healing of anal fistula through up-regulation of collagen genes in human skin fibroblasts. Biosci. Rep., 2017, 37(2), BSR20170182.
[http://dx.doi.org/10.1042/BSR20170182] [PMID: 28396516]
[42]
Bang, K.K.; Yun, C.Y.; Lee, C.; Jin, Q.; Lee, J.W.; Jung, S.H.; Lee, D.; Lee, M.K.; Hong, J.T.; Kim, Y.; Hwang, B.Y. Melanogenesis inhibitory daphnane diterpenoids from the flower buds of Daphne genkwa. Bioorg. Med. Chem. Lett., 2013, 23(11), 3334-3337.
[http://dx.doi.org/10.1016/j.bmcl.2013.03.096] [PMID: 23623417]
[43]
Morton, J.F. Folk uses and commercial exploitation of Aloe leaf pulp. Econ. Bot., 1961, 15(4), 311-319.
[http://dx.doi.org/10.1007/BF02907852]
[44]
Rubin, M.B. Vitamins and wound healing. Plast. Surg. Nurs., 1984, 4(1), 16-19.
[http://dx.doi.org/10.1097/00006527-198400410-00003] [PMID: 6562658]
[45]
Davis, R.H.; Leitner, M.G.; Russo, J.M.; Byrne, M.E. Wound healing. Oral and topical activity of Aloe vera. J. Am. Podiatr. Med. Assoc., 1989, 79(11), 559-562.
[http://dx.doi.org/10.7547/87507315-79-11-559] [PMID: 2607423]
[46]
Salehi, B.; Albayrak, S.; Antolak, H.; Kręgiel, D.; Pawlikowska, E.; Sharifi-Rad, M.; Uprety, Y.; Tsouh Fokou, P.; Yousef, Z.; Amiruddin Zakaria, Z.; Varoni, E.; Sharopov, F.; Martins, N.; Iriti, M.; Sharifi-Rad, J. Aloe genus plants: from farm to food applications and phytopharmacotherapy. Int. J. Mol. Sci., 2018, 19(9), 2843.
[http://dx.doi.org/10.3390/ijms19092843] [PMID: 30235891]
[47]
Lawrence, R.; Tripathi, P.; Jeyakumar, E. Isolation, purification and evaluation of antibacterial agents from Aloe vera. Braz. J. Microbiol., 2009, 40(4), 906-915.
[http://dx.doi.org/10.1590/S1517-83822009000400023] [PMID: 24031440]
[48]
Martínez-Romero, D.; Alburquerque, N.; Valverde, J.M.; Guillén, F.; Castillo, S.; Valero, D.; Serrano, M. Postharvest sweet cherry quality and safety maintenance by Aloe vera treatment: A new edible coating. Postharvest Biol. Technol., 2006, 39(1), 93-100.
[http://dx.doi.org/10.1016/j.postharvbio.2005.09.006]
[49]
Hajiaghaalipour, F.; Kanthimathi, M. S.; Abdulla, M. A.; Sanusi, J. Effect of Camellia sinensis on wound healing potential in an animal model. Evidence-Based Complementary and Alternative Medicine, 2013, 2013, 7.
[50]
Hsu, S.; Bollag, W.B.; Lewis, J.; Huang, Q.; Singh, B.; Sharawy, M.; Yamamoto, T.; Schuster, G. Green tea polyphenols induce differentiation and proliferation in epidermal keratinocytes. J. Pharmacol. Exp. Ther., 2003, 306(1), 29-34.
[http://dx.doi.org/10.1124/jpet.103.049734] [PMID: 12663686]
[51]
Klass, B.R.; Branford, O.A.; Grobbelaar, A.O.; Rolfe, K.J. The effect of epigallocatechin-3-gallate, a constituent of green tea, on transforming growth factor-β1–stimulated wound contraction. Wound Repair Regen., 2010, 18(1), 80-88.
[http://dx.doi.org/10.1111/j.1524-475X.2009.00552.x] [PMID: 20002896]
[52]
Syed, F.; Bagabir, R.A.; Paus, R.; Bayat, A. Ex vivo evaluation of antifibrotic compounds in skin scarring: EGCG and silencing of PAI-1 independently inhibit growth and induce keloid shrinkage. Lab. Invest., 2013, 93(8), 946-960.
