Nanomaterials Mediated Multimodal Combined Treatment for Cancer

Page: [1623 - 1641] Pages: 19

  • * (Excluding Mailing and Handling)

Abstract

Cancer is still one of the most serious diseases that threaten human life. In the past decades, nanomaterials have been found to possess excellent advantages, including controlled drug release, easy modification surface, good biocompatibility, typical optical property, useful chemical ability, and so on, due to which they have become the rising star in the application for multimodal combined cancer treatment (MCT). The emerging avenues of photodynamic therapy, photothermal therapy, magnetocaloric therapy, chemodynamic therapy, immunotherapy, and gene therapy are integrated systematically and intelligently with the traditional methods, realizing the therapeutic effect in cancer treatment. However, there are still several challenges in the development of nanomaterials for MCT, such as the construction of complex systems, deep penetration into solid tumors, effective immune activation at tumor sites, and so on. This review describes the application of multifunctional nanomaterials in the field of MCT for tumor, proposing some suggestions and ideas for future development.

Graphical Abstract

[1]
Suwa, T.; Kobayashi, M.; Nam, J.M.; Harada, H. Tumor microenvironment and radioresistance. Exp. Mol. Med., 2021, 53(6), 1029-1035.
[http://dx.doi.org/10.1038/s12276-021-00640-9] [PMID: 34135469]
[2]
Choi, J.H.; Ro, J.Y. Mesenchymal tumors of the mediastinum: An update on diagnostic approach. Adv. Anat. Pathol., 2021, 28(5), 351-381.
[http://dx.doi.org/10.1097/PAP.0000000000000306] [PMID: 34050062]
[3]
Li, Y.; Zhang, J.; Xu, J.; Liu, S. The metabolism symbiosis between pancreatic cancer and tumor microenvironment. Front. Oncol., 2021, 11, 759376.
[http://dx.doi.org/10.3389/fonc.2021.759376] [PMID: 34976805]
[4]
Li, Y.; Zhao, L.; Li, X.F. Hypoxia and the tumor microenvironment. Technol. Cancer Res. Treat., 2021, 20.
[http://dx.doi.org/10.1177/15330338211036304] [PMID: 34350796]
[5]
Hackett, J.; Godfrey, M.; Bennett, M.I. Patient and caregiver perspectives on managing pain in advanced cancer: A qualitative longitudinal study. Palliat. Med., 2016, 30(8), 711-719.
[http://dx.doi.org/10.1177/0269216316628407] [PMID: 26847524]
[6]
Baghdasaryan, A.; Bürgi, T. Copper nanoclusters: Designed synthesis, structural diversity, and multiplatform applications. Nanoscale, 2021, 13(13), 6283-6340.
[http://dx.doi.org/10.1039/D0NR08489A] [PMID: 33885518]
[7]
Fernandes, R.; Siegel, P.; Komarova, S.; Hilton, J.; Addison, C.; Ibrahim, M.F.K.; Werier, J.; Dennis, K.; Singh, G.; Amir, E.; Jarvis, V.; Emmenegger, U.; Mazzarello, S.; Clemons, M. Future directions for bone metastasis research – highlights from the 2015 bone and the Oncologist new updates conference (BONUS). J. Bone Oncol., 2016, 5(2), 57-62.
[http://dx.doi.org/10.1016/j.jbo.2016.02.004] [PMID: 27335772]
[8]
Gad, A.Z.; El-Naggar, S.; Ahmed, N. Realism and pragmatism in developing an effective chimeric antigen receptor T-cell product for solid cancers. Cytotherapy, 2016, 18(11), 1382-1392.
[http://dx.doi.org/10.1016/j.jcyt.2016.07.004] [PMID: 27601331]
[9]
Heinrich, M.A.; Mostafa, A.M.R.H.; Morton, J.P.; Hawinkels, L.J.A.C.; Prakash, J. Translating complexity and heterogeneity of pancreatic tumor: 3D in vitro to in vivo models. Adv. Drug Deliv. Rev., 2021, 174, 265-293.
[http://dx.doi.org/10.1016/j.addr.2021.04.018] [PMID: 33895214]
[10]
Barani, M.; Sabir, F.; Rahdar, A.; Arshad, R.; Kyzas, G.Z. Nanotreatment and nanodiagnosis of prostate cancer: Recent updates. Nanomaterials, 2020, 10(9), 1696.
[http://dx.doi.org/10.3390/nano10091696] [PMID: 32872181]
[11]
Nehru, S.; Misra, R.; Bhaswant, M. Multifaceted engineered biomimetic nanorobots toward cancer management. ACS Biomater. Sci. Eng., 2022, 8(2), 444-459.
[http://dx.doi.org/10.1021/acsbiomaterials.1c01352] [PMID: 35118865]
[12]
Shen, X.; Liu, X.; Li, T.; Chen, Y.; Chen, Y.; Wang, P.; Zheng, L.; Yang, H.; Wu, C.; Deng, S.; Liu, Y. Recent advancements in serum albumin-based nanovehicles toward potential cancer diagnosis and therapy. Front Chem., 2021, 9, 746646.
[http://dx.doi.org/10.3389/fchem.2021.746646] [PMID: 34869202]
[13]
Silva, F.; Cabral Campello, M.P.; Paulo, A. Radiolabeled gold nanoparticles for imaging and therapy of cancer. Materials, 2020, 14(1), 4.
[http://dx.doi.org/10.3390/ma14010004] [PMID: 33375074]
[14]
Sun, S.; Wang, P.; Sun, S.; Liang, X. Applications of micro/nanotechnology in ultrasound-based drug delivery and therapy for tumor. Curr. Med. Chem., 2021, 28(3), 525-547.
[http://dx.doi.org/10.2174/0929867327666200212100257] [PMID: 32048951]
[15]
Cai, Y.; Wang, B.; Xu, W.; Liu, K.; Gao, Y.; Guo, C.; Chen, J.; Kamal, M.A.; Yuan, C. Endometrial cancer: Genetic, metabolic characteristics, therapeutic strategies and nanomedicine. Curr. Med. Chem., 2021, 28(42), 8755-8781.
[http://dx.doi.org/10.2174/0929867328666210705144456] [PMID: 34225603]
[16]
Li, X.; Ai, S.; Lu, X.; Liu, S.; Guan, W. Nanotechnology-based strategies for gastric cancer imaging and treatment. RSC Advances, 2021, 11(56), 35392-35407.
[http://dx.doi.org/10.1039/D1RA01947C] [PMID: 35493171]
[17]
Akkın, S.; Varan, G.; Bilensoy, E. A review on cancer immunotherapy and applications of nanotechnology to chemoimmunotherapy of different cancers. Molecules, 2021, 26(11), 3382.
