Labelling Matrix Metalloproteinases

Page: [4569 - 4585] Pages: 17

  • * (Excluding Mailing and Handling)

Abstract

Matrix metalloproteinases (MMPs) are a family of zinc-containing proteases that participate in many physiological and pathological processes in vivo. Recently, the MMP network has been established according to a deeper understanding of its functions. Some MMPs have been also regarded as biomarkers of various diseases, including inflammation, nerve diseases, and cancers. MMP labelling has been thus paid more attention in recent decades. Accordingly, both reagents and technologies for MMP labelling have been rapidly developed. Here we summarize the recent development of some MMP labelling methods. This review was identified through keyword (MMPs; labelling; etc.) searches in the ScienceDirect database, Scifinder, Web of Science, and PubMed for which typical cases were used for an inductive overview. In spite of the advances in MMP labelling, selective labelling of a specific MMP is still an open issue. We hope that this article can be helpful in developing specific MMP labelling methods in future.

[1]
Gross, J.; Lapiere, C.M. Collagenolytic activity in amphibian tissues: A tissue culture assay. Proc. Natl. Acad. Sci. USA, 1962, 48(6), 1014-1022.
[http://dx.doi.org/10.1073/pnas.48.6.1014] [PMID: 13902219]
[2]
Gross, J. How tadpoles lose their tails: Path to discovery of the first matrix metalloproteinase. Matrix Biol., 2004, 23(1), 3-13.
[http://dx.doi.org/10.1016/j.matbio.2004.01.003] [PMID: 15172033]
[3]
Visse, R.; Nagase, H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: Structure, function, and biochemistry. Circ. Res., 2003, 92(8), 827-839.
[http://dx.doi.org/10.1161/01.RES.0000070112.80711.3D] [PMID: 12730128]
[4]
Sbardella, D.; Fasciglione, G.F.; Gioia, M.; Ciaccio, C.; Tundo, G.R.; Marini, S.; Coletta, M. Human matrix metalloproteinases: An ubiquitarian class of enzymes involved in several pathological processes. Mol. Aspects Med., 2012, 33(2), 119-208.
[http://dx.doi.org/10.1016/j.mam.2011.10.015] [PMID: 22100792]
[5]
Kapoor, C.; Vaidya, S.; Wadhwan, V.; Hitesh; Kaur, G.; Pathak, A. Seesaw of matrix metalloproteinases (MMPs). J. Cancer Res. Ther., 2016, 12(1), 28-35.
[http://dx.doi.org/10.4103/0973-1482.157337] [PMID: 27072206]
[6]
Jackson, B.C.; Carpenter, C.; Nebert, D.W.; Vasiliou, V. Update of human and mouse forkhead box (FOX) gene families. Hum. Genomics, 2010, 4(5), 345-352.
[http://dx.doi.org/10.1186/1479-7364-4-5-345] [PMID: 20650821]
[7]
Wetmore, D.R.; Hardman, K.D. Roles of the propeptide and metal ions in the folding and stability of the catalytic domain of stromelysin (matrix metalloproteinase 3). Biochemistry, 1996, 35(21), 6549-6558.
[http://dx.doi.org/10.1021/bi9530752] [PMID: 8639603]
[8]
Wang, X.; Khalil, R.A. Matrix metalloproteinases, vascular remodeling, and vascular disease. Adv. Pharmacol., 2018, 81, 241-330.
[http://dx.doi.org/10.1016/bs.apha.2017.08.002] [PMID: 29310800]
[9]
Sternlicht, M.D.; Werb, Z. How matrix metalloproteinases regulate cell behavior. Annu. Rev. Cell Dev. Biol., 2001, 17(1), 463-516.
[http://dx.doi.org/10.1146/annurev.cellbio.17.1.463] [PMID: 11687497]
[10]
Chen, Q.; Jin, M.; Yang, F.; Zhu, J.; Xiao, Q.; Zhang, L. Matrix metalloproteinases: Inflammatory regulators of cell behaviors in vascular formation and remodeling. Mediators Inflamm., 2013, 2013, 1-14.
[http://dx.doi.org/10.1155/2013/928315] [PMID: 23840100]
[11]
Van Wart, H.E.; Birkedal-Hansen, H. The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc. Natl. Acad. Sci., 1990, 87(14), 5578-5582.
[http://dx.doi.org/10.1073/pnas.87.14.5578] [PMID: 2164689]
[12]
Klein, T.; Bischoff, R. Physiology and pathophysiology of matrix metalloproteases. Amino Acids, 2011, 41(2), 271-290.
[http://dx.doi.org/10.1007/s00726-010-0689-x] [PMID: 20640864]
[13]
Maskos, K. Crystal structures of MMPs in complex with physiological and pharmacological inhibitors. Biochimie, 2005, 87(3-4), 249-263.
[http://dx.doi.org/10.1016/j.biochi.2004.11.019] [PMID: 15781312]
[14]
Tallant, C.; Marrero, A.; Gomis-Rüth, F.X. Matrix metalloproteinases: Fold and function of their catalytic domains. Biochim. Biophys. Acta Mol. Cell Res., 2010, 1803(1), 20-28.
[http://dx.doi.org/10.1016/j.bbamcr.2009.04.003] [PMID: 19374923]
[15]
Cui, N.; Hu, M.; Khalil, R.A. Biochemical and biological attributes of matrix metalloproteinases. Prog. Mol. Biol. Transl. Sci., 2017, 147, 1-73.
