NMR-based Phytochemical Profiling of Palmyra Palm Syrup Infused with Dry Ginger, Black Pepper, and Long Pepper

Article ID: e120123212648 Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: Trikatu, a vital ingredient in many Indian Ayurvedic drugs, is a consortium of three spices, viz. dry ginger, black pepper, and long pepper, known for its peculiar pungency. To convert Trikatu into a widely acceptable palatable form, we blended these three spices in a decoction form and added them to syrup prepared from palmyra palm neera, which resulted in ‘Trikatu Syrup’ (TS). Recently, we reported in vivo immunomodulatory properties of TS.

Introduction: The immunomodulatory effects of spices are attributed largely to the presence of certain phytochemicals. The importance of phytochemicals in spices as immunomodulatory agents necessitate a thorough investigation of these bioactives in formulations comprising spices. In the present study, we have focused on understanding the retention of spice and syrup-based phytochemicals in the formulated product that assists in product standardization of TS.

Methods: NMR serves as a highly reliable tool for explicit structural confirmation of phytochemicals when compared to HPLC or mass spectrometry tools. NMR spectra of a phytochemical, whether in pure form or when the phytochemical is a part of the mixture, enable qualitative and quantitative studies with a mixture of phytochemicals in organic extracts of food matrices. Hence, the NMR spectral comparison of compounds isolated from the organic extracts of TS is described here.

Results: Fractionation of TS using Diaion® HP-20 resulted in the partitioning of compounds based on their polarity. Purification of the acetone fraction by column chromatography aided in the efficient isolation of compound 1 (pellitorine), compound 2 (piperine), compounds 3-5 (trienamides), and compound 6 (pipataline). Acetonitrile fraction yielded compound 7 (uridine) and compound 8 (3-O-methylmyo- inositol), which were neither reported in the three spices nor palmyra palm. A qualitative display of the acetone fraction of TS with its phytochemicals 1-6 served as a fingerprint of TS.

Conclusion: In summary, TS, a palatable spice-based nutraceutical in palmyra palm syrup with immunomodulatory potential, was thoroughly investigated for the phytochemical composition of its organic fractions. The process of fractionating TS using Diaion® HP-20, subsequent flash purification, and column chromatography facilitated the isolation of prominent phytochemicals. We report the utility of NMR as a reliable and efficient tool for fingerprinting phytochemicals in formulations, nutraceuticals, etc., which assists in ascertaining their authenticity.

[1]
Somasekharan Nair Rajam, S.; Neenthamadathil, M.K.; Vellolipadikkal, H.; Viswanathan, L.S.; Kollery, S.V.; Natakkakath Kaliyathan, R.; Sreedharan Nair, R.; Lankalapalli, R.S.; Mullan, V.R. Spice-infused palmyra palm syrup improved cell-mediated immunity in Wistar Albino rats. J. Food Biochem., 2020, 44(11), e13466.
[http://dx.doi.org/10.1111/jfbc.13466] [PMID: 32964485]
[2]
Khanna, K.; Kohli, S.K.; Kaur, R.; Bhardwaj, A.; Bhardwaj, V.; Ohri, P.; Sharma, A.; Ahmad, A.; Bhardwaj, R.; Ahmad, P. Herbal immune-boosters: Substantial warriors of pandemic COVID-19 battle. Phytomedicine, 2021, 85, 153361.
[http://dx.doi.org/10.1016/j.phymed.2020.153361] [PMID: 33485605]
[3]
Palai, S.; Dehuri, M.; Patra, R. Spices boosting immunity in COVID-19. Ann. Phytomed., 2020, 9(2), 80-96.
[http://dx.doi.org/10.21276/ap.2020.9.2.7]
[4]
Umakanth, K.; Geetha, R.V.; Smiline Girija, A.S.; Lakshmi, T. Role of commonly used asian spices in boosting immunity against infectious agents. Eur. J. Mol. Clin. Med., 2020, 7(1), 452-458.
[5]
Elsayed, Y.; Khan, N.A. Immunity-boosting spices and the novel coronavirus. ACS Chem. Neurosci., 2020, 11(12), 1696-1698.