[http://dx.doi.org/10.3390/molecules26113382] [PMID: 34205019]
[18]
Alimardani, V.; Farahavar, G.; Salehi, S.; Taghizadeh, S.; Ghiasi, M.R.; Abolmaali, S.S. Gold nanocages in cancer diagnosis, therapy, and theranostics: A brief review. Front. Mater. Sci., 2021, 15(4), 494-511.
[http://dx.doi.org/10.1007/s11706-021-0569-1]
[19]
Augustine, R.; Mamun, A.A.; Hasan, A.; Salam, S.A.; Chandrasekaran, R.; Ahmed, R.; Thakor, A.S. Imaging cancer cells with nanostructures: Prospects of nanotechnology driven non-invasive cancer diagnosis. Adv. Colloid Interface Sci., 2021, 294, 102457.
[http://dx.doi.org/10.1016/j.cis.2021.102457] [PMID: 34144344]
[20]
Singh, K.R.B.; Nayak, V.; Sarkar, T.; Singh, R.P. Cerium oxide nanoparticles: Properties, biosynthesis and biomedical application. RSC Advances, 2020, 10(45), 27194-27214.
[http://dx.doi.org/10.1039/D0RA04736H] [PMID: 35515804]
[21]
Jin, C.; Wang, K.; Oppong-Gyebi, A.; Hu, J. Application of nanotechnology in cancer diagnosis and therapy - a mini-review. Int. J. Med. Sci., 2020, 17(18), 2964-2973.
[http://dx.doi.org/10.7150/ijms.49801] [PMID: 33173417]
[22]
Wang, H.; Hu, H.; Yang, H.; Li, Z. Hydroxyethyl starch based smart nanomedicine. RSC Advances, 2021, 11(6), 3226-3240.
[http://dx.doi.org/10.1039/D0RA09663F] [PMID: 35424303]
[23]
Díaz de Greñu, B.; de los Reyes, R.; Costero, A.M.; Amorós, P.; Ros-Lis, J.V. Recent progress of microwave-assisted synthesis of silica materials. Nanomaterials, 2020, 10(6), 1092.
[http://dx.doi.org/10.3390/nano10061092] [PMID: 32492889]
[24]
Gisbert-Garzarán, M.; Vallet-Regí, M. Redox-responsive mesoporous silica nanoparticles for cancer treatment: Recent updates. Nanomaterials, 2021, 11(9), 2222.
[http://dx.doi.org/10.3390/nano11092222] [PMID: 34578538]
[25]
Guimarães, R.S.; Rodrigues, C.F.; Moreira, A.F.; Correia, I.J. Overview of stimuli-responsive mesoporous organosilica nanocarriers for drug delivery. Pharmacol. Res., 2020, 155, 104742.
[http://dx.doi.org/10.1016/j.phrs.2020.104742] [PMID: 32151682]
[26]
Yuan, D.; Ellis, C.M.; Davis, J.J. Mesoporous silica nanoparticles in bioimaging. Materials, 2020, 13(17), 3795.
[http://dx.doi.org/10.3390/ma13173795] [PMID: 32867401]
[27]
Yue, Q.; Sun, J.; Kang, Y.; Deng, Y. Advances in the interfacial assembly of mesoporous silica on magnetite particles. Angew. Chem. Int. Ed., 2020, 59(37), 15804-15817.
[http://dx.doi.org/10.1002/anie.201911690] [PMID: 31593603]
[28]
Shaban, M.; Hasanzadeh, M. Biomedical applications of dendritic fibrous nanosilica (DFNS): Recent progress and challenges. RSC Advances, 2020, 10(61), 37116-37133.
[http://dx.doi.org/10.1039/D0RA04388E] [PMID: 35521236]
[29]
Ghaferi, M.; Koohi Moftakhari Esfahani, M.; Raza, A.; Al Harthi, S.; Ebrahimi Shahmabadi, H.; Alavi, S.E. Mesoporous silica nanoparticles: Synthesis methods and their therapeutic use-recent advances. J. Drug Target., 2021, 29(2), 131-154.
[http://dx.doi.org/10.1080/1061186X.2020.1812614] [PMID: 32815741]
[30]
Chen, Y.; Zhang, H.; Cai, X.; Ji, J.; He, S.; Zhai, G. Multifunctional mesoporous silica nanocarriers for stimuli-responsive target delivery of anticancer drugs. RSC Advances, 2016, 6(94), 92073-92091.
[http://dx.doi.org/10.1039/C6RA18062K]
[31]
Taleghani, A.S.; Nakhjiri, A.T.; Khakzad, M.J.; Rezayat, S.M.; Ebrahimnejad, P.; Heydarinasab, A.; Akbarzadeh, A.; Marjani, A. Mesoporous silica nanoparticles as a versatile nanocarrier for cancer treatment: A review. J. Mol. Liq., 2021, 328, 115417.
[http://dx.doi.org/10.1016/j.molliq.2021.115417]
[32]
Bai, R.; Lv, Z.; Chen, X.; Guo, H.; Bai, L.; Tian, H.; Li, W.; Cui, J. Precision detection technology: Equipping precision oncology with wings. J. Oncol., 2020, 2020, 1-8.
[http://dx.doi.org/10.1155/2020/9068121] [PMID: 32695166]
[33]
Sabino, C.P.; Ball, A.R.; Baptista, M.S.; Dai, T.; Hamblin, M.R.; Ribeiro, M.S.; Santos, A.L.; Sellera, F.P.; Tegos, G.P.; Wainwright, M. Light-based technologies for management of COVID-19 pandemic crisis. J. Photochem. Photobiol. B, 2020, 212, 111999.
[http://dx.doi.org/10.1016/j.jphotobiol.2020.111999] [PMID: 32855026]
[34]
Saelao, P.; Hickner, P.V.; Bendele, K.G.; Pérez de León, A.A. Phylogenomics of tick inward rectifier potassium channels and their potential as targets to innovate control technologies. Front. Cell. Infect. Microbiol., 2021, 11, 647020.
[http://dx.doi.org/10.3389/fcimb.2021.647020] [PMID: 33816352]
[35]
Zeballos, C. M.A.; Gaj, T. Next-generation CRISPR technologies and their applications in gene and cell therapy. Trends Biotechnol., 2021, 39(7), 692-705.
[http://dx.doi.org/10.1016/j.tibtech.2020.10.010] [PMID: 33277043]
[36]
Jiang, H.; Guo, Y.; Wei, C.; Hu, P.; Shi, J. Nanocatalytic innate immunity activation by mitochondrial dna oxidative damage for tumor‐specific therapy. Adv. Mater., 2021, 33(20), 2008065.
