Coronary Microvascular Dysfunction in Patients with Congenital Heart Disease

Article ID: e190123212886 Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Congenital heart diseases represent a wide range of cardiac malformations. Medical and surgical advances have dramatically increased the survival of patients with congenital heart disease, leading to a continuously growing number of children, adolescents, and adults with congenital heart disease. Nevertheless, congenital heart disease patients have a worse prognosis compared to healthy individuals of similar age. There is substantial overlap in the pathophysiology of congenital heart disease and heart failure induced by other etiologies. Among the pathophysiological changes in heart failure, coronary microvascular dysfunction has recently emerged as a crucial modulator of disease initiation and progression. Similarly, coronary microvascular dysfunction could be important in the pathophysiology of congenital heart diseases as well. For this systematic review, studies on maximal vasodilatory capacity in the coronary microvascular bed in patients with congenital heart disease were searched using the PubMed database. To date, coronary microvascular dysfunction in congenital heart disease patients is incompletely understood because studies on this topic are rare and heterogeneous. The prevalence, extent, and pathophysiological relevance of coronary microvascular dysfunction in congenital heart diseases remain to be elucidated. Herein, we discuss what is currently known about coronary microvascular dysfunction in congenital heart disease and future directions.

[1]
Kovács A, Lakatos B, Tokodi M, Merkely B. Right ventricular mechanical pattern in health and disease: Beyond longitudinal shortening. Heart Fail Rev 2019; 24(4): 511-20.
[http://dx.doi.org/10.1007/s10741-019-09778-1] [PMID: 30852772]
[2]
Canobbio MM. Health care issues facing adolescents with congenital heart disease. J Pediatr Nurs 2001; 16(5): 363-70.
[http://dx.doi.org/10.1053/jpdn.2001.26570] [PMID: 11598868]
[3]
Gomes-Neto M, Saquetto MB. da Silva e Silva CM, Conceição CS, Carvalho VO. Impact of exercise training in aerobic capacity and pulmonary function in children and adolescents after congenital heart disease surgery: A systematic review with meta-analysis. Pediatr Cardiol 2016; 37(2): 217-24.
[http://dx.doi.org/10.1007/s00246-015-1270-x] [PMID: 26396114]
[4]
Kempny A, Dimopoulos K, Uebing A, et al. Reference values for exercise limitations among adults with congenital heart disease. Relation to activities of daily life-single centre experience and review of published data. Eur Heart J 2012; 33(11): 1386-96.
[http://dx.doi.org/10.1093/eurheartj/ehr461] [PMID: 22199119]
[5]
Diller GP, Dimopoulos K, Okonko D, et al. Exercise intolerance in adult congenital heart disease: Comparative severity, correlates, and prognostic implication. Circulation 2005; 112(6): 828-35.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.104.529800] [PMID: 16061735]
[6]
Baumgartner H, De Backer J, Babu-Narayan SV, et al. 2020 ESC Guidelines for the management of adult congenital heart disease. Eur Heart J 2021; 42(6): 563-645.
[http://dx.doi.org/10.1093/eurheartj/ehaa554] [PMID: 32860028]
[7]
Giardini A, Specchia S, Berton E, et al. Strong and independent prognostic value of peak circulatory power in adults with congenital heart disease. Am Heart J 2007; 154(3): 441-7.
[http://dx.doi.org/10.1016/j.ahj.2007.05.009] [PMID: 17719287]
[8]
Verheugt CL, Uiterwaal CSPM, van der Velde ET, et al. Mortality in adult congenital heart disease. Eur Heart J 2010; 31(10): 1220-9.
[http://dx.doi.org/10.1093/eurheartj/ehq032] [PMID: 20207625]
[9]
Marino P, de Oliveira Lopes G, Pereira Borges J, Carolina Terra Cola M, Arkader KD, Tibirica E. Evaluation of systemic microvascular reactivity in adults with congenital heart disease. Congenit Heart Dis 2018; 13(6): 978-87.