[http://dx.doi.org/10.1038/labinvest.2013.82] [PMID: 23835737]
[53]
Park, G.; Yoon, B.S.; Moon, J.H.; Kim, B.; Jun, E.K.; Oh, S.; Kim, H.; Song, H.J.; Noh, J.Y.; Oh, C.; You, S. Green tea polyphenol epigallocatechin-3-gallate suppresses collagen production and proliferation in keloid fibroblasts via inhibition of the STAT3-signaling pathway. J. Invest. Dermatol., 2008, 128(10), 2429-2441.
[http://dx.doi.org/10.1038/jid.2008.103] [PMID: 18463684]
[54]
Asadi, S.Y.; Parsaei, P.; Karimi, M.; Ezzati, S.; Zamiri, A.; Mohammadizadeh, F.; Rafieian-kopaei, M. Effect of green tea (Camellia sinensis) extract on healing process of surgical wounds in rat. Int. J. Surg., 2013, 11(4), 332-337.
[http://dx.doi.org/10.1016/j.ijsu.2013.02.014] [PMID: 23459184]
[55]
Kim, H.; Kawazoe, T.; Han, D.W.; Matsumara, K.; Suzuki, S.; Tsutsumi, S.; Hyon, S.H. Enhanced wound healing by an epigallocatechin gallate-incorporated collagen sponge in diabetic mice. Wound Repair Regen., 2008, 16(5), 714-720.
[http://dx.doi.org/10.1111/j.1524-475X.2008.00422.x] [PMID: 19128267]
[56]
Subapriya, R.; Nagini, S. Medicinal properties of neem leaves: a review. Curr. Med. Chem. Anticancer Agents, 2005, 5(2), 149-156.
[http://dx.doi.org/10.2174/1568011053174828] [PMID: 15777222]
[57]
Siddiqui, B.S.; Ali, S.T.; Rajput, M.T.; Gulzar, T.; Rasheed, M.; Mehmood, R. GC-based analysis of insecticidal constituents of the flowers of Azadirachta indica A. Juss. Nat. Prod. Res., 2009, 23(3), 271-283.
[http://dx.doi.org/10.1080/14786410802006082] [PMID: 19235028]
[58]
Barua, CC.; Talikdar, A. Evaluation of the wound healing activity of methonolic extract of Azadirachta Indica and Tinospora Cordifolia in rats. Pharmacologyonline, 2010, 1, 70-77.
[59]
Chundran, N.K.; Husen, I.R.; Rubianti, I. Effect of neem leaves extract (Azadirachta Indica) on wound healing. Althea Medical Journal, 2015, 2(2), 199-203.
[http://dx.doi.org/10.15850/amj.v2n2.535]
[60]
Alam, P.; Shakeel, F.; Anwer, M.K.; Foudah, A.I.; Alqarni, M.H. Wound healing study eucalyptus essential oil containing nanoemulsion in rat model. J. Oleo Sci., 2018, 67(8), 957-968.
[http://dx.doi.org/10.5650/jos.ess18005] [PMID: 30012898]
[61]
Velmurugan, C. Wound healing potential of leaves of eucalyptus citriodoralin rats. World J. Pharm. Sci., 2014, 2(1), 62-71.
[62]
Nezhad, F.M. Antibacterial activity of Eucalyptus extracts on methicillin resistance Staphylococcus aureus. Res. J. Biol. Sci., 2009, 4(8), 905-908.
[63]
Hukkeri, V.T.; Karadi, R.V. Wound healing property of Eucalyptus globulus leaf extract. Indian Drugs., 2002, 39, 481-483.
[64]
Bautista, D.M.; Sigal, Y.M.; Milstein, A.D.; Garrison, J.L.; Zorn, J.A.; Tsuruda, P.R.; Nicoll, R.A.; Julius, D. Pungent agents from Szechuan peppers excite sensory neurons by inhibiting two-pore potassium channels. Nat. Neurosci., 2008, 11(7), 772-779.
[http://dx.doi.org/10.1038/nn.2143] [PMID: 18568022]
[65]
Zhang, M.; Wang, J.; Zhu, L. Zanthoxylum bungeanum Maxim. (Rutaceae): A systematic review of its traditional uses, botany, phytochemistry, pharmacology, pharmacokinetics, and toxicology. Int. J. Mol. Sci., 2017, 18(10), 2172.