[http://dx.doi.org/10.1002/adma.202008065] [PMID: 33797131]
[37]
Daglar, B.; Ozgur, E.; Corman, M.E.; Uzun, L.; Demirel, G.B. Polymeric nanocarriers for expected nanomedicine: Current challenges and future prospects. RSC Advances, 2014, 4(89), 48639-48659.
[http://dx.doi.org/10.1039/C4RA06406B]
[38]
Guo, J.; Jiang, H.; Teng, Y.; Xiong, Y.; Chen, Z.; You, L.; Xiao, D. Recent advances in magnetic carbon nanotubes: Synthesis, challenges and highlighted applications. J. Mater. Chem. B Mater. Biol. Med., 2021, 9(44), 9076-9099.
[http://dx.doi.org/10.1039/D1TB01242H] [PMID: 34668920]
[39]
Li, X.; Li, W.; Wang, M.; Liao, Z. Magnetic nanoparticles for cancer theranostics: Advances and prospects. J. Control. Release, 2021, 335, 437-448.
[http://dx.doi.org/10.1016/j.jconrel.2021.05.042] [PMID: 34081996]
[40]
Shukla, S.; Khan, R.; Daverey, A. Synthesis and characterization of magnetic nanoparticles, and their applications in wastewater treatment: A review. Environ. Technol. Innov., 2021, 24, 101924.
[http://dx.doi.org/10.1016/j.eti.2021.101924]
[41]
Tan, M.; Reyes-Ortega, F.; Schneider-Futschik, E.K. Magnetic nanoparticle-based drug delivery approaches for preventing and treating biofilms in cystic fibrosis. Magnetochemistry, 2020, 6(4), 72.
[http://dx.doi.org/10.3390/magnetochemistry6040072]
[42]
García-Merino, B.; Bringas, E.; Ortiz, I. Synthesis and applications of surface-modified magnetic nanoparticles: Progress and future prospects. Rev. Chem. Eng., 2022, 38(7), 821-842.
[http://dx.doi.org/10.1515/revce-2020-0072]
[43]
Bi, Q.; Song, X.; Hu, A.; Luo, T.; Jin, R.; Ai, H.; Nie, Y. Magnetofection: Magic magnetic nanoparticles for efficient gene delivery. Chin. Chem. Lett., 2020, 31(12), 3041-3046.
[http://dx.doi.org/10.1016/j.cclet.2020.07.030]
[44]
Choi, H.K.; Lee, M.J.; Lee, S.N.; Kim, T.H.; Oh, B.K. Noble metal nanomaterial-based biosensors for electrochemical and optical detection of viruses causing respiratory illnesses. Front Chem., 2021, 9, 672739.
[http://dx.doi.org/10.3389/fchem.2021.672739] [PMID: 34055741]
[45]
Wang, L.; Zhao, X.; Fu, J.; Xu, W.; Yuan, J. The role of tumour metabolism in cisplatin resistance. Front. Mol. Biosci., 2021, 8, 691795.
[http://dx.doi.org/10.3389/fmolb.2021.691795] [PMID: 34250022]
[46]
Mahmoudpour, M.; Ding, S.; Lyu, Z.; Ebrahimi, G.; Du, D.; Ezzati Nazhad Dolatabadi, J.; Torbati, M.; Lin, Y. Aptamer functionalized nanomaterials for biomedical applications: Recent advances and new horizons. Nano Today, 2021, 39, 101177.
[http://dx.doi.org/10.1016/j.nantod.2021.101177]
[47]
Zakian, K.L.; Sircar, K.; Hricak, H.; Chen, H.N.; Shukla-Dave, A.; Eberhardt, S. MR imaging and MR spectroscopic imaging in the pre-treatment evaluation of prostate cancer (vol 78, S103, 2005). Br. J. Radiol., 2016, 89(1061)
[http://dx.doi.org/10.1259/bjr.11253478.c]
[48]
Li, A.; Chen, Y.; Zhuo, K.; Wang, C.; Wang, C.; Wang, J. Facile and shape-controlled electrochemical synthesis of gold nanocrystals by changing water contents in deep eutectic solvents and their electrocatalytic activity. RSC Advances, 2016, 6(11), 8786-8790.
[http://dx.doi.org/10.1039/C5RA24499D]
[49]
Pan, Y.; Ma, X.; Liu, C.; Xing, J.; Zhou, S.; Parshad, B.; Schwerdtle, T.; Li, W.; Wu, A.; Haag, R. Retinoic acid-loaded dendritic polyglycerol-conjugated gold nanostars for targeted photothermal therapy in breast cancer stem cells. ACS Nano, 2021, 15(9), 15069-15084.
[http://dx.doi.org/10.1021/acsnano.1c05452] [PMID: 34420298]
[50]
Chen, W.; Zhang, F.; Ju, Y.; Hong, J.; Ding, Y. Gold nanomaterial engineering for macrophage‐mediated inflammation and tumor treatment. Adv. Healthc. Mater., 2021, 10(5), 2000818.
[http://dx.doi.org/10.1002/adhm.202000818] [PMID: 33128505]
[51]
Pham, X.H.; Lee, M.; Shim, S.; Jeong, S.; Kim, H.M.; Hahm, E.; Lee, S.H.; Lee, Y.S.; Jeong, D.H.; Jun, B.H. Highly sensitive and reliable SERS probes based on nanogap control of a Au–Ag alloy on silica nanoparticles. RSC Advances, 2017, 7(12), 7015-7021.
[http://dx.doi.org/10.1039/C6RA26213A]
[52]
Mi, Z.; Guo, L.; Liu, P.; Qi, Y.; Feng, Z.; Liu, J.; He, Z.; Yang, X.; Jiang, S.; Wu, J.; Ding, J.; Zhou, W.; Rong, P. “Trojan Horse” salmonella enabling tumor homing of silver nanoparticles via neutrophil infiltration for synergistic tumor therapy and enhanced biosafety. Nano Lett., 2021, 21(1), 414-423.
[http://dx.doi.org/10.1021/acs.nanolett.0c03811] [PMID: 33356313]
[53]
Pan, M.; Yang, J.; Liu, K.; Yin, Z.; Ma, T.; Liu, S.; Xu, L.; Wang, S. Noble metal nanostructured materials for chemical and biosensing systems. Nanomaterials, 2020, 10(2), 209.