[http://dx.doi.org/10.1111/chd.12660] [PMID: 30203466]
[10]
Zomer AC, Vaartjes I, Uiterwaal CSPM, et al. Circumstances of death in adult congenital heart disease. Int J Cardiol 2012; 154(2): 168-72.
[http://dx.doi.org/10.1016/j.ijcard.2010.09.015] [PMID: 20934226]
[11]
Buys R, Cornelissen V, De Bruaene AV, et al. Measures of exercise capacity in adults with congenital heart disease. Int J Cardiol 2011; 153(1): 26-30.
[http://dx.doi.org/10.1016/j.ijcard.2010.08.030] [PMID: 20840883]
[12]
Trojnarska O. Gwizdała A, Katarzyński S, et al. Evaluation of exercise capacity with cardiopulmonary exercise test and B-type natriuretic peptide in adults with congenital heart disease. Cardiol J 2009; 16(2): 133-41.
[PMID: 19387960]
[13]
Miliaresis C, Beker S, Gewitz M. Cardiopulmonary stress testing in children and adults with congenital heart disease. Cardiol Rev 2014; 22(6): 275-8.
[http://dx.doi.org/10.1097/CRD.0000000000000039] [PMID: 25162333]
[14]
Broberg CS, Burchill LJ. Myocardial factor revisited: The importance of myocardial fibrosis in adults with congenital heart disease. Int J Cardiol 2015; 189: 204-10.
[http://dx.doi.org/10.1016/j.ijcard.2015.04.064] [PMID: 25897907]
[15]
Van Berendoncks AML, Bowen DJ, McGhie J, et al. Quantitative assessment of the entire right ventricle from one acoustic window: An attractive approach in patients with congenital heart disease in daily practice. Int J Cardiol 2021; 331: 75-81.
[http://dx.doi.org/10.1016/j.ijcard.2021.01.050] [PMID: 33529669]
[16]
Sharma R, Bolger AP, Li W, et al. Elevated circulating levels of inflammatory cytokines and bacterial endotoxin in adults with congenital heart disease. Am J Cardiol 2003; 92(2): 188-93.
[http://dx.doi.org/10.1016/S0002-9149(03)00536-8] [PMID: 12860222]
[17]
Bolger AP, Sharma R, Li W, et al. Neurohormonal activation and the chronic heart failure syndrome in adults with congenital heart disease. Circulation 2002; 106(1): 92-9.
[http://dx.doi.org/10.1161/01.CIR.0000020009.30736.3F] [PMID: 12093776]
[18]
Shah SJ, Lam CSP, Svedlund S, et al. Prevalence and correlates of coronary microvascular dysfunction in heart failure with preserved ejection fraction: PROMIS-HFpEF. Eur Heart J 2018; 39(37): 3439-50.
[http://dx.doi.org/10.1093/eurheartj/ehy531] [PMID: 30165580]
[19]
Mahfouz RA, Gouda M, Abdelhamid M. Relation of microvascular dysfunction and exercise tolerance in patients with heart failure with preserved ejection fraction. Echocardiography 2020; 37(8): 1192-8.
[http://dx.doi.org/10.1111/echo.14799] [PMID: 32713077]
[20]
Weerts J, Mourmans SGJ, Barandiarán Aizpurua A, et al. The role of systemic microvascular dysfunction in heart failure with preserved ejection fraction. Biomolecules 2022; 12(2): 278.
[http://dx.doi.org/10.3390/biom12020278] [PMID: 35204779]
[21]
Ayub MT, Kalra D. Coronary microvascular dysfunction and the role of noninvasive cardiovascular imaging. Diagnostics 2020; 10(9): 679.
[http://dx.doi.org/10.3390/diagnostics10090679] [PMID: 32916881]
[22]
Leung DY, Leung M. Significance and assessment of coronary microvascular dysfunction. Heart 2011; 97(7): 587-95.
[http://dx.doi.org/10.1136/hrt.2009.183327] [PMID: 21378013]
[23]
Goodwill AG, Dick GM, Kiel AM, Tune JD. Regulation of coronary blood flow. Compr Physiol 2017; 7(2): 321-82.