[http://dx.doi.org/10.3390/ijms18102172] [PMID: 29057808]
[66]
Artaria, C.; Maramaldi, G.; Bonfigli, A.; Rigano, L.; Appendino, G. Lifting properties of the alkamide fraction from the fruit husks of Zanthoxylum bungeanum. Int. J. Cosmet. Sci., 2011, 33(4), 328-333.
[http://dx.doi.org/10.1111/j.1468-2494.2010.00629.x] [PMID: 21284659]
[67]
Emeruwa, A.C. Antibacterial substance from Carica papaya fruit extract. J. Nat. Prod., 1982, 45(2), 123-127.
[http://dx.doi.org/10.1021/np50020a002] [PMID: 7097295]
[68]
Dawkins, G.; Hewitt, H.; Wint, Y.; Obiefuna, P.C.; Wint, B. Antibacterial effects of Carica papaya fruit on common wound organisms. West Indian Med. J., 2003, 52(4), 290-292.
[PMID: 15040064]
[69]
Hou, Q.; He, W.J.; Hao, H.J.; Han, Q.W.; Chen, L.; Dong, L.; Liu, J.J.; Li, X.; Zhang, Y.J.; Ma, Y.Z.; Han, W.D.; Fu, X.B. The four-herb Chinese medicine ANBP enhances wound healing and inhibits scar formation via bidirectional regulation of transformation growth factor pathway. PLoS One, 2014, 9(12), e112274.
[http://dx.doi.org/10.1371/journal.pone.0112274] [PMID: 25489732]
[70]
Hou, Q.; He, W.J.; Chen, L.; Hao, H.J.; Liu, J.J.; Dong, L.; Tong, C.; Li, M.R.; Zhou, Z.Z.; Han, W.D.; Fu, X.B. Effects of the four-herb compound ANBP on wound healing promotion in diabetic mice. Int. J. Low. Extrem. Wounds, 2015, 14(4), 335-342.
[http://dx.doi.org/10.1177/1534734615575244] [PMID: 25795279]
[71]
Walsh, M.E.; Reis, D.; Jones, T. Integrating complementary and alternative medicine: Use of myrrh in wound management. J. Vasc. Nurs., 2010, 28(3), 102.
[http://dx.doi.org/10.1016/j.jvn.2010.06.001] [PMID: 20709267]
[72]
Gupta, A.; Kumar, R.; Upadhyay, N.; Pal, K.; Kumar, R.; Sawhney, R. Effects of Rhodiola imbricata on dermal wound healing. Planta Med., 2007, 73(8), 774-777.
[http://dx.doi.org/10.1055/s-2007-981546] [PMID: 17611935]
[73]
Mishra, K.P.; Ganju, L.; Singh, S.B. Anti-cellular and immunomodulatory potential of aqueous extract of Rhodiola imbricata rhizome. Immunopharmacol. Immunotoxicol., 2012, 34(3), 513-518.
[http://dx.doi.org/10.3109/08923973.2011.638307] [PMID: 22239552]
[74]
Gupta, V.; Lahiri, S.S.; Sultana, S.; Tulsawani, R.K.; Kumar, R. Anti-oxidative effect of Rhodiola imbricata root extract in rats during cold, hypoxia and restraint (C–H–R) exposure and post-stress recovery. Food Chem. Toxicol., 2010, 48(4), 1019-1025.
[http://dx.doi.org/10.1016/j.fct.2010.01.012] [PMID: 20079793]
[75]
Senthilkumar, R.; Chandran, R.; Parimelazhagan, T. Hepatoprotective effect of Rhodiola imbricata rhizome against paracetamol-induced liver toxicity in rats. Saudi J. Biol. Sci., 2014, 21(5), 409-416.
[http://dx.doi.org/10.1016/j.sjbs.2014.04.001] [PMID: 25313275]
[76]
Goel, H.C.; Bala, M.; Prasad, J.; Singh, S.; Agrawala, P.K.; Swahney, R.C. Radioprotection by Rhodiola imbricata in mice against whole-body lethal irradiation. J. Med. Food, 2006, 9(2), 154-160.
