Mini-Reviews in Organic Chemistry

Author(s): Min-Shou Wang*, Min Pu and Xu Li

DOI: 10.2174/1570193X20666230118162517

Synthesis of Oxa-bridged Medium-Sized Carbocyclic Rings

Page: [496 - 504] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Natural products with oxa-bridged medium-sized carbocyclic ring structure units play an important role in nature. Therefore, developing novel and efficient methods is essential for synthesizing complex natural products containing oxygen-bridged rings. In this article, progress toward the synthesis of oxygen-bridged seven and eight-membered rings is reviewed in terms of the strategies employed.

Graphical Abstract

[1]
Ratnayake, R.; Covell, D.; Ransom, T.T.; Gustafson, K.R.; Beutler, J.A. Englerin A, a selective inhibitor of renal cancer cell growth, from Phyllanthus engleri. Org. Lett., 2009, 11(1), 57-60.
[http://dx.doi.org/10.1021/ol802339w] [PMID: 19061394]
[2]
Aoki, S.; Watanabe, Y.; Sanagawa, M.; Setiawan, A.; Kotoku, N.; Kobayashi, M.; Cortistatins, A. Cortistatins A, B, C, and D, anti-angiogenic steroidal alkaloids, from the marine sponge Corticium simplex. J. Am. Chem. Soc., 2006, 128(10), 3148-3149.
[http://dx.doi.org/10.1021/ja057404h] [PMID: 16522087]
[3]
He, J.B.; Luo, J.; Zhang, L.; Yan, Y.M.; Cheng, Y.X. Sesquiterpenoids with new carbon skeletons from the resin of Toxi-codendron vernicifluum as new types of extracellular matrix inhibitors. Org. Lett., 2013, 15(14), 3602-3605.
[http://dx.doi.org/10.1021/ol4014415] [PMID: 23815600]
[4]
Marrero, J.; Rodríguez, A.D.; Baran, P.; Raptis, R.G.; Sánchez, J.A.; Ortega-Barria, E.; Capson, T.L. Bielschowskysin, a gorgo-nian-derived biologically active diterpene with an unprecedented carbon skeleton. Org. Lett., 2004, 6(10), 1661-1664.
[http://dx.doi.org/10.1021/ol049495d] [PMID: 15128261]
[5]
Akee, R.K.; Ransom, T.; Ratnayake, R.; McMahon, J.B.; Beutler, J.A. Chlorinated englerins with selective inhibition of renal cancer cell growth. J. Nat. Prod., 2012, 75(3), 459-463.
[http://dx.doi.org/10.1021/np200905u] [PMID: 22280462]
[6]
Aoki, S.; Watanabe, Y.; Tanabe, D.; Arai, M.; Suna, H.; Miyamoto, K.; Tsujibo, H.; Tsujikawa, K.; Yamamoto, H.; Kobayashi, M. Structure–activity relationship and biological property of cortistatins, anti-angiogenic spongean steroidal alkaloids. Bioorg. Med. Chem., 2007, 15(21), 6758-6762.
[http://dx.doi.org/10.1016/j.bmc.2007.08.017] [PMID: 17765550]
[7]
Corbett, Y.; Coley, P.D.; Cubilla, L.; Ortega-Barria, E.; Herrera, L.; Capson, T.L.; Gonzalez, J.; Kursar, T.A.; Romero, L. A novel DNA-based microfluorimetric method to evaluate antimalarial drug activity. Am. J. Trop. Med. Hyg., 2004, 70(2), 119-124.
[http://dx.doi.org/10.4269/ajtmh.2004.70.119] [PMID: 14993620]
[8]
Molander, G.A. Diverse methods for medium ring synthesis. Acc. Chem. Res., 1998, 31(10), 603-609.
[http://dx.doi.org/10.1021/ar960101v]
[9]
Mehta, G.; Singh, V. Progress in the construction of cyclooctanoid systems: new approaches and applications to natural product syntheses. Chem. Rev., 1999, 99(3), 881-930.
[http://dx.doi.org/10.1021/cr9800356] [PMID: 11749434]
[10]
Yet, L. Metal-mediated synthesis of medium-sized rings. Chem. Rev., 2000, 100(8), 2963-3008.
[http://dx.doi.org/10.1021/cr990407q] [PMID: 11749312]
[11]
López, F.; Mascareñas, J.L. The oxygen-bridge templating approach to eight- and nine-membered carbocycles: recent developments based on catalytic reactions. Chemistry, 2007, 13(8), 2172-2178.