[http://dx.doi.org/10.1002/cphy.c160016] [PMID: 28333376]
[24]
Muller-Delp JM. The coronary microcirculation in health and disease. ISRN Physiol 2013; 2013: 1-24.
[http://dx.doi.org/10.1155/2013/238979]
[25]
Duncker DJ, Koller A, Merkus D, Canty JM Jr. Regulation of coronary blood flow in health and ischemic heart disease. Prog Cardiovasc Dis 2015; 57(5): 409-22.
[http://dx.doi.org/10.1016/j.pcad.2014.12.002] [PMID: 25475073]
[26]
Olsen RH, Pedersen LR, Snoer M, et al. Coronary flow velocity reserve by echocardiography: Feasibility, reproducibility and agreement with PET in overweight and obese patients with stable and revascularized coronary artery disease. Cardiovasc Ultrasound 2015; 14(1): 22.
[http://dx.doi.org/10.1186/s12947-016-0066-3] [PMID: 27267255]
[27]
Gould KL, Lipscomb K, Hamilton GW. Physiologic basis for assessing critical coronary stenosis. Am J Cardiol 1974; 33(1): 87-94.
[http://dx.doi.org/10.1016/0002-9149(74)90743-7] [PMID: 4808557]
[28]
Crea F, Camici PG, Bairey Merz CN. Coronary microvascular dysfunction: An update. Eur Heart J 2014; 35(17): 1101-11.
[http://dx.doi.org/10.1093/eurheartj/eht513] [PMID: 24366916]
[29]
Flammer AJ, Anderson T, Celermajer DS, et al. The assessment of endothelial function: From research into clinical practice. Circulation 2012; 126(6): 753-67.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.112.093245] [PMID: 22869857]
[30]
Óskarsson G. Coronary flow and flow reserve in children. Acta Paediatr 2004; 93(446): 20-5.
[http://dx.doi.org/10.1111/j.1651-2227.2004.tb00235.x] [PMID: 15702666]
[31]
Chen C, Wei J, AlBadri A, Zarrini P, Bairey Merz CN. Coronary microvascular dysfunction epidemiology, pathogenesis, prognosis, diagnosis, risk factors and therapy. Circ J 2017; 81(1): 3-11.
[http://dx.doi.org/10.1253/circj.CJ-16-1002] [PMID: 27904032]
[32]
Godo S, Suda A, Takahashi J, Yasuda S, Shimokawa H. Coronary microvascular dysfunction. Arterioscler Thromb Vasc Biol 2021; 41(5): 1625-37.
[http://dx.doi.org/10.1161/ATVBAHA.121.316025] [PMID: 33761763]
[33]
Gan LM, Wikström J, Fritsche-Danielson R. Coronary flow reserve from mouse to man from mechanistic understanding to future interventions. J Cardiovasc Transl Res 2013; 6(5): 715-28.
[http://dx.doi.org/10.1007/s12265-013-9497-5] [PMID: 23877202]
[34]
Pesonen E, Liuba P, Aburawi EH. Review findings included diminished coronary flow reserve after surgery in children with congenital heart disease and inflammation. Acta Paediatr 2019; 108(2): 218-23.
[http://dx.doi.org/10.1111/apa.14613] [PMID: 30312493]
[35]
Aoki M, Harada K, Tamura M, Toyono M, Takada G. Posterior descending coronary artery flow reserve assessment by Doppler echocardiography in children with and without congenital heart defect: Comparison with invasive technique. Pediatr Cardiol 2004; 25(6): 647-53.
[http://dx.doi.org/10.1007/s00246-004-0648-y] [PMID: 15793624]
[36]
Harada K, Yasuoka K, Tamura M, Toyono M. Coronary flow reserve assessment by Doppler echocardiography in children with and without congenital heart defect: Comparison with invasive technique. J Am Soc Echocardiogr 2002; 15(10): 1121-6.