[http://dx.doi.org/10.1016/bs.pmbts.2017.02.005] [PMID: 28413025]
[16]
Liu, J.; Khalil, R.A. Matrix metalloproteinase inhibitors as investigational and therapeutic tools in unrestrained tissue remodeling and pathological disorders. Prog. Mol. Biol. Transl. Sci., 2017, 148, 355-420.
[http://dx.doi.org/10.1016/bs.pmbts.2017.04.003] [PMID: 28662828]
[17]
Mannello, F.; Medda, V. Nuclear localization of matrix metalloproteinases. Prog. Histochem. Cytochem., 2012, 47(1), 27-58.
[http://dx.doi.org/10.1016/j.proghi.2011.12.002] [PMID: 22226510]
[18]
Fischer, T.; Senn, N.; Riedl, R. Design and structural evolution of matrix metalloproteinase inhibitors. Chemistry, 2019, 25(34), 7960-7980.
[http://dx.doi.org/10.1002/chem.201805361] [PMID: 30720221]
[19]
Amălinei, C.; Căruntu, I.D.; Bălan, R.A. Biology of metalloproteinases. Rom. J. Morphol. Embryol., 2007, 48(4), 323-334.
[PMID: 18060181]
[20]
Huo, N.; Ichikawa, Y.; Kamiyama, M.; Ishikawa, T.; Hamaguchi, Y.; Hasegawa, S.; Nagashima, Y.; Miyazaki, K.; Shimada, H. MMP-7 (matrilysin) accelerated growth of human umbilical vein endothelial cells. Cancer Lett., 2002, 177(1), 95-100.
[http://dx.doi.org/10.1016/S0304-3835(01)00772-8] [PMID: 11809536]
[21]
Ito, T.K.; Ishii, G.; Saito, S.; Yano, K.; Hoshino, A.; Suzuki, T.; Ochiai, A. Degradation of soluble VEGF receptor-1 by MMP-7 allows VEGF access to endothelial cells. Blood, 2009, 113(10), 2363-2369.
[http://dx.doi.org/10.1182/blood-2008-08-172742] [PMID: 18974372]
[22]
Fingleton, B.; Vargo-Gogola, T.; Crawford, H.C.; Matrisian, L.M. Matrilysin [MMP-7] expression selects for cells with reduced sensitivity to apoptosis. Neoplasia, 2001, 3(6), 459-468.
[http://dx.doi.org/10.1038/sj.neo.7900190] [PMID: 11774028]
[23]
Gallego, R.; Codony-Servat, J.; García-Albéniz, X.; Carcereny, E.; Longarón, R.; Oliveras, A.; Tosca, M.; Augé, J.M.; Gascón, P.; Maurel, J. Serum IGF-I, IGFBP-3, and matrix metalloproteinase-7 levels and acquired chemo-resistance in advanced colorectal cancer. Endocr. Relat. Cancer, 2009, 16(1), 311-317.
[http://dx.doi.org/10.1677/ERC-08-0250] [PMID: 19109398]
[24]
Almendro, V.; Ametller, E.; García-Recio, S.; Collazo, O.; Casas, I.; Augé, J.M.; Maurel, J.; Gascón, P. The role of MMP7 and its cross-talk with the FAS/FASL system during the acquisition of chemoresistance to oxaliplatin. PLoS One, 2009, 4(3), e4728.
[http://dx.doi.org/10.1371/journal.pone.0004728] [PMID: 19266094]
[25]
Strand, S.; Vollmer, P.; van den Abeelen, L.; Gottfried, D.; Alla, V.; Heid, H.; Kuball, J.; Theobald, M.; Galle, P.R.; Strand, D. Cleavage of CD95 by matrix metalloproteinase-7 induces apoptosis resistance in tumour cells. Oncogene, 2004, 23(20), 3732-3736.
[http://dx.doi.org/10.1038/sj.onc.1207387] [PMID: 15077180]
[26]
Verma, R.P.; Hansch, C. Matrix metalloproteinases (MMPs): Chemical–biological functions and (Q)SARs. Bioorg. Med. Chem., 2007, 15(6), 2223-2268.
[http://dx.doi.org/10.1016/j.bmc.2007.01.011] [PMID: 17275314]
[27]
Tokuhara, C.K.; Santesso, M.R.; Oliveira, G.S.N.; Ventura, T.M.S.; Doyama, J.T.; Zambuzzi, W.F.; Oliveira, R.C. Updating the role of matrix metalloproteinases in mineralized tissue and related diseases. J. Appl. Oral Sci., 2019, 27, e20180596.
[http://dx.doi.org/10.1590/1678-7757-2018-0596] [PMID: 31508793]
[28]
Raffetto, J.D.; Barros, Y.V.R.; Wells, A.K.; Khalil, R.A. MMP-2 induced vein relaxation via inhibition of [Ca2+]e-dependent mechanisms of venous smooth muscle contraction. Role of RGD peptides. J. Surg. Res., 2010, 159(2), 755-764.
[http://dx.doi.org/10.1016/j.jss.2008.09.022] [PMID: 19482300]
[29]
Macfarlane, S.R.; Seatter, M.J.; Kanke, T.; Hunter, G.D.; Plevin, R. Proteinase-activated receptors. Pharmacol. Rev., 2001, 53(2), 245-282.
[PMID: 11356985]
[30]
Alexander, C.M.; Hansell, E.J.; Behrendtsen, O.; Flannery, M.L.; Kishnani, N.S.; Hawkes, S.P.; Werb, Z. Expression and function of matrix metalloproteinases and their inhibitors at the maternal-embryonic boundary during mouse embryo implantation. Development, 1996, 122(6), 1723-1736.