[http://dx.doi.org/10.1002/chem.200601816] [PMID: 17278169]
[12]
Zhao, W. Novel syntheses of bridge-containing organic compounds. Chem. Rev., 2010, 110(3), 1706-1745.
[http://dx.doi.org/10.1021/cr9002402] [PMID: 19831366]
[13]
Ylijoki, K.E.O.; Stryker, J.M. [5 + 2] cycloaddition reactions in organic and natural product synthesis. Chem. Rev., 2013, 113(3), 2244-2266.
[http://dx.doi.org/10.1021/cr300087g] [PMID: 23153111]
[14]
Szostak, M.; Fazakerley, N.J.; Parmar, D.; Procter, D.J. Cross-coupling reactions using samarium(II) iodide. Chem. Rev., 2014, 114(11), 5959-6039.
[http://dx.doi.org/10.1021/cr400685r] [PMID: 24758360]
[15]
Santana, A.; Molinillo, J.M.G.; Macías, F.A. Trends in the synthesis and functionalization of guaianolides. Eur. J. Org. Chem., 2015, 2015(10), 2093-2110.
[http://dx.doi.org/10.1002/ejoc.201403244]
[16]
Nicolaou, K.C.; Edmonds, D.J.; Bulger, P.G. Cascade reactions in total synthesis. Angew. Chem. Int. Ed., 2006, 45(43), 7134-7186.
[http://dx.doi.org/10.1002/anie.200601872] [PMID: 17075967]
[17]
Nicolaou, K.C.; Sun, Y.P.; Peng, X.S.; Polet, D.; Chen, D.Y.K. Total synthesis of (+)-cortistatin A. Angew. Chem. Int. Ed., 2008, 47(38), 7310-7313.
[http://dx.doi.org/10.1002/anie.200803550] [PMID: 18704899]
[18]
Dai, M.; Wang, Z.; Danishefsky, S.J. A novel α,β-unsaturated nitrone-aryne [3+2] cycloaddition and its application in the synthesis of the cortistatin core. Tetrahedron Lett., 2008, 49(47), 6613-6616.
[http://dx.doi.org/10.1016/j.tetlet.2008.09.019] [PMID: 19924220]
[19]
Dai, M.; Danishefsky, S.J. A concise synthesis of the cortistatin core. Tetrahedron Lett., 2008, 49(47), 6610-6612.
[http://dx.doi.org/10.1016/j.tetlet.2008.09.018] [PMID: 19924219]
[20]
Padwa, A. Domino reactions of rhodium(II) carbenoids for alkaloid synthesis. Chem. Soc. Rev., 2009, 38(11), 3072-3081.
[http://dx.doi.org/10.1039/b816701j] [PMID: 19847342]
[21]
Ishida, K.; Kusama, H.; Iwasawa, N. Enantioselective preparation of 8-oxabicyclo[3.2.1]octane derivatives via asymmetric [3+2]-cycloaddition of platinum-containing carbonyl ylides with vinyl ethers. J. Am. Chem. Soc., 2010, 132(26), 8842-8843.
[http://dx.doi.org/10.1021/ja102391t] [PMID: 20540576]
[22]
Navickas, V.; Ushakov, D.B.; Maier, M.E.; Ströbele, M.; Meyer, H.J. Synthesis of the guaianolide ring system via cycloaddition of a bicyclic carbonyl ylide with allyl propiolate. Org. Lett., 2010, 12(15), 3418-3421.
[http://dx.doi.org/10.1021/ol1012185] [PMID: 20586455]
[23]
Shimada, N.; Hanari, T.; Kurosaki, Y.; Takeda, K.; Anada, M.; Nambu, H.; Shiro, M.; Hashimoto, S. Catalytic asymmetric synthesis of the endo-6-aryl-8-oxabicyclo[3.2.1]oct-3-en-2-one natural product from Ligusticum chuanxing via 1,3-dipolar cycloaddition of a formyl-derived carbonyl ylide using Rh2(S-TCPTTL)4. J. Org. Chem., 2010, 75(17), 6039-6042.
[http://dx.doi.org/10.1021/jo101175b] [PMID: 20698712]
[24]
Hanari, T.; Shimada, N.; Kurosaki, Y.; Thrimurtulu, N.; Nambu, H.; Anada, M.; Hashimoto, S. Asymmetric Total Synthesis of (−)-Englerin a through catalytic diastereo- and enantioselective carbonyl ylide cycloaddition. Chemistry, 2015, 21(33), 11671-11676.