[http://dx.doi.org/10.1067/mje.2002.123395] [PMID: 12411893]
[37]
Brunken RC, Perloff JK, Czernin J, et al. Myocardial perfusion reserve in adults with cyanotic congenital heart disease. Am J Physiol Heart Circ Physiol 2005; 289(5): H1798-806.
[http://dx.doi.org/10.1152/ajpheart.01309.2004] [PMID: 16006539]
[38]
Perloff JK. The coronary circulation in cyanotic congenital heart disease. Int J Cardiol 2004; 97 (Suppl. 1): 79-86.
[http://dx.doi.org/10.1016/j.ijcard.2004.08.018] [PMID: 15590083]
[39]
Perloff JK. Cyanotic congenital heart disease the coronary arterial circulation. Curr Cardiol Rev 2012; 8(1): 1-5.
[http://dx.doi.org/10.2174/157340312801215836] [PMID: 22845810]
[40]
Rickers C, Wegner P, Silberbach M, et al. Myocardial perfusion in hypoplastic left heart syndrome. Circ Cardiovasc Imaging 2021; 14(10): e012468.
[http://dx.doi.org/10.1161/CIRCIMAGING.121.012468] [PMID: 34610753]
[41]
Cuypers J, Leirgul E, Samnøy S, et al. Assessment of coronary flow reserve in the coronary sinus by cine 3T-magnetic resonance imaging in young adults after surgery for tetralogy of Fallot. Pediatr Cardiol 2012; 33(1): 65-74.
[http://dx.doi.org/10.1007/s00246-011-0091-9] [PMID: 21901644]
[42]
Hauser M, Bengel FM, Kühn A, et al. Myocardial perfusion and coronary flow reserve assessed by positron emission tomography in patients after Fontan-like operations. Pediatr Cardiol 2003; 24(4): 386-92.
[http://dx.doi.org/10.1007/s00246-002-0355-5] [PMID: 12545320]
[43]
Rutz T, de Marchi SF, Schwerzmann M, Vogel R, Seiler C. Right ventricular absolute myocardial blood flow in complex congenital heart disease. Heart 2010; 96(13): 1056-62.
[http://dx.doi.org/10.1136/hrt.2009.191718] [PMID: 20478857]
[44]
Bengel FM, Hauser M, Duvernoy CS, et al. Myocardial blood flow and coronary flow reserve late after anatomical correction of transposition of the great arteries. J Am Coll Cardiol 1998; 32(7): 1955-61.
[http://dx.doi.org/10.1016/S0735-1097(98)00479-3] [PMID: 9857878]
[45]
Gagliardi MG, Adorisio R, Crea F, Versacci P, Di Donato R, Sanders SP. Abnormal vasomotor function of the epicardial coronary arteries in children five to eight years after arterial switch operation: An angiographic and intracoronary Doppler flow wire study. J Am Coll Cardiol 2005; 46(8): 1565-72.
[http://dx.doi.org/10.1016/j.jacc.2005.06.065] [PMID: 16226186]
[46]
Hauser M, Bengel FM, Kühn A, et al. Myocardial blood flow and flow reserve after coronary reimplantation in patients after arterial switch and ross operation. Circulation 2001; 103(14): 1875-80.
[http://dx.doi.org/10.1161/01.CIR.103.14.1875] [PMID: 11294806]
[47]
Kumar K, Sharma A, Patel C, et al. Feasibility and utility of adenosine stress echocardiography in children following post-arterial switch operation: A comparison with technetium 99m-sestamibi Myocardial Perfusion SPECT (MPS). Pediatr Cardiol 2021; 42(4): 891-7.
[http://dx.doi.org/10.1007/s00246-021-02557-6] [PMID: 33511467]
[48]
Yates RWM, Marsden PK, Badawi RD, et al. Evaluation of myocardial perfusion using positron emission tomography in infants following a neonatal arterial switch operation. Pediatr Cardiol 2000; 21(2): 111-8.
[http://dx.doi.org/10.1007/s002469910015] [PMID: 10754077]
[49]
Hauser M, Bengel FM, Hager A, et al. Impaired myocardial blood flow and coronary flow reserve of the anatomical right systemic ventricle in patients with congenitally corrected transposition of the great arteries. Br Heart J 2003; 89(10): 1231-5.
