A Study of Federated Learning with Internet of Things for Data Privacy and Security using Privacy Preserving Techniques

Article ID: e120123212628 Pages: 17

  • * (Excluding Mailing and Handling)

Abstract

Privacy leakage that occurs when many IoT devices are utilized for training centralized models, a new distributed learning framework known as federated learning was created, where devices train models together while keeping their private datasets local. In a federated learning setup, a central aggregator coordinates the efforts of several clients working together to solve machine learning issues. The privacy of each device's data is protected by this setup's decentralized training data. Federated learning reduces traditional centralized machine learning systems' systemic privacy issues and costs by emphasizing local processing and model transfer. Client information is stored locally and cannot be copied or shared. By utilizing a centralized server, federated learning enables each participant's device to collect data locally for training purposes before sending the resulting model to the server for aggregate and subsequent distribution. As a means of providing a comprehensive review and encouraging further research into the topic, we introduce the works of federated learning from five different vantage points: data partitioning, privacy method, machine learning model, communication architecture, and systems heterogeneity. Then, we organize the issues plaguing federated learning today and the potential avenues for a prospective study. Finally, we provide a brief overview of the features of existing federated knowledge and discuss how it is currently being used in the field.

Graphical Abstract

[1]
T. Alam, and R. Gupta, "federated learning and its role in the privacy preservation of IoT devices", Future Internet, vol. 14, no. 9, p. 246, 2022.
[http://dx.doi.org/10.3390/fi14090246]
[2]
J. Devlin, M. Chang, K. Lee, and K Toutanova, "bert: pre-training of deep bidirectional transformers for language understanding", arXiv, 2019. Available from: https://arxiv.org/pdf/1810.04805.pdf&usg=ALkJrhhzxlCL6yTht2BRmH9atgvKFxHsxQ
[3]
Y. Zhu, and E. Meijering, "Neural architecture search for microscopy cell segmentation", In: M. Liu, P. Yan, C. Lian, X. Cao, Eds., Machine Learning in Medical Imaging. MLMI 2020. Lecture Notes in Computer Science, vol. 12436. Springer: Cham, 2020.
[http://dx.doi.org/10.1007/978-3-030-59861-7_55]
[4]
X. Yin, Y. Zhu, and J. Hu, "3D fingerprint recognition based on ridge-valley-guided 3D reconstruction and 3D topology polymer feature extraction", IEEE Trans. Pattern Anal. Mach. Intell., vol. 43, no. 3, pp. 1085-1091, 2021.
[http://dx.doi.org/10.1109/TPAMI.2019.2949299] [PMID: 31675315]
[5]
D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G. van den Driessche, T. Graepel, and D. Hassabis, "Mastering the game of Go without human knowledge", Nature, vol. 550, no. 7676, pp. 354-359, 2017.
[http://dx.doi.org/10.1038/nature24270] [PMID: 29052630]
[6]
J. Hu, and A.V. Vasilakos, "Energy big data analytics and security: Challenges and opportunities", IEEE Trans. Smart Grid, vol. 7, no. 5, pp. 2423-2436, 2016.
[http://dx.doi.org/10.1109/TSG.2016.2563461]
[7]
P. Voigt, and A. Von dem Bussche, The EU General Data Protection Regulation (GDPR)., Springer International Publishing, 2017.
[http://dx.doi.org/10.1007/978-3-319-57959-7]
[8]
W.B. Chik, "The Singapore Personal Data Protection Act and an assessment of future trends in data privacy reform", Comput. Law Secur. Rep., vol. 29, no. 5, pp. 554-575, 2013.
[http://dx.doi.org/10.1016/j.clsr.2013.07.010]
[9]
D. Jatain, V. Singh, and N. Dahiya, "A contemplative perspective on federated machine learning: Taxonomy, threats & vulnerability assessment and challenges", J. King Saud Univ.-. Comput. Inform. Sci., vol. 34, no. 9, pp. 6681-6698, 2022.
[10]
Y. Lin, S. Han, H. Mao, Y. Wang, and W.J Dally, "Deep gradient compression. reducing the communication bandwidth for distributed training", arXiv, 2017. Available from: https://arxiv.org/pdf/1712.01887.pdf?source=post_page.