[http://dx.doi.org/10.1002/chem.201502009] [PMID: 26179743]
[25]
Kusama, H.; Tazawa, A.; Ishida, K.; Iwasawa, N. Total synthesis of (±)-Englerin a using an intermolecular [3+2] cycloaddition reaction of platinum-containing Carbonyl Ylide. Chem. Asian J., 2016, 11(1), 64-67.
[http://dx.doi.org/10.1002/asia.201500935] [PMID: 26377511]
[26]
Zhou, Q.; Chen, X.; Ma, D. Asymmetric, protecting-group-free total synthesis of (-)-englerin A. Angew. Chem. Int. Ed., 2010, 49(20), 3513-3516.
[http://dx.doi.org/10.1002/anie.201000888] [PMID: 20544902]
[27]
Molawi, K.; Delpont, N.; Echavarren, A.M. Enantioselective synthesis of (-)-englerins A and B. Angew. Chem. Int. Ed., 2010, 49(20), 3517-3519.
[http://dx.doi.org/10.1002/anie.201000890] [PMID: 20544903]
[28]
Faustino, H.; Alonso, I.; Mascareñas, J.L.; López, F. Gold(I)-catalyzed cascade cycloadditions between allenamides and carbonyl-tethered alkenes: an enantioselective approach to oxa-bridged medium-sized carbocycles. Angew. Chem. Int. Ed., 2013, 52(25), 6526-6530.
[http://dx.doi.org/10.1002/anie.201302713] [PMID: 23653229]
[29]
Liao, H.; Leng, W.L.; Le Mai Hoang, K.; Yao, H.; He, J.; Voo, A.Y.H.; Liu, X.W. Asymmetric syntheses of 8-oxabicyclo [3,2,1]octane and 11-oxatricyclo[5.3.1.0]undecane from glycals. Chem. Sci. (Camb.), 2017, 8(9), 6656-6661.
[http://dx.doi.org/10.1039/C7SC02625K] [PMID: 28989693]
[30]
Mayans, J.G.; Armengol-Relats, H.; Calleja, P.; Echavarren, A.M. Gold(I)-catalysis for the synthesis of terpenoids: From intramolecular cascades to intermolecular cycloadditions. Isr. J. Chem., 2018, 58(5), 639-658.
[http://dx.doi.org/10.1002/ijch.201800006]
[31]
Witten, M.R.; Jacobsen, E.N. Catalytic asymmetric synthesis of 8-oxabicyclooctanes by intermolecular [5+2] pyrylium cycloadditions. Angew. Chem. Int. Ed., 2014, 53(23), 5912-5916.
[http://dx.doi.org/10.1002/anie.201402834] [PMID: 24782332]
[32]
Strych, S.; Journot, G.; Pemberton, R.P.; Wang, S.C.; Tantillo, D.J.; Trauner, D. Biomimetic total synthesis of santalin Y. Angew. Chem. Int. Ed., 2015, 54(17), 5079-5083.
[http://dx.doi.org/10.1002/anie.201411350] [PMID: 25858797]
[33]
Orue, A.; Uria, U.; Reyes, E.; Carrillo, L.; Vicario, J.L. Catalytic enantioselective [5+2] cycloaddition between oxidopyrylium ylides and enals under dienamine activation. Angew. Chem. Int. Ed., 2015, 54(10), 3043-3046.
[http://dx.doi.org/10.1002/anie.201410723] [PMID: 25611591]
[34]
Mei, G.; Liu, X.; Qiao, C.; Chen, W.; Li, C.; Type, I.I. Type II intramolecular [5+2] cycloaddition: facile synthesis of highly functionalized bridged ring systems. Angew. Chem. Int. Ed., 2015, 54(6), 1754-1758.
[http://dx.doi.org/10.1002/anie.201410806] [PMID: 25504815]
[35]
Leung, L.T.; Chiu, P. Total synthesis of (-)-dolastatrienol. Chem. Asian J., 2015, 10(4), 1042-1049.
[http://dx.doi.org/10.1002/asia.201403325] [PMID: 25556852]
[36]
Fuhr, K.N.; Hirsch, D.R.; Murelli, R.P.; Brenner-Moyer, S.E. Catalytic enantioselective intermolecular [5 + 2] dipolar cycloadditions of a 3-hydroxy-4-pyrone-derived oxidopyrylium ylide. Org. Lett., 2017, 19(23), 6356-6359.