[http://dx.doi.org/10.1136/heart.89.10.1231] [PMID: 12975428]
[50]
Hauser M, Meierhofer C, Schwaiger M, Vogt M, Kaemmerer H, Kuehn A. Myocardial blood flow in patients with transposition of the great arteries - risk factor for dysfunction of the morphologic systemic right ventricle late after atrial repair. Circ J 2015; 79(2): 425-31.
[http://dx.doi.org/10.1253/circj.CJ-14-0716] [PMID: 25744754]
[51]
Singh TP, Humes RA, Muzik O, Kottamasu S, Karpawich PP, Di Carli MF. Myocardial flow reserve in patients with a systemic right ventricle after atrial switch repair. J Am Coll Cardiol 2001; 37(8): 2120-5.
[http://dx.doi.org/10.1016/S0735-1097(01)01283-9] [PMID: 11419897]
[52]
Cook SC, Ferketich AK, Raman SV. Myocardial ischemia in asymptomatic adults with repaired aortic coarctation. Int J Cardiol 2009; 133(1): 95-101.
[http://dx.doi.org/10.1016/j.ijcard.2007.12.015] [PMID: 18262666]
[53]
Harada K, Tamura M, Toyono M, Takada G. Transthoracic Doppler echocardiographic measurement of flow velocity and flow velocity reserve in the great cardiac vein and in the left anterior descending coronary artery in children with left ventricular volume overload secondary to ventricular septal defect. Am J Cardiol 2002; 89(9): 1129-33.
[http://dx.doi.org/10.1016/S0002-9149(02)02288-9] [PMID: 11988209]
[54]
Madriago E, Wells R, Sahn DJ, et al. Abnormal myocardial blood flow in children with mild/moderate aortic stenosis. Cardiol Young 2015; 25(7): 1358-66.
[http://dx.doi.org/10.1017/S1047951114002583] [PMID: 25668304]
[55]
Toiyama K, Shiraishi I, Oka T, et al. Assessment of coronary flow reserve with a Doppler guide wire in children with tetralogy of Fallot before and after surgical operation. J Thorac Cardiovasc Surg 2004; 127(4): 1195-7.
[http://dx.doi.org/10.1016/j.jtcvs.2003.06.013] [PMID: 15052223]
[56]
Cuypers J, Leirgul E, Larsen TH, Berg A, Omdal TR, Greve G. Assessment of vascular reactivity in the peripheral and coronary arteries by Cine 3T-magnetic resonance imaging in young normotensive adults after surgery for coarctation of the aorta. Pediatr Cardiol 2013; 34(3): 661-9.
[http://dx.doi.org/10.1007/s00246-012-0522-2] [PMID: 23064837]
[57]
Donnelly JP, Raffel DM, Shulkin BL, et al. Resting coronary flow and coronary flow reserve in human infants after repair or palliation of congenital heart defects as measured by positron emission tomography. J Thorac Cardiovasc Surg 1998; 115(1): 103-10.
[http://dx.doi.org/10.1016/S0022-5223(98)70448-9] [PMID: 9451052]
[58]
Eicken A, Genz T, Kühn A, Hauser M, Hess J. Impaired left ventricular function after arterial switch operation: Exclusion of significant coronary artery stenosis with an intravascular Doppler guidewire. Pediatr Cardiol 2004; 25(1): 62-4.
[http://dx.doi.org/10.1007/s00246-003-0485-4] [PMID: 14583831]
[59]
Oskarsson G, Pesonen E, Munkhammar P, Sandström S, Jögi P. Normal coronary flow reserve after arterial switch operation for transposition of the great arteries: An intracoronary Doppler guidewire study. Circulation 2002; 106(13): 1696-702.
[http://dx.doi.org/10.1161/01.CIR.0000030937.27602.BD] [PMID: 12270865]
[60]
Turner DR, Muzik O, Forbes TJ, Sullivan NM, Singh TP. Coronary diameter and vasodilator function in children following arterial switch operation for complete transposition of the great arteries. Am J Cardiol 2010; 106(3): 421-5.