[http://dx.doi.org/10.1089/jmf.2006.9.154] [PMID: 16822199]
[77]
Senthilkumar, R.; Parimelazhagan, T.; Chaurasia, O.P.; Srivastava, R.B. Free radical scavenging property and antiproliferative activity of Rhodiola imbricata Edgew extracts in HT-29 human colon cancer cells. Asian Pac. J. Trop. Med., 2013, 6(1), 11-19.
[http://dx.doi.org/10.1016/S1995-7645(12)60194-1] [PMID: 23317880]
[78]
Men, S.; Huo, Q.; Shi, L.; Yan, Y.; Yang, C.; Yu, W.; Liu, B. Panax notoginseng saponins promotes cutaneous wound healing and suppresses scar formation in mice. J. Cosmet. Dermatol., 2020, 19(2), 529-534.
[http://dx.doi.org/10.1111/jocd.13042] [PMID: 31267657]
[79]
Sabouri-Rad, S.; Sabouri-Rad, S.; Sahebkar, A.; Tayarani-Najaran, Z. Ginseng in dermatology. Curr. Pharm. Des., 2017, 23(11), 1649-1666.
[http://dx.doi.org/10.2174/1381612822666161021152322] [PMID: 27774902]
[80]
Yuan, X.; Han, L.; Fu, P.; Zeng, H.; Lv, C.; Chang, W.; Runyon, R.S.; Ishii, M.; Han, L.; Liu, K.; Fan, T.; Zhang, W.; Liu, R. Cinnamaldehyde accelerates wound healing by promoting angiogenesis via up-regulation of PI3K and MAPK signaling pathways. Lab. Invest., 2018, 98(6), 783-798.
[http://dx.doi.org/10.1038/s41374-018-0025-8] [PMID: 29463877]
[81]
Ganasoundari, A.; Uma Devi, P.; Rao, B.S.S. Enhancement of bone marrow radioprotection and reduction of WR-2721 toxicity by Ocimum sanctum. Mutat. Res., 1998, 397(2), 303-312.
[http://dx.doi.org/10.1016/S0027-5107(97)00230-3] [PMID: 9541656]
[82]
Mediratta, P.K.; Sharma, K.K.; Singh, S. Evaluation of immunomodulatory potential of Ocimum sanctum seed oil and its possible mechanism of action. J. Ethnopharmacol., 2002, 80(1), 15-20.
[http://dx.doi.org/10.1016/S0378-8741(01)00373-7] [PMID: 11891082]
[83]
Prakash, P.; Gupta, N. Therapeutic uses of Ocimum sanctum Linn (Tulsi) with a note on eugenol and its pharmacological actions: A short review. Indian J. Physiol. Pharmacol., 2005, 49(2), 125-131.
[PMID: 16170979]
[84]
Pattanayak, P.; Behera, P.; Das, D.; Panda, S. Ocimum sanctum Linn. A reservoir plant for therapeutic applications: An overview. Pharmacogn. Rev., 2010, 4(7), 95-105.
[http://dx.doi.org/10.4103/0973-7847.65323] [PMID: 22228948]
[85]
Goel, A.; Kumar, S.; Singh, D.K.; Bhatia, A.K. Wound healing potential of Ocimum sanctum Linn. with induction of tumor necrosis factor-alpha. Indian J. Exp. Biol., 2010, 48(4), 402-406.
[PMID: 20726339]
[86]
Hanuma, J.B.; Mishra, A.K.; Sabata, B. A natural phenolic lignin from Tinospora Cordifolia miers. J. Chem. Soc., 1986, 1, 1181-1186.
[87]
Akbik, D.; Ghadiri, M.; Chrzanowski, W.; Rohanizadeh, R. Curcumin as a wound healing agent. Life Sci., 2014, 116(1), 1-7.
[http://dx.doi.org/10.1016/j.lfs.2014.08.016] [PMID: 25200875]
[88]
Tejada, S.; Manayi, A.; Daglia, M.; Nabavi, S.F.; Sureda, A.; Hajheydari, Z.; Gortzi, O.; Pazoki-Toroudi, H.; Nabavi, S.M. Wound healing effects of curcumin: A short review. Curr. Pharm. Biotechnol., 2016, 17(11), 1002-1007.