[http://dx.doi.org/10.3390/nano10020209] [PMID: 31991797]
[54]
Li, S.; Gu, K.; Wang, H.; Xu, B.; Li, H.; Shi, X.; Huang, Z.; Liu, H. Degradable holey palladium nanosheets with highly active 1D nanoholes for synergetic phototherapy of hypoxic tumors. J. Am. Chem. Soc., 2020, 142(12), 5649-5656.
[http://dx.doi.org/10.1021/jacs.9b12929] [PMID: 32115944]
[55]
Ke, L.; Wei, F.; Liao, X.; Rees, T.W.; Kuang, S.; Liu, Z.; Chen, Y.; Ji, L.; Chao, H. Nano-assembly of ruthenium(II) photosensitizers for endogenous glutathione depletion and enhanced two-photon photodynamic therapy. Nanoscale, 2021, 13(16), 7590-7599.
[http://dx.doi.org/10.1039/D1NR00773D] [PMID: 33884385]
[56]
Pham, T.N.; Huy, T.Q.; Le, A.T. Spinel ferrite (AFe2O4)-based heterostructured designs for lithium-ion battery, environmental monitoring, and biomedical applications. RSC Advances, 2020, 10(52), 31622-31661.
[http://dx.doi.org/10.1039/D0RA05133K] [PMID: 35520663]
[57]
Chen, G.; Shrestha, L.K.; Ariga, K. Zero-to-two nanoarchitectonics: Fabrication of two-dimensional materials from zero-dimensional fullerene. Molecules, 2021, 26(15), 4636.
[http://dx.doi.org/10.3390/molecules26154636] [PMID: 34361787]
[58]
Jia, L.; Chen, M.; Yang, S. Functionalization of fullerene materials toward applications in perovskite solar cells. Mater. Chem. Front., 2020, 4(8), 2256-2282.
[http://dx.doi.org/10.1039/D0QM00295J]
[59]
Dong, Y.; Qin, X.; Wang, M.; Gu, C.; Zhu, Z.; Yang, D.; Shao, Y. Electrochemiluminescent detection of proteins based on fullerenols modified gold nanoparticles and triple amplification approaches. Anal. Chem., 2020, 92(2), 1890-1897.
[http://dx.doi.org/10.1021/acs.analchem.9b04087] [PMID: 31920079]
[60]
Kaur Billing, B. Carbon nanotubes and its potential application in sensing. ChemistrySelect, 2021, 6(36), 9571-9590.
[http://dx.doi.org/10.1002/slct.202102636]
[61]
Cao, Q. Carbon nanotube transistor technology for More-Moore scaling. Nano Res., 2021, 14(9), 3051-3069.
[http://dx.doi.org/10.1007/s12274-021-3459-z]
[62]
Dai, W.; Wang, D. Cutting methods and perspectives of carbon nanotubes. J. Phys. Chem. C, 2021, 125(18), 9593-9617.
[http://dx.doi.org/10.1021/acs.jpcc.1c01756]
[63]
Jordan, J.W.; Townsend, W.J.V.; Johnson, L.R.; Walsh, D.A.; Newton, G.N.; Khlobystov, A.N. Electrochemistry of redox-active molecules confined within narrow carbon nanotubes. Chem. Soc. Rev., 2021, 50(19), 10895-10916.
[http://dx.doi.org/10.1039/D1CS00478F] [PMID: 34396376]
[64]
Zhao, Y.; Zhao, T.; Cao, Y.; Sun, J.; Zhou, Q.; Chen, H.; Guo, S.; Wang, Y.; Zhen, Y.; Liang, X.J.; Zhang, S. Temperature-sensitive lipid-coated carbon nanotubes for synergistic photothermal therapy and gene therapy. ACS Nano, 2021, 15(4), 6517-6529.
[http://dx.doi.org/10.1021/acsnano.0c08790] [PMID: 33749240]
[65]
Su, H.; Hu, Y.H. Recent advances in graphene‐based materials for fuel cell applications. Energy Sci. Eng., 2021, 9(7), 958-983.
[http://dx.doi.org/10.1002/ese3.833]
[66]
Yu, W.; Sisi, L.; Haiyan, Y.; Jie, L. Progress in the functional modification of graphene/graphene oxide: A review. RSC Advances, 2020, 10(26), 15328-15345.
[http://dx.doi.org/10.1039/D0RA01068E] [PMID: 35495479]
[67]
Xue, X.; Wang, L.; Yu, G. Surface engineering of substrates for chemical vapor deposition growth of graphene and applications in electronic and spintronic devices. Chem. Mater., 2021, 33(23), 8960-8989.
[http://dx.doi.org/10.1021/acs.chemmater.1c01317]
[68]
Tu, Z.; Donskyi, I.S.; Qiao, H.; Zhu, Z.; Unger, W.E.S.; Hackenberger, C.P.R.; Chen, W.; Adeli, M.; Haag, R. Graphene oxide‐cyclic R10 peptide nuclear translocation nanoplatforms for the surmounting of multiple‐drug resistance. Adv. Funct. Mater., 2020, 30(35), 2000933.
[http://dx.doi.org/10.1002/adfm.202000933]
[69]
Ali, H.; Ghosh, S.; Jana, N.R. Fluorescent carbon dots as intracellular imaging probes. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2020, 12(4), e1617.
[http://dx.doi.org/10.1002/wnan.1617] [PMID: 32040882]
[70]
Chen, Y.; Cao, Y.; Ma, C.; Zhu, J.J. Carbon-based dots for electrochemiluminescence sensing. Mater. Chem. Front., 2020, 4(2), 369-385.
[http://dx.doi.org/10.1039/C9QM00572B]
[71]
Kang, C.; Huang, Y.; Yang, H.; Yan, X.F.; Chen, Z.P. A review of carbon dots produced from biomass wastes. Nanomaterials, 2020, 10(11), 2316.
[http://dx.doi.org/10.3390/nano10112316] [PMID: 33238367]
[72]
Yu, Y.; Song, M.; Chen, C.; Du, Y.; Li, C.; Han, Y.; Yan, F.; Shi, Z.; Feng, S. Bortezomib-encapsulated CuS/Carbon dot nanocomposites for enhanced photothermal therapy via stabilization of polyubiquitinated substrates in the proteasomal degradation pathway. ACS Nano, 2020, 14(8), 10688-10703.
[http://dx.doi.org/10.1021/acsnano.0c05332] [PMID: 32790339]
[73]
Li, J.; Kong, J.; Ma, S.; Li, J.; Mao, M.; Chen, K.; Chen, Z.; Zhang, J.; Chang, Y.; Yuan, H.; Liu, T.; Zhang, Z.; Xing, G. Exosome‐Coated 10 B carbon dots for precise boron neutron capture therapy in a mouse model of glioma in situ. Adv. Funct. Mater., 2021, 31(24), 2100969.