[http://dx.doi.org/10.1242/dev.122.6.1723] [PMID: 8674412]
[31]
Lin, J.; Davis, H.B.; Dai, Q.; Chou, Y.M.; Craig, T.; Hinojosa-Laborde, C.; Lindsey, M.L. Effects of early and late chronic pressure overload on extracellular matrix remodeling. Hypertens. Res., 2008, 31(6), 1225-1231.
[http://dx.doi.org/10.1291/hypres.31.1225] [PMID: 18716372]
[32]
Merchant, S.J.; Davidge, S.T. The role of matrix metalloproteinases in vascular function: Implications for normal pregnancy and pre-eclampsia. BJOG, 2004, 111(9), 931-939.
[http://dx.doi.org/10.1111/j.1471-0528.2004.00223.x] [PMID: 15327607]
[33]
Mittal, R.; Patel, A.P.; Debs, L.H.; Nguyen, D.; Patel, K.; Grati, M.; Mittal, J.; Yan, D.; Chapagain, P.; Liu, X.Z. Intricate functions of matrix metalloproteinases in physiological and pathological conditions. J. Cell. Physiol., 2016, 231(12), 2599-2621.
[http://dx.doi.org/10.1002/jcp.25430] [PMID: 27187048]
[34]
Vacek, T.; Rahman, S.; Yu, S.; Neamtu, D.; Givimani, S.; Tyagi, S. Matrix metalloproteinases in atherosclerosis: Role of nitric oxide, hydrogen sulfide, homocysteine, and polymorphisms. Vasc. Health Risk Manag., 2015, 11, 173-183.
[http://dx.doi.org/10.2147/VHRM.S68415] [PMID: 25767394]
[35]
Jones, C.; Sane, D.C.; Herrington, D.M. Matrix metalloproteinases A review of their structure and role in acute coronary syndrome. Cardiovasc. Res., 2003, 59(4), 812-823.
[http://dx.doi.org/10.1016/S0008-6363(03)00516-9] [PMID: 14553821]
[36]
Román-García, P.; Coto, E.; Reguero, J.R.; Cannata-Andía, J.B.; Lozano, Í.; Avanzas, P.; Morís, C.; Rodríguez, I. Matrix metalloproteinase 1 promoter polymorphisms and risk of myocardial infarction: A case–control study in a Spanish population. Coron. Artery Dis., 2009, 20(6), 383-386.
[http://dx.doi.org/10.1097/MCA.0b013e32832fa9cf] [PMID: 19620856]
[37]
Chang, J.; Stanfill, A.; Pourmotabbed, T. The role of matrix metalloproteinase polymorphisms in ischemic stroke. Int. J. Mol. Sci., 2016, 17(8), 1323.
[http://dx.doi.org/10.3390/ijms17081323] [PMID: 27529234]
[38]
Martinez-Aguilar, E.; Gomez-Rodriguez, V.; Orbe, J.; Rodriguez, J.A.; Fernández-Alonso, L.; Roncal, C.; Páramo, J.A. Matrix metalloproteinase 10 is associated with disease severity and mortality in patients with peripheral arterial disease. J. Vasc. Surg., 2015, 61(2), 428-435.
[http://dx.doi.org/10.1016/j.jvs.2014.09.002] [PMID: 25441671]
[39]
Razavian, M.; Zhang, J.; Nie, L.; Tavakoli, S.; Razavian, N.; Dobrucki, L.W.; Sinusas, A.J.; Edwards, D.S.; Azure, M.; Sadeghi, M.M. Molecular imaging of matrix metalloproteinase activation to predict murine aneurysm expansion in vivo. J. Nucl. Med., 2010, 51(7), 1107-1115.
[http://dx.doi.org/10.2967/jnumed.110.075259] [PMID: 20554725]
[40]
Serra, R.; Gallelli, L.; Buffone, G.; Molinari, V.; Stillitano, D.M.; Palmieri, C.; de Franciscis, S. Doxycycline speeds up healing of chronic venous ulcers. Int. Wound J., 2015, 12(2), 179-184.
[http://dx.doi.org/10.1111/iwj.12077] [PMID: 23557025]
[41]
Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clin. Pharmacol. Ther., 2001, 69(3), 89-95.
[http://dx.doi.org/10.1067/mcp.2001.113989] [PMID: 11240971]
[42]
Ii, M.; Yamamoto, H.; Adachi, Y.; Maruyama, Y.; Shinomura, Y. Role of matrix metalloproteinase-7 (matrilysin) in human cancer invasion, apoptosis, growth, and angiogenesis. Exp. Biol. Med., 2006, 231(1), 20-27.
[http://dx.doi.org/10.1177/153537020623100103] [PMID: 16380641]
[43]
Kuhlmann, K.F.D.; van Till, J.W.O.; Boermeester, M.A.; de Reuver, P.R.; Tzvetanova, I.D.; Offerhaus, G.J.A.; ten Kate, F.J.W.; Busch, O.R.C.; van Gulik, T.M.; Gouma, D.J.; Crawford, H.C. Evaluation of matrix metalloproteinase 7 in plasma and pancreatic juice as a biomarker for pancreatic cancer. Cancer Epidemiol. Biomarkers Prev., 2007, 16(5), 886-891.