[11]
H. Kim, J. Park, M. Bennis, and S-L. Kim, "Blockchained on-device federated learning", IEEE Commun. Lett., 2019. Available from: https://arxiv.org/pdf/1808.03949.pdf
[12]
V. Smith, C-K. Chiang, M. Sanjabi, and A Talwalkar, "Federated multi-task learning", arXiv, 2017.
[13]
C. Zhang, Y. Xie, H. Bai, B. Yu, W. Li, and Y. Gao, "A survey on federated learning", Knowl. Base. Syst., vol. 216, p. 106775, 2021.
[http://dx.doi.org/10.1016/j.knosys.2021.106775] [PMID: 34909232]
[14]
W. Du, and M.J. Atallah, "Privacy-preserving cooperative statistical analysis", Electr. Eng. Comput. Sci., vol. 14, pp. 1-10, 2001.
[15]
J. Guo, H. Li, F. Huang, Z. Liu, Y. Peng, X. Li, J. Ma, V.G. Menon, and K.K. Igorevich, "Adfl: A poisoning attack defense framework for horizontal federated learning", IEEE Trans. Industr. Inform., vol. 18, no. 10, pp. 6526-6536, 2022.
[http://dx.doi.org/10.1109/TII.2022.3156645]
[16]
L. Wan, W.K. Ng, S. Han, and V.C.S. Lee, "Privacy-preservation for gradient descent methods", Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. August 775-783, 2007.
[http://dx.doi.org/10.1145/1281192.1281275]
[17]
P. Schoppmann, B. Balle, J. Doerner, S. Zahur, and D. Evans, "Secure linear regression on vertically partitioned datasets", IACR Cryptol. ePrint Arch., p. 892, 2016.
[18]
J. Vaidya, and C. Clifton, "Privacy preserving association rule mining in vertically partitioned data", KDD '02: Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining, pp. July 639-644, 2002.
[http://dx.doi.org/10.1145/775047.775142]
[19]
S.J. Pan, and Q. Yang, "A Survey on transfer learning", IEEE Trans. Knowl. Data Eng., vol. 22, no. 10, pp. 1345-1359, 2010.
[http://dx.doi.org/10.1109/TKDE.2009.191]
[20]
Y. Liu, Y. Kang, C. Xing, T. Chen, and Q. Yang, "A secure federated transfer learning framework", IEEE Intell. Syst., vol. 35, no. 4, pp. 70-82, 2020.
a [http://dx.doi.org/10.1109/MIS.2020.2988525]
[21]
L.T. Phong, Y. Aono, T. Hayashi, L. Wang, and S. Moriai, "Privacy-preserving deep learning via additively homomorphic encryption", IEEE Trans. Inf. Forensics Security, vol. 13, no. 5, pp. 1333-1345, 2018.
[http://dx.doi.org/10.1109/TIFS.2017.2787987]
[22]
Y. Liu, T. Chen, and Q. Yang, "Secure federated transfer learning", arXiv, 2018. Available from: https://arxiv.org/abs/1812.03337
[23]
S. Sharma, X. Chaoping, Y. Liu, and Y. Kang, "Secure and Efficient Federated Transfer Learning", arXiv, 2019.
[http://dx.doi.org/10.1109/BigData47090.2019.9006280]
[24]
C. Nadiger, A. Kumar, and S. Abdelhak, "Federated reinforcement learning for fast personalization", In IEEE Second International Conference on Artificial Intelligence and Knowledge Engineering (AIKE), 03-05 June 2019, Sardinia, Italy, IEEE, 2019.
[http://dx.doi.org/10.1109/AIKE.2019.00031]
[25]
J. Kaliampos, EFL Learners’ Task Perceptions and Agency in Blended Learning: An Exploratory Mixed-Methods Study on the ’US Embassy School Election Project., Narr Francke Attempto Verlag, 2022.
[http://dx.doi.org/10.24053/9783823395676]
[26]
A.T. Bourdillon, A. Garg, H. Wang, Y.J. Woo, M. Pavone, and J. Boyd, "Integration of reinforcement learning in a virtual robotic surgical simulation", Surg. Innov., 2022.