[http://dx.doi.org/10.1002/adfm.202100969]
[74]
Wu, Y.; Li, C.; van der Mei, H.C.; Busscher, H.J.; Ren, Y. Carbon quantum dots derived from different carbon sources for antibacterial applications. Antibiotics, 2021, 10(6), 623.
[http://dx.doi.org/10.3390/antibiotics10060623] [PMID: 34073750]
[75]
Abdolrahimi, M.; Vasilakaki, M.; Slimani, S.; Ntallis, N.; Varvaro, G.; Laureti, S.; Meneghini, C.; Trohidou, K.N.; Fiorani, D.; Peddis, D. Magnetism of nanoparticles: Effect of the organic coating. Nanomaterials, 2021, 11(7), 1787.
[http://dx.doi.org/10.3390/nano11071787] [PMID: 34361173]
[76]
Amirmahani, N.; Mahmoodi, N.O.; Bahramnejad, M.; Seyedi, N. Recent developments of metallic nanoparticles and their catalytic activity in organic reactions. J. Chin. Chem. Soc., 2020, 67(8), 1326-1337.
[http://dx.doi.org/10.1002/jccs.201900534]
[77]
Gao, C.; Lyu, F.; Yin, Y. Encapsulated metal nanoparticles for catalysis. Chem. Rev., 2021, 121(2), 834-881.
[http://dx.doi.org/10.1021/acs.chemrev.0c00237] [PMID: 32585087]
[78]
Sharma, V.; Bharadwaj, P.K. Organic cage supported metal nanoparticles for applications. Dalton Trans., 2020, 49(44), 15574-15586.
[http://dx.doi.org/10.1039/D0DT02998J] [PMID: 33135698]
[79]
Lenders, V.; Koutsoumpou, X.; Sargsian, A.; Manshian, B.B. Biomedical nanomaterials for immunological applications: Ongoing research and clinical trials. Nanoscale Adv., 2020, 2(11), 5046-5089.
[http://dx.doi.org/10.1039/D0NA00478B] [PMID: 36132021]
[80]
Hu, D.; Xu, H.; Zhang, W.; Xu, X.; Xiao, B.; Shi, X.; Zhou, Z.; Slater, N.K.H.; Shen, Y.; Tang, J. Vanadyl nanocomplexes enhance photothermia-induced cancer immunotherapy to inhibit tumor metastasis and recurrence. Biomaterials, 2021, 277, 121130.
[http://dx.doi.org/10.1016/j.biomaterials.2021.121130] [PMID: 34534862]
[81]
Park, C.; Korman, A.M.; Dulmage, B.L. An overview of the efficacy of phototherapy in oncodermatology. Support. Care Cancer, 2022, 30(7), 5591-5600.
[http://dx.doi.org/10.1007/s00520-022-06841-w] [PMID: 35107598]
[82]
Wu, Y.H.; Chou, C.L.; Chang, H.C. Risk of skin cancer after ultraviolet phototherapy in patients with vitiligo: A systematic review and meta‐analysis. Clin. Exp. Dermatol., 2022, 47(4), 692-699.
[http://dx.doi.org/10.1111/ced.15010] [PMID: 34762747]
[83]
Yang, S.; Chen, C.; Qiu, Y.; Xu, C.; Yao, J. Paying attention to tumor blood vessels: Cancer phototherapy assisted with nano delivery strategies. Biomaterials, 2021, 268, 120562.
[http://dx.doi.org/10.1016/j.biomaterials.2020.120562] [PMID: 33278682]
[84]
Um, W.; Kwon, S.; You, D.G.; Cha, J.M.; Kim, H.R.; Park, J.H. Non-thermal acoustic treatment as a safe alternative to thermosensitive liposome-involved hyperthermia for cancer therapy. RSC Advances, 2017, 7(47), 29618-29625.
[http://dx.doi.org/10.1039/C7RA02065A]
[85]
Shi, J.; Li, J.; Wang, Y.; Cheng, J.; Zhang, C.Y. Recent advances in MoS 2 -based photothermal therapy for cancer and infectious disease treatment. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(27), 5793-5807.
[http://dx.doi.org/10.1039/D0TB01018A] [PMID: 32597915]
[86]
Chen, J.; Chen, A.; Zhang, J.; Wang, F.; Fang, Q.; He, Z.; Chen, X.; Ma, W.; Hu, F. Efficacy and safety of laser combination therapy and laser alone therapy for keloid: A systematic review and meta-analysis. Lasers Med. Sci., 2022, 37(2), 1127-1138.
[http://dx.doi.org/10.1007/s10103-021-03364-4] [PMID: 34283306]
[87]
Everett, L.A.; Paulus, Y.M. Laser therapy in the treatment of diabetic retinopathy and diabetic macular edema. Curr. Diab. Rep., 2021, 21(9), 35.
[http://dx.doi.org/10.1007/s11892-021-01403-6] [PMID: 34487257]
[88]
Hofferber, E.M.; Stapleton, J.A.; Iverson, N.M. Review—single walled carbon nanotubes as optical sensors for biological applications. J. Electrochem. Soc., 2020, 167(3), 037530.
[http://dx.doi.org/10.1149/1945-7111/ab64bf]
[89]
Kördel, M.; Dehlinger, A.; Seim, C.; Vogt, U.; Fogelqvist, E.; Sellberg, J.A.; Stiel, H.; Hertz, H.M. Laboratory water-window x-ray microscopy. Optica, 2020, 7(6), 658-674.
[http://dx.doi.org/10.1364/OPTICA.393014]
[90]
Nexha, A.; Carvajal, J.J.; Pujol, M.C.; Díaz, F.; Aguiló, M. Lanthanide doped luminescence nanothermometers in the biological windows: Strategies and applications. Nanoscale, 2021, 13(17), 7913-7987.
[http://dx.doi.org/10.1039/D0NR09150B] [PMID: 33899861]
[91]
Yang, F.; Zhang, Q.; Huang, S.; Ma, D. Recent advances of near infrared inorganic fluorescent probes for biomedical applications. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(35), 7856-7879.
[http://dx.doi.org/10.1039/D0TB01430C] [PMID: 32749426]
[92]
Han, H.S.; Choi, K.Y. Advances in nanomaterial-mediated photothermal cancer therapies: Toward clinical applications. Biomedicines, 2021, 9(3), 305.
[http://dx.doi.org/10.3390/biomedicines9030305] [PMID: 33809691]
[93]
Wang, Y.; Zhang, H.; Wang, Z.; Feng, L. Photothermal conjugated polymers and their biological applications in imaging and therapy. ACS Appl. Polym. Mater., 2020, 2(10), 4222-4240.