[http://dx.doi.org/10.1158/1055-9965.EPI-06-0779] [PMID: 17507610]
[44]
He, L.; Ip, D.K.M.; Tam, G.; Lui, V.C.H.; Tam, P.K.H.; Chung, P.H.Y. Biomarkers for the diagnosis and post-Kasai portoenterostomy prognosis of biliary atresia: A systematic review and meta-analysis. Sci. Rep., 2021, 11(1), 11692.
[http://dx.doi.org/10.1038/s41598-021-91072-y] [PMID: 34083585]
[45]
Im, N.R.; Kim, B.; Jung, K.Y.; Baek, S.K. Usefulness of matrix metalloproteinase-7 in saliva as a diagnostic biomarker for laryngopharyngeal reflux disease. Sci. Rep., 2021, 11(1), 17071.
[http://dx.doi.org/10.1038/s41598-021-96554-7] [PMID: 34426628]
[46]
Tanioka, Y.; Yoshida, T.; Yagawa, T.; Saiki, Y.; Takeo, S.; Harada, T.; Okazawa, T.; Yanai, H.; Okita, K. Matrix metalloproteinase-7 and matrix metalloproteinase-9 are associated with unfavourable prognosis in superficial oesophageal cancer. Br. J. Cancer, 2003, 89(11), 2116-2121.
[http://dx.doi.org/10.1038/sj.bjc.6601372] [PMID: 14647147]
[47]
Irvine, K.M.; Okano, S.; Patel, P.J.; Horsfall, L.U.; Williams, S.; Russell, A.; Powell, E.E. Serum matrix metalloproteinase 7 (MMP7) is a biomarker of fibrosis in patients with non-alcoholic fatty liver disease. Sci. Rep., 2021, 11(1), 2858.
[http://dx.doi.org/10.1038/s41598-021-82315-z] [PMID: 33536476]
[48]
Scheau, C.; Badarau, I.A.; Costache, R.; Neagu, M. The role of matrix metalloproteinases in the epithelial-mesenchymal transition of hepatocellular carcinoma. Anal Cell Pathol, 2019, 2019, 9423907.
[49]
Asgari, R.; Mansouri, K.; Abdolmaleki, A.; Bakhtiari, M. Association of matrix metalloproteinases with male reproductive functions; with focus on MMP2, 7, and 9. Meta Gene, 2021, 29, 100906.
[http://dx.doi.org/10.1016/j.mgene.2021.100906]
[50]
Cheng, Z.; Limbu, M.; Wang, Z.; Liu, J.; Liu, L.; Zhang, X.; Chen, P.; Liu, B. MMP-2 and 9 in chronic kidney disease. Int. J. Mol. Sci., 2017, 18(4), 776.
[http://dx.doi.org/10.3390/ijms18040776] [PMID: 28397744]
[51]
Yong, V.W. Metalloproteinases: Mediators of pathology and regeneration in the CNS. Nat. Rev. Neurosci., 2005, 6(12), 931-944.
[http://dx.doi.org/10.1038/nrn1807] [PMID: 16288297]
[52]
Gajewska, B.; Śliwińska-Mossoń, M. Association of MMP-2 and MMP-9 polymorphisms with diabetes and pathogenesis of diabetic complications. Int. J. Mol. Sci., 2022, 23(18), 10571.
[http://dx.doi.org/10.3390/ijms231810571] [PMID: 36142480]
[53]
Vandooren, J.; Van Damme, J.; Opdenakker, G. On the Structure and functions of gelatinase B/Matrix metalloproteinase-9 in neuroinflammation. Prog. Brain Res., 2014, 214, 193-206.
[http://dx.doi.org/10.1016/B978-0-444-63486-3.00009-8] [PMID: 25410359]
[54]
Vafadari, B.; Salamian, A.; Kaczmarek, L. MMP-9 in translation: From molecule to brain physiology, pathology, and therapy. J. Neurochem., 2016, 139(Suppl. 2), 91-114.
[http://dx.doi.org/10.1111/jnc.13415] [PMID: 26525923]
[55]
Speers, A.E.; Cravatt, B.F. A tandem orthogonal proteolysis strategy for high-content chemical proteomics. J. Am. Chem. Soc., 2005, 127(28), 10018-10019.
[http://dx.doi.org/10.1021/ja0532842] [PMID: 16011363]
[56]
Patton, W.F. A thousand points of light: The application of fluorescence detection technologies to two-dimensional gel electrophoresis and proteomics. Electrophoresis, 2000, 21(6), 1123-1144.
[http://dx.doi.org/10.1002/(SICI)1522-2683(20000401)21:6<1123::AID-ELPS1123>3.0.CO;2-E] [PMID: 10786886]
[57]
Shiraiwa, K.; Cheng, R.; Nonaka, H.; Tamura, T.; Hamachi, I. Chemical tools for endogenous protein labeling and profiling. Cell Chem. Biol., 2020, 27(8), 970-985.
[http://dx.doi.org/10.1016/j.chembiol.2020.06.016] [PMID: 32679042]
[58]
Xue, L.; Karpenko, I.A.; Hiblot, J.; Johnsson, K. Imaging and manipulating proteins in live cells through covalent labeling. Nat. Chem. Biol., 2015, 11(12), 917-923.
[http://dx.doi.org/10.1038/nchembio.1959] [PMID: 26575238]
[59]
Shi, Y.; Ma, X.; Fang, G.; Tian, X.; Ge, C. Matrix metalloproteinase inhibitors (MMPIs) as attractive therapeutic targets: Recent progress and current challenges. NanoImpact, 2021, 21, 100293.