[http://dx.doi.org/10.1016/j.amjcard.2010.03.046] [PMID: 20643257]
[61]
Smits P, Williams SB, Lipson DE, Banitt P, Rongen GA, Creager MA. Endothelial release of nitric oxide contributes to the vasodilator effect of adenosine in humans. Circulation 1995; 92(8): 2135-41.
[http://dx.doi.org/10.1161/01.CIR.92.8.2135] [PMID: 7554193]
[62]
Yen MH, Wu CC, Chiou WF. Partially endothelium-dependent vasodilator effect of adenosine in rat aorta. Hypertension 1988; 11(6_pt_1): 514-8.
[http://dx.doi.org/10.1161/01.HYP.11.6.514] [PMID: 3260219]
[63]
Zhang Y, Wernly B, Cao X, Mustafa SJ, Tang Y, Zhou Z. Adenosine and adenosine receptor-mediated action in coronary microcirculation. Basic Res Cardiol 2021; 116(1): 22.
[http://dx.doi.org/10.1007/s00395-021-00859-7] [PMID: 33755785]
[64]
Maruhashi T, Kihara Y, Higashi Y. Assessment of endothelium-independent vasodilation. J Hypertens 2018; 36(7): 1460-7.
[http://dx.doi.org/10.1097/HJH.0000000000001750] [PMID: 29664811]
[65]
Partington SL, Valente AM, Landzberg M, Grant F, Di Carli MF, Dorbala S. Clinical applications of radionuclide imaging in the evaluation and management of patients with congenital heart disease. J Nucl Cardiol 2016; 23(1): 45-63.
[http://dx.doi.org/10.1007/s12350-015-0185-5] [PMID: 26129940]
[66]
Rossi MA, Carillo SV. Cardiac hypertrophy due to pressure and volume overload: Distinctly different biological phenomena? Int J Cardiol 1991; 31(2): 133-41.
[http://dx.doi.org/10.1016/0167-5273(91)90207-6] [PMID: 1831183]
[67]
Salih C, Sheppard MN, Ho SY. Morphometry of coronary capillaries in hypoplastic left heart syndrome. Ann Thorac Surg 2004; 77(3): 903-7.
[http://dx.doi.org/10.1016/j.athoracsur.2003.07.046] [PMID: 14992895]
[68]
Treasure CB, Klein JL, Vita JA, et al. Hypertension and left ventricular hypertrophy are associated with impaired endothelium-mediated relaxation in human coronary resistance vessels. Circulation 1993; 87(1): 86-93.
[http://dx.doi.org/10.1161/01.CIR.87.1.86] [PMID: 8419028]
[69]
Polson JW, McCallion N, Waki H, et al. Evidence for cardiovascular autonomic dysfunction in neonates with coarctation of the aorta. Circulation 2006; 113(24): 2844-50.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.602748] [PMID: 16769911]
[70]
Segers VFM, Brutsaert DL, De Keulenaer GW. Cardiac remodeling: Endothelial cells have more to say than just NO. Front Physiol 2018; 9: 382.
[http://dx.doi.org/10.3389/fphys.2018.00382] [PMID: 29695980]
[71]
Zhang S, Guo GL, Yang LL, Sun LQ. Elevated serum levels of ghrelin and TNF-α in patients with cyanotic and acyanotic congenital heart disease. World J Pediatr 2017; 13(2): 122-8.
[http://dx.doi.org/10.1007/s12519-016-0068-0] [PMID: 27878778]
[72]
Brili S, Tousoulis D, Antoniades C, et al. Evidence of vascular dysfunction in young patients with successfully repaired coarctation of aorta. Atherosclerosis 2005; 182(1): 97-103.
[http://dx.doi.org/10.1016/j.atherosclerosis.2005.01.030] [PMID: 16115479]
[73]
Moutafi AC, Alissafi T, Chamakou A, et al. Neurohormonal activity and vascular properties late after aortic coarctation repair. Int J Cardiol 2012; 159(3): 211-6.