[http://dx.doi.org/10.1021/acs.orglett.7b03196] [PMID: 29148809]
[37]
Chen, B.; Liu, X.; Hu, Y.J.; Zhang, D.M.; Deng, L.; Lu, J.; Min, L.; Ye, W.C.; Li, C.C. Enantioselective total synthesis of (−)-colchicine, (+)-demecolcinone and metacolchicine: determination of the absolute configurations of the latter two alkaloids. Chem. Sci. (Camb.), 2017, 8(7), 4961-4966.
[http://dx.doi.org/10.1039/C7SC01341H] [PMID: 28959419]
[38]
Xu, J.; Caro-Diaz, E.J.E.; Theodorakis, E.A. Enantioselective formal synthesis of (-)-englerin A via a Rh-catalyzed [4 + 3] cycloaddition reaction. Org. Lett., 2010, 12(16), 3708-3711.
[http://dx.doi.org/10.1021/ol1015652] [PMID: 20669919]
[39]
Oblak, E.Z.; Wright, D.L. Highly substituted oxabicyclic derivatives from furan: synthesis of (±)-platensimycin. Org. Lett., 2011, 13(9), 2263-2265.
[http://dx.doi.org/10.1021/ol2005775] [PMID: 21452821]
[40]
Hassan, A.H.E.; Lee, J.K.; Pae, A.N.; Min, S.J.; Cho, Y.S. Synthesis of the tricyclic ring structure of daphnanes via intramolecular [4 + 3] Cycloaddition/SmI2-Pinacol coupling. Org. Lett., 2015, 17(11), 2672-2675.
[http://dx.doi.org/10.1021/acs.orglett.5b01054] [PMID: 25996082]
[41]
Sun, W.B.; Wang, X.; Sun, B.F.; Zou, J.P.; Lin, G.Q. Catalytic asymmetric total synthesis of hedyosumins A, B, and C. Org. Lett., 2016, 18(6), 1219-1221.
[http://dx.doi.org/10.1021/acs.orglett.6b00150] [PMID: 26925758]
[42]
Topinka, M.; Zawatzky, K.; Barnes, C.L.; Welch, C.J.; Harmata, M. An asymmetric, catalytic (4 + 3) cycloaddition reaction of cyclopentenyl oxyallylic cations. Org. Lett., 2017, 19(15), 4106-4109.
[http://dx.doi.org/10.1021/acs.orglett.7b01868] [PMID: 28741952]
[43]
Zhurakovskyi, O.; Ellis, S.R.; Thompson, A.L.; Robertson, J. Access to a guanacastepene and cortistatin-related skeleton via ethynyl lactone ireland–claisen rearrangement and transannular (4 + 3)-cycloaddition of an azatrimethylenemethane Diyl. Org. Lett., 2017, 19(8), 2174-2177.
[http://dx.doi.org/10.1021/acs.orglett.7b00834] [PMID: 28398058]
[44]
Yin, Z.; He, Y.; Chiu, P. Application of (4+3) cycloaddition strategies in the synthesis of natural products. Chem. Soc. Rev., 2018, 47(23), 8881-8924.
[http://dx.doi.org/10.1039/C8CS00532J] [PMID: 30394457]
[45]
Carson, C.A.; Kerr, M.A. Total synthesis of FR901483. Org. Lett., 2009, 11(3), 777-779.
[http://dx.doi.org/10.1021/ol802870c] [PMID: 19138120]
[46]
Hudlicky, T.; Reed, J.W. From discovery to application: 50 years of the vinylcyclopropane-cyclopentene rearrangement and its impact on the synthesis of natural products. Angew. Chem. Int. Ed., 2010, 49(29), 4864-4876.
[http://dx.doi.org/10.1002/anie.200906001] [PMID: 20586104]
[47]
Xing, S.; Pan, W.; Liu, C.; Ren, J.; Wang, Z. Efficient construction of oxa- and aza-[n.2.1] skeletons: Lewis acid catalyzed intramolecular [3+2] cycloaddition of cyclopropane 1,1-diesters with carbonyls and imines. Angew. Chem. Int. Ed., 2010, 49(18), 3215-3218.
[http://dx.doi.org/10.1002/anie.201000563] [PMID: 20340151]
[48]
Xing, S.; Li, Y.; Li, Z.; Liu, C.; Ren, J.; Wang, Z. Lewis acid catalyzed intramolecular [3+2] cross-cycloaddition of donor-acceptor cyclopropanes with carbonyls: a general strategy for the construction of acetal[n.2.1] skeletons. Angew. Chem. Int. Ed., 2011, 50(52), 12605-12609.