[http://dx.doi.org/10.2174/1389201017666160721123109] [PMID: 27640646]
[89]
Turmeric for Health. How Turmeric Aids in Wound Healing. Turmeric for Health,
[90]
Baliga, M.S.; Bhat, H.P.; Joseph, N.; Fazal, F. Phytochemistry and medicinal uses of the bael fruit (Aegle marmelos Correa): A concise review. Food Res. Int., 2011, 44(7), 1768-1775.
[http://dx.doi.org/10.1016/j.foodres.2011.02.008]
[91]
Jagruti, S Bael as a potential medicinal tree: an overview. World J. Pharm Res., 11(11), 1406-1414.
[92]
Arunachalam, K.D. S. Subhashini, and S. K. Annamalai. “Wound healing and antigenotoxic activities ofAegle marmelos with relation to its antioxidant properties.”. J. Pharm. Res., 2012, 5(3), 1492-1502.
[93]
Jaswanth, A.; Loganathan, V.; Manimaran, S. Wound healing activity of Aegle marmelos. Indian J. Pharm. Sci., 2001, 63, 41-44.
[94]
Gautam, M.K. In vivo healing potential of Aegle marmelos in excision, incision, and dead space wound models. In: The Scientific World Journal; , 2014; 2014, .
[95]
Vidyai, S.M; Krishna, V.; Manjunatha, B.K. Evaluation of wound healing activity of root an dleaf extracts of Clerodendrum serratum L. Indian Drugs, 2005, 42, 609-613.
[96]
Kameswara Rao, B.; Giri, R.; Kesavulu, M.M.; Apparao, C. Effect of oral administration of bark extracts of Pterocarpus santalinus L. on blood glucose level in experimental animals. J. Ethnopharmacol., 2001, 74(1), 69-74.
[http://dx.doi.org/10.1016/S0378-8741(00)00344-5] [PMID: 11137350]
[97]
Kondeti, V.K.; Badri, K.R.; Maddirala, D.R.; Thur, S.K.M.; Fatima, S.S.; Kasetti, R.B.; Rao, C.A. Effect of Pterocarpus santalinus bark, on blood glucose, serum lipids, plasma insulin and hepatic carbohydrate metabolic enzymes in streptozotocin-induced diabetic rats. Food Chem. Toxicol., 2010, 48(5), 1281-1287.
[http://dx.doi.org/10.1016/j.fct.2010.02.023] [PMID: 20178824]
[98]
Arokiyaraj, S.; Martin, S.; Perinbam, K.; Marie, A.P.; Beatrice, V. Free radical scavenging activity and HPTLC finger print of Pterocarpus santalinus L. – an in vitro study. Indian J. Sci. Technol., 2008, 1(7), 1-3. [Google Scholar].
[http://dx.doi.org/10.17485/ijst/2008/v1i7.3]
[99]
Narayan, S.; Devi, R.S.; Srinivasan, P.; Devi, C.S.S. Pterocarpus santalinus: A traditional herbal drug as a protectant against ibuprofen induced gastric ulcers. Phytother. Res., 2005, 19(11), 958-962.
[http://dx.doi.org/10.1002/ptr.1764] [PMID: 16317653]
[100]
Yoganarasimhan, S.N. Bangalore: Cyber Media; Medicinal Plants of India: Tamil Nadu, 2000, p. 63.
[101]
Cho, J.Y.; Park, J.; Kim, P.S.; Yoo, E.S.; Baik, K.U.; Park, M.H. Savinin, a lignan from Pterocarpus santalinus inhibits tumor necrosis factor-alpha production and T cell proliferation. Biol. Pharm. Bull., 2001, 24(2), 167-171.
[http://dx.doi.org/10.1248/bpb.24.167] [PMID: 11217086]
[102]
Evans, M. A guide to herbal remedies; Orient Paperbacks, 1994.
[103]
Vickers, A.; Zollman, C. ABC of complementary medicine: Herbal medicine. BMJ, 1999, 319(7216), 1050-1053.
[http://dx.doi.org/10.1136/bmj.319.7216.1050] [PMID: 10521203]
[104]
Kaushik, K.; Agarwal, S. Role of herbal antifungal agents for the management of fungal diseases: A systematic review. Asian J Pharm. Clin. Res., 2019, 12(7), 34-40.