[http://dx.doi.org/10.1016/j.impact.2021.100293] [PMID: 35559782]
[60]
Tsien, R.Y. Building and breeding molecules to spy on cells and tumors. FEBS Lett., 2005, 579(4), 927-932.
[http://dx.doi.org/10.1016/j.febslet.2004.11.025] [PMID: 15680976]
[61]
Terai, T.; Nagano, T. Small-molecule fluorophores and fluorescent probes for bioimaging. Pflugers Arch., 2013, 465(3), 347-359.
[http://dx.doi.org/10.1007/s00424-013-1234-z] [PMID: 23412659]
[62]
Ong, S.E.; Blagoev, B.; Kratchmarova, I.; Kristensen, D.B.; Steen, H.; Pandey, A.; Mann, M. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics, 2002, 1(5), 376-386.
[http://dx.doi.org/10.1074/mcp.M200025-MCP200] [PMID: 12118079]
[63]
Kopka, K.; Schober, O.; Wagner, S. 18F-labelled cardiac PET tracers: Selected probes for the molecular imaging of transporters, receptors and proteases. Basic Res. Cardiol., 2008, 103(2), 131-143.
[http://dx.doi.org/10.1007/s00395-008-0703-6] [PMID: 18324369]
[64]
Zheng, O-H.; Hutchins, G.D.; Mock, B.H.; Winkle, W.L. MMP Inhibitor radiotracer [11C]methyl-CGS 27023A: A new pet breast cancer imaging agent. J. Labelled Comp. Radiopharm., 2001, 44(S1), S104-S106.
[http://dx.doi.org/10.1002/jlcr.2580440136]
[65]
Matusiak, N.; Waarde, A.; Bischoff, R.; Oltenfreiter, R.; Wiele, C.; Dierckx, R.; Elsinga, P. Probes for non-invasive matrix metalloproteinase-targeted imaging with PET and SPECT. Curr. Pharm. Des., 2013, 19(25), 4647-4672.
[http://dx.doi.org/10.2174/1381612811319250011] [PMID: 23339739]
[66]
Fei, X.; Zheng, Q.H.; Hutchins, G.D.; Liu, X.; Stone, K.L.; Carlson, K.A.; Mock, B.H.; Winkle, W.L.; Glick-Wilson, B.E.; Miller, K.D.; Fife, R.S.; Sledge, G.W.; Sun, H.B.; Carr, R.E. Synthesis of MMP inhibitor radiotracers [11C]methyl-CGS 27023A and its analogs, new potential PET breast cancer imaging agents. J. Labelled Comp. Radiopharm., 2002, 45(6), 449-470.
[http://dx.doi.org/10.1002/jlcr.570]
[67]
Fei, X.; Zheng, Q.H.; Liu, X.; Wang, J.Q.; Sun, H.B.; Mock, B.H.; Stone, K.L.; Miller, K.D.; Sledge, G.W.; Hutchins, G.D. Synthesis of radiolabeled biphenylsulfonamide matrix metalloproteinase inhibitors as new potential PET cancer imaging agents. Bioorg. Med. Chem. Lett., 2003, 13(13), 2217-2222.
[http://dx.doi.org/10.1016/S0960-894X(03)00382-2] [PMID: 12798337]
[68]
Kopka, K.; Breyholz, H.J.; Wagner, S.; Law, M.P.; Riemann, B.; Schröer, S.; Trub, M.; Guilbert, B.; Levkau, B.; Schober, O.; Schäfers, M. Synthesis and preliminary biological evaluation of new radioiodinated MMP inhibitors for imaging MMP activity in vivo. Nucl. Med. Biol., 2004, 31(2), 257-267.
[http://dx.doi.org/10.1016/j.nucmedbio.2003.08.003] [PMID: 15013492]
[69]
Wagner, S.; Breyholz, H.J.; Law, M.P.; Faust, A.; Höltke, C.; Schröer, S.; Haufe, G.; Levkau, B.; Schober, O.; Schäfers, M.; Kopka, K. Novel fluorinated derivatives of the broad-spectrum MMP inhibitors N-hydroxy-2(R)-[[(4-methoxyphenyl)sulfonyl](benzyl)- and (3-picolyl)-amino]-3-methyl-butanamide as potential tools for the molecular imaging of activated MMPs with PET. J. Med. Chem., 2007, 50(23), 5752-5764.
[http://dx.doi.org/10.1021/jm0708533] [PMID: 17956082]
[70]
Hohn, M.; Chang, M.; Meisel, J.E.; Frost, E.; Schwegmann, K.; Hermann, S.; Schäfers, M.; Riemann, B.; Haufe, G.; Breyholz, H.J.; Wagner, S. Synthesis and preliminary in vitro and in vivo evaluation of thiirane-based slow-binding MMP inhibitors as potential radiotracers for PET imaging. ChemistrySelect, 2018, 3(42), 11729-11736.
[http://dx.doi.org/10.1002/slct.201803093]
[71]
Scherer, R.L.; McIntyre, J.O.; Matrisian, L.M. Imaging matrix metalloproteinases in cancer. Cancer Metastasis Rev., 2008, 27(4), 679-690.
[http://dx.doi.org/10.1007/s10555-008-9152-9] [PMID: 18465089]
[72]
Breyholz, H.J.; Schäfers, M.; Wagner, S.; Höltke, C.; Faust, A.; Rabeneck, H.; Levkau, B.; Schober, O.; Kopka, K. C-5-disubstituted barbiturates as potential molecular probes for noninvasive matrix metalloproteinase imaging. J. Med. Chem., 2005, 48(9), 3400-3409.