[http://dx.doi.org/10.1177/15533506221095298] [PMID: 35503302]
[27]
A. Nilsson, S. Smith, G. Ulm, E. Gustavsson, and M. Jirstrand, "A performance evaluation of federated learning algorithms", In DIDL '18: Proceedings of the Second Workshop on Distributed Infrastructures for Deep Learning, December 2018, pp. 1-8
[http://dx.doi.org/10.1145/3286490.3286559]
[28]
H. Ye, L. Liang, and G.Y. Li, "Decentralized federated learning with unreliable communications", IEEE J. Sel. Top. Signal Process., vol. 16, no. 3, pp. 487-500, 2022.
[http://dx.doi.org/10.1109/JSTSP.2022.3152445]
[29]
W. Huang, M. Ye, and B. Du, "Learn From Others and Be Yourself in Heterogeneous Federated Learning", In. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 18-24 June 2022, New Orleans, LA, USA, IEEE, pp. 10143-10153, 2022.
[http://dx.doi.org/10.1109/CVPR52688.2022.00990]
[30]
M. Praveen Kumar Reddy, and M. Rajasekhara Babu, "A hybrid cluster head selection model for Internet of Things", Cluster Comput., vol. 22, no. S6, pp. 13095-13107, 2019.
[http://dx.doi.org/10.1007/s10586-017-1261-1]
[31]
M.P.K. Reddy, and M.R. Babu, "Implementing self adaptiveness in whale optimization for cluster head section in internet of things", Cluster Comput., vol. 22, no. S1, pp. 1361-1372, 2019.
[http://dx.doi.org/10.1007/s10586-017-1628-3]
[32]
S. Dhingra, R.B. Madda, A.H. Gandomi, R. Patan, and M. Daneshmand, "Internet of Things mobile–air pollution monitoring system (IoT-Mobair)", IEEE Internet Things J., vol. 6, no. 3, pp. 5577-5584, 2019.
[http://dx.doi.org/10.1109/JIOT.2019.2903821]
[33]
K. Raghunathan, R.K. Soundarapandian, A.H. Gandomi, M. Ramachandran, R. Patan, and R.B. Madda, "Duo-stage decision: A framework for filling missing values, consistency check, and repair of decision matrices in multicriteria group decision making", IEEE Trans. Eng. Manage., vol. 68, no. 6, pp. 1773-1785, 2021.
[http://dx.doi.org/10.1109/TEM.2019.2928569]
[34]
S. Dhingra, R.B. Madda, R. Patan, P. Jiao, K. Barri, and A.H. Alavi, "Internet of things-based fog and cloud computing technology for smart traffic monitoring", Internet of Things, vol. 14, p. 100175, 2021.
[http://dx.doi.org/10.1016/j.iot.2020.100175]
[35]
A. Bhowmick, J. Duchi, J. Freudiger, G. Kapoor, and R. Rogers, "Protection against reconstruction and its applications in private federated learning", arXiv, 2018. Available from: https://arxiv.org/abs/1812.00984
[36]
N. Carlini, C. Liu, J. Kos, Ú. Erlingsson, and D. Song, "The secret sharer: Measuring unintended neural network memorization & extracting secrets", arXiv, 2018. Available from: https://arxiv.org/abs/1802.08232
[37]
Z. Liu, J. Ma, J. Weng, F. Huang, Y. Wu, L. Wei, and Y. Li, "LPPTE: A lightweight privacy-preserving trust evaluation scheme for facilitating distributed data fusion in cooperative vehicular safety applications", Inf. Fusion, vol. 73, pp. 144-156, 2021.
[http://dx.doi.org/10.1016/j.inffus.2021.03.003]
[38]
Z. Liu, J. Weng, J. Guo, J. Ma, F. Huang, H. Sun, and Y. Cheng, "PPTM: A privacy-preserving trust management scheme for emergency message dissemination in space–air–ground-integrated vehicular networks", IEEE Internet Things J., vol. 9, no. 8, pp. 5943-5956, 2022.
[http://dx.doi.org/10.1109/JIOT.2021.3060751]
[39]
Z. Liu, F. Huang, J. Weng, K. Cao, Y. Miao, J. Guo, and Y. Wu, "BTMPP: balancing trust management and privacy preservation for emergency message dissemination in vehicular networks", IEEE Internet Things J., vol. 8, no. 7, pp. 5386-5407, 2021.