[http://dx.doi.org/10.1021/acsapm.0c00672]
[94]
Pennini, F.; Plastino, A.; Plastino, A.R. Thermal–statistical odd–even fermions’ staggering effect and the order–disorder disjunction. Entropy, 2021, 23(11), 1428.
[http://dx.doi.org/10.3390/e23111428] [PMID: 34828126]
[95]
Liu, M.; Kang, Q.; Xie, Z.; Lu, L.; Dai, K.; Dawson, G. Heterostructure nanocomposite with local surface plasmon resonance effect enhanced photocatalytic activity—a critical review. J. Phys. D Appl. Phys., 2022, 55(4), 043002.
[http://dx.doi.org/10.1088/1361-6463/ac2cac]
[96]
Zheng, X.; Zhang, P.; Fu, Z.; Meng, S.; Dai, L.; Yang, H. Applications of nanomaterials in tissue engineering. RSC Advances, 2021, 11(31), 19041-19058.
[http://dx.doi.org/10.1039/D1RA01849C] [PMID: 35478636]
[97]
Liu, S.; Pan, X.; Liu, H. Two‐dimensional nanomaterials for photothermal therapy. Angew. Chem. Int. Ed., 2020, 59(15), 5890-5900.
[http://dx.doi.org/10.1002/anie.201911477] [PMID: 32017308]
[98]
Dash, B.S.; Jose, G.; Lu, Y.J.; Chen, J.P. Functionalized reduced graphene oxide as a versatile tool for cancer therapy. Int. J. Mol. Sci., 2021, 22(6), 2989.
[http://dx.doi.org/10.3390/ijms22062989] [PMID: 33804239]
[99]
Xu, P.; Liang, F. Nanomaterial-based tumor photothermal immunotherapy. Int. J. Nanomedicine, 2020, 15, 9159-9180.
[http://dx.doi.org/10.2147/IJN.S249252] [PMID: 33244232]
[100]
Mani, A.D.; Deepa, M.; Ghosal, P.; Subrahmanyam, C. Novel single pot synthesis of metal (Pb, Cu, Co) sulfide nanomaterials -Towards a quest for paintable electrode materials that supersedes Pt electrode. Electrochim. Acta, 2014, 139, 365-373.
[http://dx.doi.org/10.1016/j.electacta.2014.07.009]
[101]
Long, R.; Mao, K.; Ye, X.; Yan, W.; Huang, Y.; Wang, J.; Fu, Y.; Wang, X.; Wu, X.; Xie, Y.; Xiong, Y. Surface facet of palladium nanocrystals: A key parameter to the activation of molecular oxygen for organic catalysis and cancer treatment. J. Am. Chem. Soc., 2013, 135(8), 3200-3207.
[http://dx.doi.org/10.1021/ja311739v] [PMID: 23391267]
[102]
Guo, L.; Yan, D.D.; Yang, D.; Li, Y.; Wang, X.; Zalewski, O.; Yan, B.; Lu, W. Combinatorial photothermal and immuno cancer therapy using chitosan-coated hollow copper sulfide nanoparticles. ACS Nano, 2014, 8(6), 5670-5681.
[http://dx.doi.org/10.1021/nn5002112] [PMID: 24801008]
[103]
Wu, P.C.; Shieh, D.B.; Cheng, F.Y. Nanomaterial-mediated photothermal cancer treatment: The pivotal role of cellular uptake on photothermal therapeutic efficacy. RSC Advances, 2014, 4(95), 53297-53306.
[http://dx.doi.org/10.1039/C4RA09447F]
[104]
Wang, Y.; Meng, H.M.; Song, G.; Li, Z.; Zhang, X.B. Conjugated-polymer-based nanomaterials for photothermal therapy. ACS Appl. Polym. Mater., 2020, 2(10), 4258-4272.
[http://dx.doi.org/10.1021/acsapm.0c00680]
[105]
Aulin, Y.V.; van Sebille, M.; Moes, M.; Grozema, F.C. Photochemical upconversion in metal-based octaethyl porphyrin–diphenylanthracene systems. RSC Advances, 2015, 5(130), 107896-107903.
[http://dx.doi.org/10.1039/C5RA20602B]
[106]
McFarland, S.A.; Mandel, A.; Dumoulin-White, R.; Gasser, G. Metal-based photosensitizers for photodynamic therapy: The future of multimodal oncology? Curr. Opin. Chem. Biol., 2020, 56, 23-27.
[http://dx.doi.org/10.1016/j.cbpa.2019.10.004] [PMID: 31759225]
[107]
Nguyen, V.N.; Yan, Y.; Zhao, J.; Yoon, J. Heavy-atom-free photosensitizers: From molecular design to applications in the photodynamic therapy of cancer. Acc. Chem. Res., 2021, 54(1), 207-220.
[http://dx.doi.org/10.1021/acs.accounts.0c00606] [PMID: 33289536]
[108]
Nompumelelo Simelane, N.W.; Kruger, C.A.; Abrahamse, H. Photodynamic diagnosis and photodynamic therapy of colorectal cancer in vitro and in vivo. RSC Advances, 2020, 10(68), 41560-41576.
[http://dx.doi.org/10.1039/D0RA08617G] [PMID: 35516575]
[109]
Schlachter, A.; Asselin, P.; Harvey, P.D. Porphyrin-containing MOFs and COFs as heterogeneous photosensitizers for singlet oxygen-based antimicrobial nanodevices. ACS Appl. Mater. Interfaces, 2021, 13(23), 26651-26672.
[http://dx.doi.org/10.1021/acsami.1c05234] [PMID: 34086450]
[110]
Caglayan, M.O.; Mindivan, F.; Şahin, S. Sensor and bioimaging studies based on carbon quantum dots: The green chemistry approach. Crit. Rev. Anal. Chem., 2022, 52(4), 814-847.
[http://dx.doi.org/10.1080/10408347.2020.1828029] [PMID: 33054365]
[111]
Efros, A.L.; Brus, L.E. Nanocrystal quantum dots: From discovery to modern development. ACS Nano, 2021, 15(4), 6192-6210.
[http://dx.doi.org/10.1021/acsnano.1c01399] [PMID: 33830732]
[112]
Hagiwara, K.; Horikoshi, S.; Serpone, N. Photoluminescent carbon quantum dots: Synthetic approaches and photophysical properties. Chemistry, 2021, 27(37), 9466-9481.