[http://dx.doi.org/10.1021/jm049145x] [PMID: 15857146]
[73]
Breyholz, H.J.; Wagner, S.; Faust, A.; Riemann, B.; Höltke, C.; Hermann, S.; Schober, O.; Schäfers, M.; Kopka, K. Radiofluorinated pyrimidine-2,4,6-triones as molecular probes for noninvasive MMP-targeted imaging. ChemMedChem, 2010, 5(5), 777-789.
[http://dx.doi.org/10.1002/cmdc.201000013] [PMID: 20373323]
[74]
Selivanova, S.V.; Stellfeld, T.; Heinrich, T.K.; Müller, A.; Krämer, S.D.; Schubiger, P.A.; Schibli, R.; Ametamey, S.M.; Vos, B.; Meding, J.; Bauser, M.; Hütter, J.; Dinkelborg, L.M. Design, synthesis, and initial evaluation of a high affinity positron emission tomography probe for imaging matrix metalloproteinases 2 and 9. J. Med. Chem., 2013, 56(12), 4912-4920.
[http://dx.doi.org/10.1021/jm400156p] [PMID: 23688254]
[75]
Müller, A.; Krämer, S.D.; Meletta, R.; Beck, K.; Selivanova, S.V.; Rancic, Z.; Kaufmann, P.A.; Vos, B.; Meding, J.; Stellfeld, T.; Heinrich, T.K.; Bauser, M.; Hütter, J.; Dinkelborg, L.M.; Schibli, R.; Ametamey, S.M. Gene expression levels of matrix metalloproteinases in human atherosclerotic plaques and evaluation of radiolabeled inhibitors as imaging agents for plaque vulnerability. Nucl. Med. Biol., 2014, 41(7), 562-569.
[http://dx.doi.org/10.1016/j.nucmedbio.2014.04.085] [PMID: 24853402]
[76]
Hakimzadeh, N.; Pinas, V.A.; Molenaar, G.; de Waard, V.; Lutgens, E.; van Eck-Smit, B.L.F.; de Bruin, K.; Piek, J.J.; Eersels, J.L.H.; Booij, J.; Verberne, H.J.; Windhorst, A.D. Novel molecular imaging ligands targeting matrix metalloproteinases 2 and 9 for imaging of unstable atherosclerotic plaques. PLoS One, 2017, 12(11), e0187767.
[http://dx.doi.org/10.1371/journal.pone.0187767] [PMID: 29190653]
[77]
Higashikata, T.; Yamagishi, M.; Higashi, T.; Nagata, I.; Iihara, K.; Miyamoto, S.; Ishibashi-Ueda, H.; Nagaya, N.; Iwase, T.; Tomoike, H.; Sakamoto, A. Altered expression balance of matrix metalloproteinases and their inhibitors in human carotid plaque disruption: Results of quantitative tissue analysis using real-time RT-PCR method. Atherosclerosis, 2006, 185(1), 165-172.
[http://dx.doi.org/10.1016/j.atherosclerosis.2005.05.039] [PMID: 16039658]
[78]
Honold, L.; Austrup, M.; Faust, A.; Konken, C.P.; Schwegmann, K.; Zinnhardt, B.; Daniliuc, C.G.; Haufe, G.; Schäfers, M.; Kopka, K.; Hermann, S. Towards optimized bioavailability of 99mTc-Labeled barbiturates for non-invasive imaging of matrix metalloproteinase activity. Mol. Imaging Biol., 2022, 24(3), 434-443.
[http://dx.doi.org/10.1007/s11307-021-01668-z] [PMID: 34750717]
[79]
Giepmans, B.N.G.; Adams, S.R.; Ellisman, M.H.; Tsien, R.Y. The fluorescent toolbox for assessing protein location and function. Science, 2006, 312(5771), 217-224.
[http://dx.doi.org/10.1126/science.1124618] [PMID: 16614209]
[80]
Tsien, R.Y. The green fluorescent protein. Annu. Rev. Biochem., 1998, 67(1), 509-544.
[http://dx.doi.org/10.1146/annurev.biochem.67.1.509] [PMID: 9759496]
[81]
Waggoner, A. Fluorescent labels for proteomics and genomics. Curr. Opin. Chem. Biol., 2006, 10(1), 62-66.
[http://dx.doi.org/10.1016/j.cbpa.2006.01.005] [PMID: 16418012]
[82]
Stack, M.S.; Gray, R.D. Comparison of vertebrate collagenase and gelatinase using a new fluorogenic substrate peptide. J. Biol. Chem., 1989, 264(8), 4277-4281.
[http://dx.doi.org/10.1016/S0021-9258(18)83736-X] [PMID: 2538433]
[83]
Knight, C.G.; Willenbrock, F.; Murphy, G. A novel coumarin-labelled peptide for sensitive continuous assays of the matrix metalloproteinases. FEBS Lett., 1992, 296(3), 263-266.
[http://dx.doi.org/10.1016/0014-5793(92)80300-6] [PMID: 1537400]
[84]
Welch, A.R.; Holman, C.M.; Browner, M.F.; Gehring, M.R.; Kan, C.C.; Van Wart, H.E. Purification of human matrilysin produced in Escherichia coli and characterization using a new optimized fluorogenic peptide substrate. Arch. Biochem. Biophys., 1995, 324(1), 59-64.