[http://dx.doi.org/10.1016/j.ijcard.2011.02.071] [PMID: 21429604]
[74]
Aburawi EH, Liuba P, Berg A, Pesonen E. A transthoracic Doppler echocardiography study of C-reactive protein and coronary microcirculation in children after open heart surgery. Cardiol Young 2007; 17(5): 472-7.
[http://dx.doi.org/10.1017/S1047951107000972] [PMID: 17634161]
[75]
Davies PF. Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology. Nat Clin Pract Cardiovasc Med 2009; 6(1): 16-26.
[http://dx.doi.org/10.1038/ncpcardio1397] [PMID: 19029993]
[76]
Khambadkone S, Li J, de Leval MR, Cullen S, Deanfield JE, Redington AN. Basal pulmonary vascular resistance and nitric oxide responsiveness late after Fontan-type operation. Circulation 2003; 107(25): 3204-8.
[http://dx.doi.org/10.1161/01.CIR.0000074210.49434.40] [PMID: 12821557]
[77]
Lambert E, d’Udekem Y, Cheung M, et al. Sympathetic and vascular dysfunction in adult patients with Fontan circulation. Int J Cardiol 2013; 167(4): 1333-8.
[http://dx.doi.org/10.1016/j.ijcard.2012.04.015] [PMID: 22525342]
[78]
Oechslin E, Kiowski W, Schindler R, Bernheim A, Julius B, Brunner-La Rocca HP. Systemic endothelial dysfunction in adults with cyanotic congenital heart disease. Circulation 2005; 112(8): 1106-12.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.534073] [PMID: 16103236]
[79]
Eicken A, Sebening W, Genz T, et al. Site of coronary sinus drainage does not significantly affect coronary flow reserve in patients long term after Fontan operation. Pediatr Cardiol 2006; 27(1): 102-9.
[http://dx.doi.org/10.1007/s00246-005-1036-y] [PMID: 16261275]
[80]
Pan J, Hu J, Qi X, Xu L. Association study of a functional variant of TNF-α gene and serum TNF-α level with the susceptibility of congenital heart disease in a Chinese population. Postgrad Med J 2019; 95(1128): 547-51.
[http://dx.doi.org/10.1136/postgradmedj-2019-136621] [PMID: 31324728]
[81]
Gevaert AB, Boen JRA, Segers VF, Van Craenenbroeck EM. Heart failure with preserved ejection fraction: A review of cardiac and noncardiac pathophysiology. Front Physiol 2019; 10: 638.
[http://dx.doi.org/10.3389/fphys.2019.00638] [PMID: 31191343]
[82]
Gavotto A, Abassi H, Rola M, et al. Factors associated with exercise capacity in patients with a systemic right ventricle. Int J Cardiol 2019; 292: 230-5.
[http://dx.doi.org/10.1016/j.ijcard.2019.06.030] [PMID: 31256996]
[83]
Klimes K, Ovroutski S, Abdul-Khaliq H, et al. Exercise capacity reflects ventricular function in patients having the Fontan circulation. Cardiol Young 2009; 19(4): 340-5.
[http://dx.doi.org/10.1017/S1047951109990424] [PMID: 19523267]
[84]
Leggio M, Mazza A, Cruciani G, et al. Effects of exercise training on systo–diastolic ventricular dysfunction in patients with hypertension: An echocardiographic study with tissue velocity and strain imaging evaluation. Hypertens Res 2014; 37(7): 649-54.
[http://dx.doi.org/10.1038/hr.2014.44] [PMID: 24694644]
[85]
Gielen S, Schuler G, Adams V. Cardiovascular effects of exercise training: Molecular mechanisms. Circulation 2010; 122(12): 1221-38.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.110.939959] [PMID: 20855669]
[86]
Laufs U, Wassmann S, Czech T, et al. Physical inactivity increases oxidative stress, endothelial dysfunction, and atherosclerosis. Arterioscler Thromb Vasc Biol 2005; 25(4): 809-14.