[http://dx.doi.org/10.1002/chem.202100823] [PMID: 33877732]
[113]
Xu, A.; He, P.; Ye, C.; Liu, Z.; Gu, B.; Gao, B.; Li, Y.; Dong, H.; Chen, D.; Wang, G.; Yang, S.; Ding, G. Polarizing graphene quantum dots toward long-acting intracellular reactive oxygen species evaluation and tumor detection. ACS Appl. Mater. Interfaces, 2020, 12(9), 10781-10790.
[http://dx.doi.org/10.1021/acsami.9b20434] [PMID: 32048821]
[114]
Chen, B.; Wang, F. Recent advances in the synthesis and application of Yb-based fluoride upconversion nanoparticles. Inorg. Chem. Front., 2020, 7(5), 1067-1081.
[http://dx.doi.org/10.1039/C9QI01358J]
[115]
Jouyban, A.; Rahimpour, E. Sensors/nanosensors based on upconversion materials for the determination of pharmaceuticals and biomolecules: An overview. Talanta, 2020, 220, 121383.
[http://dx.doi.org/10.1016/j.talanta.2020.121383] [PMID: 32928407]
[116]
Li, A.H.; Chen, G. Controlling lanthanide-doped upconversion nanoparticles for brighter luminescence. J. Phys. D Appl. Phys., 2020, 53(4), 043001.
[http://dx.doi.org/10.1088/1361-6463/ab4c2d]
[117]
Wang, Y.; Chen, B.; Wang, F. Overcoming thermal quenching in upconversion nanoparticles. Nanoscale, 2021, 13(6), 3454-3462.
[http://dx.doi.org/10.1039/D0NR08603G] [PMID: 33565549]
[118]
Kalimuldina, G.; Nurpeissova, A.; Adylkhanova, A.; Adair, D.; Taniguchi, I.; Bakenov, Z. Morphology and dimension variations of copper sulfide for high-performance electrode in rechargeable batteries: A review. ACS Appl. Energy Mater., 2020, 3(12), 11480-11499.
[http://dx.doi.org/10.1021/acsaem.0c01686]
[119]
Li, Y.; Yin, Z.; Cui, M.; Liu, X.; Xiong, J.; Chen, S.; Ma, T. Interface engineering of transitional metal sulfide–MoS2 heterostructure composites as effective electrocatalysts for water-splitting. J. Mater. Chem. A Mater. Energy Sustain., 2021, 9(4), 2070-2092.
[http://dx.doi.org/10.1039/D0TA10815D]
[120]
Chen, W.; Xie, Y.; Wang, M.; Li, C. Recent advances on rare earth upconversion nanomaterials for combined tumor near-infrared photo-immunotherapy. Front Chem., 2020, 8, 596658.
[http://dx.doi.org/10.3389/fchem.2020.596658] [PMID: 33240857]
[121]
Jin, Z.; Zhao, Q.; Yuan, S.; Jiang, W.; Hu, Y. Strategies of alleviating tumor hypoxia and enhancing tumor therapeutic effect by macromolecular nanomaterials. Macromol. Biosci., 2021, 21(8), 2100092.
[http://dx.doi.org/10.1002/mabi.202100092] [PMID: 34008312]
[122]
Liu, M.; Li, C. Recent advances in activatable organic photosensitizers for specific photodynamic therapy. ChemPlusChem, 2020, 85(5), 948-957.
[http://dx.doi.org/10.1002/cplu.202000203] [PMID: 32401421]
[123]
Zhang, J.; Lin, Y.; Lin, Z.; Wei, Q.; Qian, J.; Ruan, R.; Jiang, X.; Hou, L.; Song, J.; Ding, J.; Yang, H. Stimuli‐responsive nanoparticles for controlled drug delivery in synergistic cancer immunotherapy. Adv. Sci. (Weinh.), 2022, 9(5), 2103444.
[http://dx.doi.org/10.1002/advs.202103444] [PMID: 34927373]
[124]
Wessel, K.M.; Kaplan, R.N. Targeting tumor microenvironment and metastasis in children with solid tumors. Curr. Opin. Pediatr., 2022, 34(1), 53-60.
[http://dx.doi.org/10.1097/MOP.0000000000001082] [PMID: 34812775]
[125]
Arneth, B. Tumor microenvironment. Medicina-Lithuania, 2020, 56(1), 15.
[http://dx.doi.org/10.3390/medicina56010015]
[126]
Wang, C.; Cao, F.; Ruan, Y.; Jia, X.; Zhen, W.; Jiang, X. Specific Generation of Singlet Oxygen through the Russell Mechanism in Hypoxic Tumors and GSH Depletion by Cu‐TCPP Nanosheets for Cancer Therapy. Angew. Chem. Int. Ed., 2019, 58(29), 9846-9850.
[http://dx.doi.org/10.1002/anie.201903981] [PMID: 31077533]
[127]
Wang, B.; Dai, Y.; Kong, Y.; Du, W.; Ni, H.; Zhao, H.; Sun, Z.; Shen, Q.; Li, M.; Fan, Q. Tumor microenvironment-responsive Fe(III)–porphyrin nanotheranostics for tumor imaging and targeted chemodynamic–photodynamic therapy. ACS Appl. Mater. Interfaces, 2020, 12(48), 53634-53645.
[http://dx.doi.org/10.1021/acsami.0c14046] [PMID: 33205657]
[128]
Tan, S.; Xia, L.; Yi, P.; Han, Y.; Tang, L.; Pan, Q.; Tian, Y.; Rao, S.; Oyang, L.; Liang, J.; Lin, J.; Su, M.; Shi, Y.; Cao, D.; Zhou, Y.; Liao, Q. Exosomal miRNAs in tumor microenvironment. J. Exp. Clin. Cancer Res., 2020, 39(1), 67.
[http://dx.doi.org/10.1186/s13046-020-01570-6] [PMID: 32299469]
[129]
Anani, T.; Rahmati, S.; Sultana, N.; David, A.E. MRI-traceable theranostic nanoparticles for targeted cancer treatment. Theranostics, 2021, 11(2), 579-601.
[http://dx.doi.org/10.7150/thno.48811] [PMID: 33391494]
[130]
Jain, A.; Tiwari, A.; Verma, A.; Saraf, S.; Jain, S.K. Combination cancer therapy using multifunctional liposomes. Crit. Rev. Ther. Drug Carrier Syst., 2020, 37(2), 105-134.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2019026358] [PMID: 32865902]
[131]
Levit, S.L.; Tang, C. Polymeric nanoparticle delivery of combination therapy with synergistic effects in ovarian cancer. Nanomaterials (Basel), 2021, 11(4), 1048.
[http://dx.doi.org/10.3390/nano11041048] [PMID: 33923947]
[132]
Liu, S.; Khan, A.R.; Yang, X.; Dong, B.; Ji, J.; Zhai, G. The reversal of chemotherapy-induced multidrug resistance by nanomedicine for cancer therapy. J. Control. Release, 2021, 335, 1-20.