[http://dx.doi.org/10.1002/anie.201106368] [PMID: 22065621]
[49]
Cavitt, M.A.; Phun, L.H.; France, S. Intramolecular donor–acceptor cyclopropane ring-opening cyclizations. Chem. Soc. Rev., 2014, 43(3), 804-818.
[http://dx.doi.org/10.1039/C3CS60238A] [PMID: 24257068]
[50]
Wang, Z.; Chen, S.; Ren, J.; Wang, Z. Cooperative photo-/lewis acid catalyzed tandem intramolecular [3 + 2] cross-cycloadditions of cyclopropane 1,1-Diesters with α,β-Unsaturated Carbonyls for medium-sized carbocycles. Org. Lett., 2015, 17(17), 4184-4187.
[http://dx.doi.org/10.1021/acs.orglett.5b01928] [PMID: 26313742]
[51]
Liu, P.; Cui, Y.; Chen, K.; Zhou, X.; Pan, W.; Ren, J.; Wang, Z. Total syntheses of (−)-Englerins A/B, (+)-Orientalols E/F, and (−)-Oxyphyllol. Org. Lett., 2018, 20(9), 2517-2521.
[http://dx.doi.org/10.1021/acs.orglett.8b00552] [PMID: 29664306]
[52]
Molander, G.A.; Cameron, K.O. A novel concept for regiochemical and stereochemical control in Lewis acid promoted [3 + 4] annulation reactions. J. Org. Chem., 1991, 56(8), 2617-2619.
[http://dx.doi.org/10.1021/jo00008a008]
[53]
Molander, G.A.; Cameron, K.O. Neighboring group participation in Lewis acid-promoted [3 + 4] and [3 + 5] annulations. The synthesis of oxabicyclo[3.n.1]alkan-3-ones. J. Am. Chem. Soc., 1993, 115(3), 830-846.
[http://dx.doi.org/10.1021/ja00056a002]
[54]
Molander, G.A.; Cameron, K.O. Neighboring group participation in Lewis acid-promoted [3 + 4] and [3 + 5] annulations. The stereocontrolled synthesis of tricyclic ethers. J. Org. Chem., 1993, 58(22), 5931-5943.
[http://dx.doi.org/10.1021/jo00074a018]
[55]
Molander, G.A.; Eastwood, P.R. Chelation and Nonchelation Control in the [3 + 4] and [3 + 5] annulation reactions of benzyloxy-substituted dicarbonyl electrophiles with Bis(trimethylsilyl) Enol Ethers. J. Org. Chem., 1996, 61(6), 1910-1911.
[http://dx.doi.org/10.1021/jo9600060]
[56]
Molander, G.A.; Bessières, B.; Eastwood, P.R.; Noll, B.C. Synthesis of cyclic Bis(trimethysilyl) enol ethers and their [3 + 4] and [3 + 5] annulation reactions with dicarbonyl electrophiles. access to highly functionalized tricyclic ethers possessing trans intrabridgehead stereochemistry. J. Org. Chem., 1999, 64(11), 4124-4129.
[http://dx.doi.org/10.1021/jo9902547]
[57]
Bao, W.; Tao, Y.; Cheng, J.; Huang, J.; Cao, J.; Zhang, M.; Ye, W.; Wang, B.; Li, Y.; Zhu, L.; Lee, C.S. In(OTf) 3 -catalyzed cascade cyclization for construction of oxatricyclic compounds. Org. Lett., 2018, 20(24), 7912-7915.
[http://dx.doi.org/10.1021/acs.orglett.8b03461] [PMID: 30543298]
[58]
López, F.; Castedo, L.; Mascareñas, J.L. Atom-efficient assembly of 1,5-oxygen-bridged medium-sized carbocycles by sequential combination of a Ru-catalyzed alkyne-alkene coupling and a Prins-type cyclization. J. Am. Chem. Soc., 2002, 124(16), 4218-4219.
[http://dx.doi.org/10.1021/ja017804e] [PMID: 11960444]
[59]
Sasmal, P.K.; Maier, M.E. Formation of bicyclic ethers from Lewis acid promoted cyclizations of cyclic oxonium ions. Org. Lett., 2002, 4(8), 1271-1274.
[http://dx.doi.org/10.1021/ol025570d] [PMID: 11950340]
[60]
Kang, H.J.; Kim, S.H.; Pae, A.N.; Koh, H.Y.; Chang, M.H.; Choi, K.I.; Han, S.Y.; Cho, Y.S. Diastereoselective synthesis of seven- and eight-membered oxabicycles via prins-type cyclization. Synlett, 2004, 2545-2548.