[http://dx.doi.org/10.1161/01.ATV.0000158311.24443.af] [PMID: 15692095]
[87]
Metsios GS, Moe RH, Kitas GD. Exercise and inflammation. Best Pract Res Clin Rheumatol 2020; 34(2): 101504.
[http://dx.doi.org/10.1016/j.berh.2020.101504] [PMID: 32249021]
[88]
Walther C, Gielen S, Hambrecht R. The effect of exercise training on endothelial function in cardiovascular disease in humans. Exerc Sport Sci Rev 2004; 32(4): 129-34.
[http://dx.doi.org/10.1097/00003677-200410000-00002] [PMID: 15604930]
[89]
Óskarsson G, Pesonen E, Gudmundsson S, Ingimarsson J, Sandström S, Werner O. Coronary flow reserve in the newborn lamb: An intracoronary Doppler guide wire study. Pediatr Res 2004; 55(2): 205-10.
[http://dx.doi.org/10.1203/01.PDR.0000103932.09752.D6] [PMID: 14630989]
[90]
Czernin J, Müller P, Chan S, et al. Influence of age and hemodynamics on myocardial blood flow and flow reserve. Circulation 1993; 88(1): 62-9.
[http://dx.doi.org/10.1161/01.CIR.88.1.62] [PMID: 8319357]
[91]
Aburawi EH, Carlsson M, Berg A. Coronary artery stenosis in asymptomatic child after arterial switch operation: detection by transthoracic colour-flow doppler echocardiography. Acta Paediatr 2008; 97(3): 376-8.
[http://dx.doi.org/10.1111/j.1651-2227.2007.00627.x] [PMID: 18241294]
[92]
Hiraishi S, Hirota H, Horiguchi Y, et al. Transthoracic Doppler assessment of coronary flow velocity reserve in children with Kawasaki disease. J Am Coll Cardiol 2002; 40(10): 1816-24.
[http://dx.doi.org/10.1016/S0735-1097(02)02479-8] [PMID: 12446066]
[93]
Noto N, Karasawa K, Kanamaru H, et al. Non-invasive measurement of coronary flow reserve in children with Kawasaki disease. Br Heart J 2002; 87(6): 559-65.
[http://dx.doi.org/10.1136/heart.87.6.559] [PMID: 12010941]
[94]
Giulia Gagliardi M, Crea F, Polletta B, et al. Coronary microvascular endothelial dysfunction in transplanted children. Eur Heart J 2001; 22(3): 254-60.
[http://dx.doi.org/10.1053/euhj.2001.2105] [PMID: 11161937]
[95]
Itoi T, Oka T, Hamaoka K. Abnormal coronary flow reserve in a 13-year-old girl with an absent left circumflex coronary artery. Pediatr Cardiol 2001; 22(2): 165-6.
[http://dx.doi.org/10.1007/s002460010188] [PMID: 11178680]
[96]
Kern MJ, Bach RG, Mechem CJ, et al. Variations in normal coronary vasodilatory reserve stratified by artery, gender, heart transplantation and coronary artery disease. J Am Coll Cardiol 1996; 28(5): 1154-60.
[http://dx.doi.org/10.1016/S0735-1097(96)00327-0] [PMID: 8890809]
[97]
Harada K, Tamura M, Toyono M, Takada G. Noninvasive visualization and measurement of great cardiac vein flow by transthoracic Doppler echocardiography in normal children. Am J Cardiol 2001; 88(6): 710-3.
[http://dx.doi.org/10.1016/S0002-9149(01)01827-6] [PMID: 11564408]
[98]
Cunningham KS, Gotlieb AI. The role of shear stress in the pathogenesis of atherosclerosis. Lab Invest 2005; 85(1): 9-23.
[http://dx.doi.org/10.1038/labinvest.3700215] [PMID: 15568038]
[99]
Paulus WJ, Tschöpe C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol 2013; 62(4): 263-71.
[http://dx.doi.org/10.1016/j.jacc.2013.02.092] [PMID: 23684677]