[http://dx.doi.org/10.1016/j.jconrel.2021.05.012] [PMID: 33991600]
[133]
Singh, A.K.; Singh, R.; Chakraborty, P.P. Diabetes monotherapies versus metformin-based combination therapy for the treatment of type 2 diabetes. Int. J. Gen. Med., 2021, 14, 3833-3848.
[http://dx.doi.org/10.2147/IJGM.S295459] [PMID: 34335049]
[134]
Tao, G.; Huang, J.; Moorthy, B.; Wang, C.; Hu, M.; Gao, S.; Ghose, R. Potential role of drug metabolizing enzymes in chemotherapy-induced gastrointestinal toxicity and hepatotoxicity. Expert Opin. Drug Metab. Toxicol., 2020, 16(11), 1109-1124.
[http://dx.doi.org/10.1080/17425255.2020.1815705] [PMID: 32841068]
[135]
Wang, S.; Lin, Q.; Chen, J.; Gao, H.; Fu, D.; Shen, S. Biocompatible polydopamine-encapsulated gadolinium-loaded carbon nanotubes for MRI and color mapping guided photothermal dissection of tumor metastasis. Carbon, 2017, 112, 53-62.
[http://dx.doi.org/10.1016/j.carbon.2016.10.096]
[136]
Arabzadeh, A.; Mortezazadeh, T.; Aryafar, T.; Gharepapagh, E.; Majdaeen, M.; Farhood, B. Therapeutic potentials of resveratrol in combination with radiotherapy and chemotherapy during glioblastoma treatment: A mechanistic review. Cancer Cell Int., 2021, 21(1), 391.
[http://dx.doi.org/10.1186/s12935-021-02099-0] [PMID: 34289841]
[137]
Liu, J.; Shi, J.; Nie, W.; Wang, S.; Liu, G.; Cai, K. Recent progress in the development of multifunctional nanoplatform for precise tumor phototherapy. Adv. Healthc. Mater., 2021, 10(1), 2001207.
[http://dx.doi.org/10.1002/adhm.202001207] [PMID: 33000920]
[138]
Wang, Z.; Meng, Q.; Li, S. The role of NIR fluorescence in MDR cancer treatment: From targeted imaging to phototherapy. Curr. Med. Chem., 2020, 27(33), 5510-5529.
[http://dx.doi.org/10.2174/0929867326666190627123719] [PMID: 31244415]
[139]
Xing, X.; Zhao, S.; Xu, T.; Huang, L.; Zhang, Y.; Lan, M.; Lin, C.; Zheng, X.; Wang, P. Advances and perspectives in organic sonosensitizers for sonodynamic therapy. Coord. Chem. Rev., 2021, 445, 214087.
[http://dx.doi.org/10.1016/j.ccr.2021.214087]
[140]
Gunaydin, G.; Gedik, M.E.; Ayan, S. Photodynamic therapy for the treatment and diagnosis of Cancer–A review of the current clinical status. Front Chem., 2021, 9, 686303.
[http://dx.doi.org/10.3389/fchem.2021.686303] [PMID: 34409014]
[141]
Ren, X.; Han, Y.; Xu, Y.; Liu, T.; Cui, M.; Xia, L.; Li, H.; Gu, Y.; Wang, P. Diversified strategies based on nanoscale metal-organic frameworks for cancer therapy: The leap from monofunctional to versatile. Coord. Chem. Rev., 2021, 431, 213676.
[http://dx.doi.org/10.1016/j.ccr.2020.213676]
[142]
Wang, Y.; Gong, N.; Li, Y.; Lu, Q.; Wang, X.; Li, J. Atomic-Level Nanorings (A-NRs) therapeutic agent for photoacoustic imaging and photothermal/photodynamic therapy of cancer. J. Am. Chem. Soc., 2020, 142(4), 1735-1739.
[http://dx.doi.org/10.1021/jacs.9b11553] [PMID: 31880437]
[143]
Bholakant, R.; Dong, B.; Zhou, X.; Huang, X.; Zhao, C.; Huang, D.; Zhong, Y.; Qian, H.; Chen, W.; Feijen, J. Multi-functional polymeric micelles for chemotherapy-based combined cancer therapy. J. Mater. Chem. B Mater. Biol. Med., 2021, 9(42), 8718-8738.
[http://dx.doi.org/10.1039/D1TB01771C] [PMID: 34635905]
[144]
Pivetta, T.P.; Botteon, C.E.A.; Ribeiro, P.A.; Marcato, P.D.; Raposo, M. nanoparticle systems for cancer phototherapy: An Overview. Nanomaterials (Basel), 2021, 11(11), 3132.
[http://dx.doi.org/10.3390/nano11113132] [PMID: 34835896]
[145]
Wu, C.; Wu, Y.; Zhu, X.; Zhang, J.; Liu, J.; Zhang, Y. Near-infrared-responsive functional nanomaterials: The first domino of combined tumor therapy. Nano Today, 2021, 36, 100963.
[http://dx.doi.org/10.1016/j.nantod.2020.100963]
[146]
Li, Y.; Maciel, D.; Rodrigues, J.; Shi, X.; Tomás, H. Biodegradable polymer nanogels for drug/nucleic acid delivery. Chem. Rev., 2015, 115(16), 8564-8608.
[http://dx.doi.org/10.1021/cr500131f] [PMID: 26259712]
[147]
Luo, G.F.; Chen, W.H.; Zeng, X.; Zhang, X.Z. Cell primitive-based biomimetic functional materials for enhanced cancer therapy. Chem. Soc. Rev., 2021, 50(2), 945-985.
[http://dx.doi.org/10.1039/D0CS00152J] [PMID: 33226037]
[148]
Liu, F.; Wu, H.; Peng, B.; Zhang, S.; Ma, J.; Deng, G.; Zou, P.; Liu, J.; Chen, A.T.; Li, D.; Bellone, S.; Santin, A.D.; Moliterno, J.; Zhou, J. Vessel-targeting nanoclovers enable noninvasive delivery of magnetic hyperthermia–chemotherapy combination for brain cancer treatment. Nano Lett., 2021, 21(19), 8111-8118.
[http://dx.doi.org/10.1021/acs.nanolett.1c02459] [PMID: 34597054]
[149]
Jain, K.; Ravikumar, P. Recent advances in treatments of cartilage regeneration for knee osteoarthritis. J. Drug Deliv. Sci. Technol., 2020, 60, 102014.
[http://dx.doi.org/10.1016/j.jddst.2020.102014]