[61]
Sasmal, P.K.; Maier, M.E. Acetal-vinyl sulfide cyclization on sugar substrates: effect of structure and substituent. J. Org. Chem., 2003, 68(3), 824-831.
[http://dx.doi.org/10.1021/jo026163i] [PMID: 12558404]
[62]
Overman, L.E.; Velthuisen, E.J. Stereocontrolled construction of either stereoisomer of 12-oxatricyclo[6.3.1.0(2,7)]dodecanes using Prins-pinacol reactions. Org. Lett., 2004, 6(21), 3853-3856.
[http://dx.doi.org/10.1021/ol0482745] [PMID: 15469366]
[63]
López, F.; Castedo, L.; Mascareñas, J.L. Practical asymmetric approach to medium-sized carbocycles based on the combination of two ru-catalyzed transformations and a lewis Acid-induced cyclization. Org. Lett., 2005, 7(2), 287-290.
[http://dx.doi.org/10.1021/ol0477125] [PMID: 15646979]
[64]
Overman, L.E.; Tanis, P.S. Origin of stereocontrol in the construction of the 12-oxatricyclo[6.3.1.0(2,7)]dodecane ring system by Prins-pinacol reactions. J. Org. Chem., 2010, 75(2), 455-463.
[http://dx.doi.org/10.1021/jo9024144] [PMID: 20000652]
[65]
Canham, S.M.; Overman, L.E.; Tanis, P.S. Identification of an unexpected 2-oxonia[3,3]sigmatropic rearrangement/aldol pathway in the formation of oxacyclic rings. Total synthesis of (+)-aspergillin PZ. Tetrahedron, 2011, 67(51), 9837-9843.
[http://dx.doi.org/10.1016/j.tet.2011.09.079] [PMID: 22518066]
[66]
Wang, M.S.; Wang, Z.; Chen, W.; Yang, X.; Zhang, H. Synthesis of oxa-bridged medium-sized carbocyclic rings via prins cyclization. Org. Lett., 2019, 21(6), 1881-1884.
[http://dx.doi.org/10.1021/acs.orglett.9b00491] [PMID: 30816720]
[67]
Newham, J. The catalytic hydrogenolysis of small carbon rings. Chem. Rev., 1963, 63(2), 123-137.
[http://dx.doi.org/10.1021/cr60222a003]
[68]
Schleyer, P.R.; Williams, J.E.; Blanchard, K.R. Evaluation of strain in hydrocarbons. The strain in adamantane and its origin. J. Am. Chem. Soc., 1970, 92(8), 2377-2386.
[http://dx.doi.org/10.1021/ja00711a030]
[69]
Engler, E.M.; Andose, J.D.; Schleyer, P.V.R. Critical evaluation of molecular mechanics. J. Am. Chem. Soc., 1973, 95(24), 8005-8025.
[http://dx.doi.org/10.1021/ja00805a012]
[70]
Illuminati, G.; Mandolini, L. Ring closure reactions of bifunctional chain molecules. Acc. Chem. Res., 1981, 14(4), 95-102.
[http://dx.doi.org/10.1021/ar00064a001]
[71]
Galli, C.; Mandolini, L. The role of ring strain on the ease of ring closure of bifunctional chain molecules. Eur. J. Org. Chem., 2000, 2000(18), 3117-3125.
[http://dx.doi.org/10.1002/1099-0690(200009)2000:18<3117::AID-EJOC3117>3.0.CO;2-5]
[72]
Hu, Y.J.; Li, L.X.; Han, J.C.; Min, L.; Li, C.C. Recent advances in the total synthesis of natural products containing eight-membered carbocycles (2009–2019). Chem. Rev., 2020, 120(13), 5910-5953.
[http://dx.doi.org/10.1021/acs.chemrev.0c00045] [PMID: 32343125]
[73]
Molander, G.A.; McKie, J.A. Intramolecular nucleophilic acyl substitution reactions of halo-substituted esters and lactones. New applications of organosamarium reagents. J. Org. Chem., 1993, 58(25), 7216-7227.
[http://dx.doi.org/10.1021/jo00077a053]
[74]
Molander, G.A.; Alonso-Alija, C. Sequenced Reactions with Samarium(II) Iodide. Sequential intermolecular carbonyl addition/intramolecular nucleophilic acyl substitution for the preparation of seven-, eight-, and nine-membered carbocycles. J. Org. Chem., 1998, 63(13), 4366-4373.