[http://dx.doi.org/10.1021/acschemneuro.0c00239] [PMID: 32452670]
[6]
Haq, I.U.; Imran, M.; Nadeem, M.; Tufail, T.; Gondal, T.A.; Mubarak, M.S. Piperine: A review of its biological effects. Phytother. Res., 2021, 35(2), 680-700.
[http://dx.doi.org/10.1002/ptr.6855] [PMID: 32929825]
[7]
Jagetia, G.C.; Aggarwal, B.B. “Spicing up” of the immune system by curcumin. J. Clin. Immunol., 2007, 27(1), 19-35.
[http://dx.doi.org/10.1007/s10875-006-9066-7] [PMID: 17211725]
[8]
Boskabady, M.H.; Farkhondeh, T. Antiinflammatory, antioxidant, and immunomodulatory effects of Crocus sativus L. and its main constituents. Phytother. Res., 2016, 30(7), 1072-1094.
[http://dx.doi.org/10.1002/ptr.5622] [PMID: 27098287]
[9]
Aprotosoaie, A.C.; Costache, I-I.; Miron, A. Anethole and its role in chronic diseases. Adv. Exp. Med. Biol., 2016, 929, 247-267.
[http://dx.doi.org/10.1007/978-3-319-41342-6_11]
[10]
Majdalawieh, A.F.; Fayyad, M.W. Immunomodulatory and anti-inflammatory action of Nigella sativa and thymoquinone: A comprehensive review. Int. Immunopharmacol., 2015, 28(1), 295-304.
[http://dx.doi.org/10.1016/j.intimp.2015.06.023] [PMID: 26117430]
[11]
Shang, A.; Cao, S.Y.; Xu, X.Y.; Gan, R.Y.; Tang, G.Y.; Corke, H.; Mavumengwana, V.; Li, H.B. Bioactive compounds and biological functions of garlic (Allium sativum L.). Foods, 2019, 8(7), 246.
[http://dx.doi.org/10.3390/foods8070246] [PMID: 31284512]
[12]
Butt, M.S.; Sultan, M.T. Ginger and its health claims: molecular aspects. Crit. Rev. Food Sci. Nutr., 2011, 51(5), 383-393.
[http://dx.doi.org/10.1080/10408391003624848] [PMID: 21491265]
[13]
Doss, H.M.; Ganesan, R.; Rasool, M. Trikatu, an herbal compound ameliorates rheumatoid arthritis by the suppression of inflammatory immune responses in rats with adjuvant-induced arthritis and on cultured fibroblast like synoviocytes via the inhibition of the NFκB signaling pathway. Chem. Biol. Interact., 2016, 258, 175-186.
[http://dx.doi.org/10.1016/j.cbi.2016.09.003] [PMID: 27613480]
[14]
Murunikkara, V.; Rasool, M. Trikatu, an herbal compound as immunomodulatory and anti-inflammatory agent in the treatment of rheumatoid arthritis – An experimental study. Cell. Immunol., 2014, 287(1), 62-68.
[http://dx.doi.org/10.1016/j.cellimm.2013.12.002] [PMID: 24394943]
[15]
Javed, D.; Dixit, A.K. Is Trikatu an ayurvedic formulation effective for the management of flu-like illness? A narrative review. J. Complement. Integr. Med., 2022, 19(2), 193-202.
[http://dx.doi.org/10.1515/jcim-2020-0485] [PMID: 34081846]
[16]
Thakar, A.; Panara, K.; Patel, F.; Bhagiya, S.; Goyal, M.; Bhinde, S.; Chaudhari, S.; Chaturvedi, S. Add-on ayurveda treatment for early stage COVID-19: A single center retrospective cohort study from Gujarat, India. J. Evid. Based Integr. Med., 2021, 26, 2515690X2110206.
[http://dx.doi.org/10.1177/2515690X211020685]
[17]
Dasari, V.; Dasari, K. Nutraceuticals to support immunity: COVID-19 Pandemic- A wake-up call. J. Clin. Diagn. Res., 2020, 14(7), OE05-OE09.
[http://dx.doi.org/10.7860/JCDR/2020/44898.13843]
[18]
Reshma, M.V.; Jacob, J.; Syamnath, V.L.; Habeeba, V.P.; Dileep Kumar, B.S.; Lankalapalli, R.S. First report on isolation of 2,3,4-trihydroxy-5-methylacetophenone from palmyra palm (Borassus flabellifer Linn.) syrup, its antioxidant and antimicrobial properties. Food Chem., 2017, 228, 491-496.