[http://dx.doi.org/10.1006/abbi.1995.9929] [PMID: 7503560]
[85]
(a) Oliver McINTYRE, J.; Fingleton, B.; Wells, K.S.; Piston, D.W.; Lynch, C.C.; Gautam, S.; Matrisian, L.M. Development of a novel fluorogenic proteolytic beacon for in vivo detection and imaging of tumour-associated matrix metalloproteinase-7 activity. Biochem. J., 2004, 377(3), 617-628.
[http://dx.doi.org/10.1042/bj20030582] [PMID: 14556651];
(b) Wang, Y.; Shen, P.; Li, C.; Wang, Y.; Liu, Z. Upconversion fluorescence resonance energy transfer based biosensor for ultrasensitive detection of matrix metalloproteinase-2 in blood. Anal. Chem., 2012, 84(3), 1466-1473.
[86]
Weissleder, R.; Tung, C.H.; Mahmood, U.; Bogdanov, A., Jr In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat. Biotechnol., 1999, 17(4), 375-378.
[http://dx.doi.org/10.1038/7933] [PMID: 10207887]
[87]
Bremer, C.; Tung, C.H.; Weissleder, R. In vivo molecular target assessment of matrix metalloproteinase inhibition. Nat. Med., 2001, 7(6), 743-748.
[http://dx.doi.org/10.1038/89126] [PMID: 11385514]
[88]
Zhu, L.; Ma, Y.; Kiesewetter, D.O.; Wang, Y.; Lang, L.; Lee, S.; Niu, G.; Chen, X. Rational design of matrix metalloproteinase-13 activatable probes for enhanced specificity. ACS Chem. Biol., 2014, 9(2), 510-516.
[http://dx.doi.org/10.1021/cb400698s] [PMID: 24266806]
[89]
Aguilera, T.A.; Olson, E.S.; Timmers, M.M.; Jiang, T.; Tsien, R.Y. Systemic in vivo distribution of activatable cell penetrating peptides is superior to that of cell penetrating peptides. Integr. Biol., 2009, 1(5-6), 371-381.
[http://dx.doi.org/10.1039/b904878b] [PMID: 20023744]
[90]
Myochin, T.; Hanaoka, K.; Komatsu, T.; Terai, T.; Nagano, T. Design strategy for a near-infrared fluorescence probe for matrix metalloproteinase utilizing highly cell permeable boron dipyrromethene. J. Am. Chem. Soc., 2012, 134(33), 13730-13737.
[http://dx.doi.org/10.1021/ja303931b] [PMID: 22830429]
[91]
Warren, A.D.; Kwong, G.A.; Wood, D.K.; Lin, K.Y.; Bhatia, S.N. Point-of-care diagnostics for noncommunicable diseases using synthetic urinary biomarkers and paper microfluidics. Proc. Natl. Acad. Sci., 2014, 111(10), 3671-3676.
[http://dx.doi.org/10.1073/pnas.1314651111] [PMID: 24567404]
[92]
Palomar, Q.; Xu, X.; Selegård, R.; Aili, D.; Zhang, Z. Peptide decorated gold nanoparticle/carbon nanotube electrochemical sensor for ultrasensitive detection of matrix metalloproteinase-7. Sens. Actuators B Chem., 2020, 325, 128789.
[http://dx.doi.org/10.1016/j.snb.2020.128789]
[93]
Kobe, B.; Kemp, B.E. Active site-directed protein regulation. Nature, 1999, 402(6760), 373-376.
[http://dx.doi.org/10.1038/46478] [PMID: 10586874]
[94]
Jessani, N.; Cravatt, B.F. The development and application of methods for activity-based protein profiling. Curr. Opin. Chem. Biol., 2004, 8(1), 54-59.
[http://dx.doi.org/10.1016/j.cbpa.2003.11.004] [PMID: 15036157]
[95]
Speers, A.E.; Cravatt, B.F. Chemical strategies for activity-based proteomics. ChemBioChem, 2004, 5(1), 41-47.
[http://dx.doi.org/10.1002/cbic.200300721] [PMID: 14695510]
[96]
Liu, Y.; Patricelli, M.P.; Cravatt, B.F. Activity-based protein profiling: The serine hydrolases. Proc. Natl. Acad. Sci., 1999, 96(26), 14694-14699.
[http://dx.doi.org/10.1073/pnas.96.26.14694] [PMID: 10611275]
[97]
Chan, E.W.S.; Chattopadhaya, S.; Panicker, R.C.; Huang, X.; Yao, S.Q. Developing photoactive affinity probes for proteomic profiling: Hydroxamate-based probes for metalloproteases. J. Am. Chem. Soc., 2004, 126(44), 14435-14446.
[http://dx.doi.org/10.1021/ja047044i] [PMID: 15521763]
[98]
Saghatelian, A.; Jessani, N.; Joseph, A.; Humphrey, M.; Cravatt, B.F. Activity-based probes for the proteomic profiling of metalloproteases. Proc. Natl. Acad. Sci., 2004, 101(27), 10000-10005.
[http://dx.doi.org/10.1073/pnas.0402784101] [PMID: 15220480]
[99]
Sieber, S.A.; Niessen, S.; Hoover, H.S.; Cravatt, B.F. Proteomic profiling of metalloprotease activities with cocktails of active-site probes. Nat. Chem. Biol., 2006, 2(5), 274-281.