[http://dx.doi.org/10.1021/jo980119e]
[75]
Molander, G.A.; Harris, C.R. Sequenced reactions with samarium(II) iodide. Tetrahedron, 1998, 54(14), 3321-3354.
[http://dx.doi.org/10.1016/S0040-4020(97)10384-2]
[76]
Molander, G.A.; Sono, M. Sequenced reactions with samarium(II) iodide. Intermolecular ketyl-olefin coupling/intramolecular nucleophilic acyl substitution for the preparation of six-, seven-, and eight-membered carbocycles. Tetrahedron, 1998, 54(32), 9289-9302.
[http://dx.doi.org/10.1016/S0040-4020(98)00584-5]
[77]
Molander, G.A.; Machrouhi, F. Sequenced Reactions with Samarium(II) Iodide. A complementary annulation process providing access to seven-, eight-, and nine-membered carbocycles. J. Org. Chem., 1999, 64(11), 4119-4123.
[http://dx.doi.org/10.1021/jo990216n]
[78]
Molander, G.A.; Köllner, C. Development of a protocol for eight- and nine-membered ring synthesis in the annulation of sp2, sp3-hybridized organic dihalides with keto esters. J. Org. Chem., 2000, 65(24), 8333-8339.
[http://dx.doi.org/10.1021/jo001195w] [PMID: 11101393]
[79]
Molander, G.A.; Brown, G.A.; Storch de Gracia, I. Sequenced reactions with samarium(II) iodide. Sequential intramolecular Reformatsky/nucleophilic acyl substitution reactions for the synthesis of medium-sized carbocycles. J. Org. Chem., 2002, 67(10), 3459-3463.
[http://dx.doi.org/10.1021/jo020027w] [PMID: 12003559]
[80]
Marmsäter, F.P.; Murphy, G.K.; West, F.G. Cyclooctanoid ring systems from mixed acetals via heteroatom-assisted [1,2]-shift of oxonium ylides. J. Am. Chem. Soc., 2003, 125(48), 14724-14725.
[http://dx.doi.org/10.1021/ja0387249] [PMID: 14640645]
[81]
Clark, J.S.; Bate, A.L.; Grinter, T. A novel approach to the construction of medium-ring carbocycles utilising the rearrangement of oxonium ylides generated from metal carbenoids. Chem. Commun. (Camb.), 2001, (5), 459-460.
[http://dx.doi.org/10.1039/b100292i]
[82]
Murphy, G.K.; West, F.G. Hydrazulene ring systems via heteroatom-assisted [1,2]-shift of oxonium and sulfonium ylides. Org. Lett., 2005, 7(9), 1801-1804.
[http://dx.doi.org/10.1021/ol050396p] [PMID: 15844910]
[83]
Clark, J.S.; Walls, S.B.; Wilson, C.; East, S.P.; Drysdale, M.J. Construction of fused medium-ring carbocycles by catalytic generation and rearrangement of oxonium ylides. Eur. J. Org. Chem., 2006, 2006(2), 323-327.
[http://dx.doi.org/10.1002/ejoc.200500830]
[84]
Clark, J.S.; Hayes, S.T.; Wilson, C.; Gobbi, L. A concise total synthesis of (+/-)-vigulariol. Angew. Chem. Int. Ed., 2007, 46(3), 437-440.
[http://dx.doi.org/10.1002/anie.200603880] [PMID: 17146807]
[85]
Hoffmann-Röder, A.; Krause, N. Gold(III) chloride catalyzed cyclization of α-hydroxyallenes to 2,5-dihydrofurans. Org. Lett., 2001, 3(16), 2537-2538.
[http://dx.doi.org/10.1021/ol016205+] [PMID: 11483054]
[86]
Zhang, Y.J.; Nagao, T.; Tanaka, T.; Yang, C.R.; Okabe, H.; Kouno, I. Antiproliferative activity of the main constituents from Phyllanthus emblica. Biol. Pharm. Bull., 2004, 27(2), 251-255.
[http://dx.doi.org/10.1248/bpb.27.251] [PMID: 14758047]
[87]
Antoniotti, S.; Genin, E.; Michelet, V.; Genêt, J.P. Highly efficient access to strained bicyclic ketals via gold-catalyzed cycloisomerization of bis-homopropargylic diols. J. Am. Chem. Soc., 2005, 127(28), 9976-9977.