[http://dx.doi.org/10.1016/j.foodchem.2017.02.043] [PMID: 28317754]
[19]
Kaushik, R.; Jain, J.; Khan, A.D.; Rai, P. Trikatu - A combination of three bioavailability enhancers. Int. J. Green Pharm., 2018, 12(3), S437-S441.
[20]
Rosario, S.; da Silva, A.; Parente, J. Alkamides from Cissampelos glaberrima. Planta Med., 1996, 62(4), 376-377.
[http://dx.doi.org/10.1055/s-2006-957913] [PMID: 17252475]
[21]
Park, I.K.; Lee, S.G.; Shin, S.C.; Park, J.D.; Ahn, Y.J. Larvicidal activity of isobutylamides identified in Piper nigrum fruits against three mosquito species. J. Agric. Food Chem., 2002, 50(7), 1866-1870.
[http://dx.doi.org/10.1021/jf011457a] [PMID: 11902925]
[22]
Ee, G.C.L.; Lim, C.M.; Rahmani, M.; Shaari, K.; Bong, C.F.J. Pellitorine, a potential anti-cancer lead compound against HL6 and MCT-7 cell lines and microbial transformation of piperine from Piper nigrum. Molecules, 2010, 15(4), 2398-2404.
[http://dx.doi.org/10.3390/molecules15042398] [PMID: 20428051]
[23]
Shityakov, S.; Bigdelian, E.; Hussein, A.A.; Hussain, M.B.; Tripathi, Y.C.; Khan, M.U.; Shariati, M.A. Phytochemical and pharmacological attributes of piperine: A bioactive ingredient of black pepper. Eur. J. Med. Chem., 2019, 176, 149-161.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.002] [PMID: 31103896]
[24]
Kikuzaki, H.; Kawabata, M.; Ishida, E.; Akazawa, Y.; Takei, Y.; Nakatani, N. LC-MS analysis and structural determination of new amides from Javanese long pepper (Piper retrofractum). Biosci. Biotechnol. Biochem., 1993, 57(8), 1329-1333.
[http://dx.doi.org/10.1271/bbb.57.1329]
[25]
Pei, H.; Xue, L.; Tang, M.; Tang, H.; Kuang, S.; Wang, L.; Ma, X.; Cai, X.; Li, Y.; Zhao, M.; Peng, A.; Ye, H.; Chen, L. Alkaloids from black pepper (Piper nigrum L.) exhibit anti-inflammatory activity in murine macrophages by inhibiting activation of NF-κB pathway. J. Agric. Food Chem., 2020, 68(8), 2406-2417.
[http://dx.doi.org/10.1021/acs.jafc.9b07754] [PMID: 32031370]
[26]
Dawid, C.; Henze, A.; Frank, O.; Glabasnia, A.; Rupp, M.; Büning, K.; Orlikowski, D.; Bader, M.; Hofmann, T. Structural and sensory characterization of key pungent and tingling compounds from black pepper (Piper nigrum L.). J. Agric. Food Chem., 2012, 60(11), 2884-2895.
[http://dx.doi.org/10.1021/jf300036a] [PMID: 22352449]
[27]
Wu, S.; Sun, C.; Pei, S.; Lu, Y.; Pan, Y. Preparative isolation and purification of amides from the fruits of Piper longum L. by upright counter-current chromatography and reversed-phase liquid chromatography. J. Chromatogr. A, 2004, 1040(2), 193-204.
[http://dx.doi.org/10.1016/j.chroma.2004.03.056] [PMID: 15230526]
[28]
Mgbeahuruike, E.E.; Yrjönen, T.; Vuorela, H.; Holm, Y. Bioactive compounds from medicinal plants: Focus on Piper species. S. Afr. J. Bot., 2017, 112, 54-69.
[http://dx.doi.org/10.1016/j.sajb.2017.05.007]
[29]
Stöhr, J.R.; Xiao, P.G.; Bauer, R. Constituents of Chinese Piper species and their inhibitory activity on prostaglandin and leukotriene biosynthesis in vitro. J. Ethnopharmacol., 2001, 75(2-3), 133-139.