[http://dx.doi.org/10.1038/nchembio781] [PMID: 16565715]
[100]
Leeuwenburgh, M.A.; Geurink, P.P.; Klein, T.; Kauffman, H.F.; van der Marel, G.A.; Bischoff, R.; Overkleeft, H.S. Solid-phase synthesis of succinylhydroxamate peptides: Functionalized matrix metalloproteinase inhibitors. Org. Lett., 2006, 8(8), 1705-1708.
[http://dx.doi.org/10.1021/ol060409e] [PMID: 16597146]
[101]
Dabert-Gay, A.S.; Czarny, B.; Lajeunesse, E.; Thai, R.; Nagase, H.; Dive, V. Covalent modification of matrix metalloproteinases by a photoaffinity probe: influence of nucleophilicity and flexibility of the residue in position 241. Bioconjug. Chem., 2009, 20(2), 367-375.
[http://dx.doi.org/10.1021/bc800478b] [PMID: 19138112]
[102]
Faust, A.; Waschkau, B.; Waldeck, J.; Höltke, C.; Breyholz, H.J.; Wagner, S.; Kopka, K.; Schober, O.; Heindel, W.; Schäfers, M.; Bremer, C. Synthesis and evaluation of a novel hydroxamate based fluorescent photoprobe for imaging of matrix metalloproteinases. Bioconjug. Chem., 2009, 20(5), 904-912.
[http://dx.doi.org/10.1021/bc8004478] [PMID: 19374404]
[103]
Waschkau, B.; Faust, A.; Schäfers, M.; Bremer, C. Performance of a new fluorescence-labeled MMP inhibitor to image tumor MMP activity in vivo in comparison to an MMP-activatable probe. Contrast Media Mol. Imaging, 2013, 8(1), 1-11.
[http://dx.doi.org/10.1002/cmmi.1486] [PMID: 23109387]
[104]
Tsukiji, S.; Miyagawa, M.; Takaoka, Y.; Tamura, T.; Hamachi, I. Ligand-directed tosyl chemistry for protein labeling in vivo. Nat. Chem. Biol., 2009, 5(5), 341-343.
[http://dx.doi.org/10.1038/nchembio.157] [PMID: 19330012]
[105]
Fujishima, S.; Yasui, R.; Miki, T.; Ojida, A.; Hamachi, I. Ligand-directed acyl imidazole chemistry for labeling of membrane-bound proteins on live cells. J. Am. Chem. Soc., 2012, 134(9), 3961-3964.
[http://dx.doi.org/10.1021/ja2108855] [PMID: 22352855]
[106]
Kaminska, M.; Bruyat, P.; Malgorn, C.; Doladilhe, M.; Cassar-Lajeunesse, E.; Fruchart Gaillard, C.; De Souza, M.; Beau, F.; Thai, R.; Correia, I.; Galat, A.; Georgiadis, D.; Lequin, O.; Dive, V.; Bregant, S.; Devel, L. Ligand-directed modification of active matrix metalloproteases: new activity-based probes with no photolabile group. Angew. Chem. Int. Ed., 2021, 60(33), 18272-18279.
[http://dx.doi.org/10.1002/anie.202106117]
[107]
Qiu, W.; Xu, J.; Li, X.; Zhong, L.; Li, J.; Li, J.; Nan, F. Design and synthesis of matrix metalloprotease photoaffinity trimodular probes. Chin. J. Chem., 2009, 27(4), 825-833.
[http://dx.doi.org/10.1002/cjoc.200990138]
[108]
Geurink, P.P.; Klein, T.; Prèly, L.; Paal, K.; Leeuwenburgh, M.A.; van der Marel, G.A.; Kauffman, H.F.; Overkleeft, H.S.; Bischoff, R. Design of peptide hydroxamate-based photoreactive activity-based probes of zinc-dependent metalloproteases. Eur. J. Org. Chem., 2010, 2010(11), 2100-2112.
[http://dx.doi.org/10.1002/ejoc.200901385]
[109]
Lepage, M.; Dow, W.C.; Melchior, M.; You, Y.; Fingleton, B.; Quarles, C.C.; Pépin, C.; Gore, J.C.; Matrisian, L.M.; McIntyre, J.O. Noninvasive detection of matrix metalloproteinase activity in vivo using a novel magnetic resonance imaging contrast agent with a solubility switch. Mol. Imaging, 2007, 6(6), 7290.2007.00035.
[http://dx.doi.org/10.2310/7290.2007.00035] [PMID: 18053410]
[110]
Gringeri, C.V.; Menchise, V.; Rizzitelli, S.; Cittadino, E.; Catanzaro, V.; Dati, G.; Chaabane, L.; Digilio, G.; Aime, S. Novel Gd(III)-based probes for MR molecular imaging of matrix metalloproteinases. Contrast Media Mol. Imaging, 2012, 7(2), 175-184.
[http://dx.doi.org/10.1002/cmmi.478] [PMID: 22434630]
[111]
Liu, G.; Wang, J.; Wunschel, D.S.; Lin, Y. Electrochemical proteolytic beacon for detection of matrix metalloproteinase activities. J. Am. Chem. Soc., 2006, 128(38), 12382-12383.
[http://dx.doi.org/10.1021/ja0626638] [PMID: 16984165]
[112]
Miki, K.; Imaizumi, N.; Nogita, K.; Oe, M.; Mu, H.; Huo, W.; Ohe, K. Aluminum naphthalocyanine conjugate as an MMP-2-activatable photoacoustic probe for in vivo tumor imaging. Methods Enzymol., 2021, 657, 89-109.
[http://dx.doi.org/10.1016/bs.mie.2021.07.001] [PMID: 34353500]