[http://dx.doi.org/10.1021/ja0530671] [PMID: 16011342]
[88]
Barluenga, J.; Diéguez, A.; Fernández, A.; Rodríguez, F.; Fañanás, F.J. Gold- or platinum-catalyzed tandem cycloisomerization/prins-type cyclization reactions. Angew. Chem. Int. Ed., 2006, 45(13), 2091-2093.
[http://dx.doi.org/10.1002/anie.200503874] [PMID: 16498691]
[89]
Oh, C.H.; Yi, H.J.; Lee, J.H. Silver-catalyzed intramolecular oxycyclization of alkynes to bridged bicyclic ketals. New J. Chem., 2007, 31(6), 835-837.
[http://dx.doi.org/10.1039/b702704d]
[90]
West, F.G.; Chase, C.E.; Arif, A.M. Intramolecular [4+4]-photocycloadditions of 2-pyrones: an efficient approach to cyclooc-tanoid construction. J. Org. Chem., 1993, 58(15), 3794-3795.
[http://dx.doi.org/10.1021/jo00067a006]
[91]
Sieburth, S.M.; McGee, K.F., Jr; Zhang, F.; Chen, Y. Photoreactivity of 2-pyridones with furan, benzene, and naphthalene. Inter- and intramolecular photocycloadditions. J. Org. Chem., 2000, 65(7), 1972-1977.
[http://dx.doi.org/10.1021/jo9918394] [PMID: 10774015]
[92]
Song, D.; McDonald, R.; West, F.G. Diastereoselective [4 + 4]-photocycloaddition reactions of pyran-2-ones: rapid access to functionalized 5-8-5 skeletons. Org. Lett., 2006, 8(18), 4075-4078.
[http://dx.doi.org/10.1021/ol061576h] [PMID: 16928077]
[93]
Li, L.; McDonald, R.; West, F.G. Concise route to triquinanes from pyran-2-ones. Org. Lett., 2008, 10(17), 3733-3736.
[http://dx.doi.org/10.1021/ol8013683] [PMID: 18683940]
[94]
Li, L.; Bender, J.A.; West, F.G. Diastereocontrol in [4+4]-photocycloadditions of pyran-2-ones: effect of ring substituents and chiral ketal. Tetrahedron Lett., 2009, 50(11), 1188-1192.
[http://dx.doi.org/10.1016/j.tetlet.2008.12.117]
[95]
Khatri, B.B.; Sieburth, S.M. Enyne-2-pyrone [4+4]-photocycloaddition: Sesquiterpene synthesis and a low-temperature cope rearrangement. Org. Lett., 2015, 17(17), 4360-4363.
[http://dx.doi.org/10.1021/acs.orglett.5b02207] [PMID: 26301614]
[96]
Li, Y.; Chen, Z.X.; Xiao, Q.; Ye, Q.D.; Sun, T.W.; Meng, F.K.; Ren, W.W.; You, L.; Xu, L.M.; Wang, Y.F.; Chen, J.H.; Yang, Z. Diastereoselective total synthesis of (±)-schindilactone A, Part 2: Construction of the fully functionalized CDEFGH ring system. Chem. Asian J., 2012, 7(10), 2334-2340.
[http://dx.doi.org/10.1002/asia.201200364] [PMID: 22761018]
[97]
Kobayashi, T.; Yamanoue, K.; Abe, H.; Ito, H. Diastereoselective total synthesis of (±)-toxicodenane A. Eur. J. Org. Chem., 2017, 2017(45), 6693-6699.
[http://dx.doi.org/10.1002/ejoc.201701219]
[98]
Liu, D.D.; Sun, T.W.; Wang, K.Y.; Lu, Y.; Zhang, S.L.; Li, Y.H.; Jiang, Y.L.; Chen, J.H.; Yang, Z. Asymmetric total synthesis of lancifodilactone G acetate. J. Am. Chem. Soc., 2017, 139(16), 5732-5735.
[http://dx.doi.org/10.1021/jacs.7b02561] [PMID: 28391693]
[99]
Sun, T.W.; Liu, D.D.; Wang, K.Y.; Tong, B.Q.; Xie, J.X.; Jiang, Y.L.; Li, Y.; Zhang, B.; Liu, Y.F.; Wang, Y.X.; Zhang, J.J.; Chen, J.H.; Yang, Z. Asymmetric total synthesis of Lancifodilactone G Acetate. 1. Diastereoselective synthesis of CDEFGH ring system. J. Org. Chem., 2018, 83(13), 6893-6906.
[http://dx.doi.org/10.1021/acs.joc.7b02915] [PMID: 29508610]