[http://dx.doi.org/10.1016/S0378-8741(00)00397-4] [PMID: 11297843]
[30]
Chen, J.J.; Duh, C.Y.; Huang, H.Y.; Chen, I.S. Cytotoxic Constituents of Piper sintenense. Helv. Chim. Acta, 2003, 86(6), 2058-2064.
[http://dx.doi.org/10.1002/hlca.200390161]
[31]
Ata, A.; Van Den Bosch, S.A.; Harwanik, D.J.; Pidwinski, G.E. Glutathione S-transferase- and acetylcholinesterase-inhibiting natural products from medicinally important plants. Pure Appl. Chem., 2007, 79(12), 2269-2276.
[http://dx.doi.org/10.1351/pac200779122269]
[32]
He, C.; Liu, Y.; Liu, H.; Zheng, X.; Shen, G.; Feng, J. Compositional identification and authentication of Chinese honeys by 1H NMR combined with multivariate analysis. Food Res. Int., 2020, 130, 108936.
[http://dx.doi.org/10.1016/j.foodres.2019.108936] [PMID: 32156383]
[33]
Park, J.N.; Watanabe, T.; Endoh, K-I.; Watanabe, K.; Abe, H. Taste-active components in a Vietnamese fish sauce. Fish. Sci., 2002, 68(4), 913-920.
[http://dx.doi.org/10.1046/j.1444-2906.2002.00510.x]
[34]
Duarte, I.; Barros, A.; Belton, P.S.; Righelato, R.; Spraul, M.; Humpfer, E.; Gil, A.M. High-resolution nuclear magnetic resonance spectroscopy and multivariate analysis for the characterization of beer. J. Agric. Food Chem., 2002, 50(9), 2475-2481.
[http://dx.doi.org/10.1021/jf011345j] [PMID: 11958608]
[35]
Xu, L.; Shang, Z.; Bo, T.; Sun, L.; Guo, Q.; Qiao, X.; Ye, M. Rapid quantitation and identification of the chemical constituents in Danhong Injection by liquid chromatography coupled with orbitrap mass spectrometry. J. Chromatogr. A, 2019, 1606, 460378.
[http://dx.doi.org/10.1016/j.chroma.2019.460378] [PMID: 31376981]
[36]
Liu, J.; Wang, M.; Chen, L.; Li, Y.; Chen, Y.; Wei, Z.; Jia, Z.; Xu, W.; Xiao, H. Profiling the constituents of Dachuanxiong decoction by liquid chromatography with high-resolution tandem mass spectrometry using target and non-target data mining. J. Sep. Sci., 2019, 42(13), 2202-2213.
[http://dx.doi.org/10.1002/jssc.201900064] [PMID: 31017729]
[37]
Moreira, L.N.; Silva, G.C.; Câmara, D.V.; Pádua, R.M.; Lemos, V.S.; Braga, F.C.; Cortes, S.F. The Cyclitol L-(+)-bornesitol as an active marker for the cardiovascular activity of the Brazilian medicinal plant Hancornia speciosa. Biol. Pharm. Bull., 2019, 42(12), 2076-2082.
[http://dx.doi.org/10.1248/bpb.b19-00601] [PMID: 31787722]
[38]
Moreira, L.N.; Feltrin, C.; Gonçalves, J.E.; de Castro, W.V.; Simões, C.M.O.; de Pádua, R.M.; Cortes, S.F.; Braga, F.C. Determination of l-(+)-bornesitol, the hypotensive constituent of Hancornia speciosa, in rat plasma by LC-MS/MS and its application on a pharmacokinetic study. Biomed. Pharmacother., 2020, 132, 110900.
[http://dx.doi.org/10.1016/j.biopha.2020.110900] [PMID: 33113433]
[39]
Semwal, R.B.; Semwal, D.K.; Combrinck, S.; Viljoen, A.M. Gingerols and shogaols: Important nutraceutical principles from ginger. Phytochemistry, 2015, 117, 554-568.
[http://dx.doi.org/10.1016/j.phytochem.2015.07.012] [PMID: 26228533]
[40]
Bhattarai, S.; Tran, V.H.; Duke, C.C. The stability of gingerol and shogaol in aqueous solutions. J. Pharm. Sci., 2001, 90(10), 1658-1664.
[http://dx.doi.org/10.1002/jps.1116] [PMID: 11745724]