[http://dx.doi.org/10.1109/JIOT.2020.3037098]
[40]
J. Guo, X. Li, Z. Liu, J. Ma, C. Yang, J. Zhang, and D. Wu, "TROVE: A context-awareness trust model for VANETs using reinforcement learning", IEEE Internet Things J., vol. 7, no. 7, pp. 6647-6662, 2020.
[http://dx.doi.org/10.1109/JIOT.2020.2975084]
[41]
H.B. McMahan, D. Ramage, K. Talwar, and L. Zhang, "Learning differentially private recurrent language models", International Conference on Learning Representations, 2018. Available from: https://arxiv.org/pdf/1710.06963.pdf
[42]
K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman, V. Ivanov, C. Kiddon, J. Konecny, S. Mazzocchi, H.B. McMahan, T.V. Overveldt, D. Petrou, D. Ramage, and J. Roselander, "Towards federated learning at scale: system design", Conference on Systems and Machine Learning, 2019. Available from: https://www.arxiv-vanity.com/papers/1908.07873/
[43]
V. Feldman, I. Mironov, K. Talwar, and A. Thakurta, Privacy amplification by iteration. In IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), 07-09 October 2018, Paris, France, IEEE, 2018.
[http://dx.doi.org/10.1109/FOCS.2018.00056]
[44]
C. Dwork, and A. Roth, "The algorithmic foundations of differential privacy", Found. Trends® Theor. Comput. Sci., vol. 9, no. 3-4, pp. 211-407, 2013.
[http://dx.doi.org/10.1561/0400000042]
[45]
M. Abadi, A. Chu, I. Goodfellow, H.B. McMahan, I. Mironov, K. Talwar, and L. Zhang, "Deep learning with differential privacy", Conference on Computer and Communications Security, 2016. Available from: https://arxiv.org/abs/1607.00133
[46]
R. Iyengar, J.P. Near, D. Song, O. Thakkar, A. Thakurta, and L. Wang, "Towards practical differentially private convex optimization", Conference on Computer and Communications Security, 2019. Available from: http://www.omthakkar.com/papers/TPDPCO.pdf
[47]
N. Papernot, S. Song, I. Mironov, A. Raghunathan, K. Talwar, and Ú. Erlingsson, "Scalable private learning with pate", International Conference on Learning Representations, 2018. Available from: https://arxiv.org/pdf/1802.08908.pdf
[48]
X. Wu, F. Li, A. Kumar, K. Chaudhuri, S. Jha, and J. Naughton, "Bolt-on differential privacy for scalable stochastic gradient descent-based analytics", SIGMOD '17: Proceedings of the 2017 ACM International Conference on Management of Data, pp. May 1307-1322, 2017.
[http://dx.doi.org/10.1145/3035918.3064047]
[49]
M.E. Nergiz, and C. Clifton, "d-presence without complete world knowledge", IEEE Trans. Knowl. Data Eng., vol. 22, no. 6, pp. 868-883, 2010.
[http://dx.doi.org/10.1109/TKDE.2009.125]
[51]
I. Wagner, and D. Eckhoff, "Technical privacy metrics: A systematic survey", ACM Comput. Surv., vol. 51, p. 57, 2018.
[52]
V. Nikolaenko, U. Weinsberg, S. Ioannidis, M. Joye, D. Boneh, and N. Taft, "Privacy-preserving ridge regression on hundreds of millions of records", Symposium on Security and Privacy, 2013.
[http://dx.doi.org/10.1109/SP.2013.30]
[53]
Jiawei Yuan, and Shucheng Yu, "Privacy preserving back-propagation neural network learning made practical with cloud computing", IEEE Trans. Parallel Distrib. Syst., vol. 25, no. 1, pp. 212-221, 2014.
[http://dx.doi.org/10.1109/TPDS.2013.18]
[54]
M.S. Riazi, C. Weinert, O. Tkachenko, E.M. Songhori, T. Schneider, and F. Koushanfar, "Chameleon: A hybrid secure computation framework for machine learning applications", Asia Conference on Computer and Communications Security, 2018.
[http://dx.doi.org/10.1145/3196494.3196522]
[55]
P. Mohassel, and P. Rindal, "Aby 3: a mixed protocol framework for machine learning", Conference on Computer and Communications Security, 2018.
[http://dx.doi.org/10.1145/3243734.3243760]
[56]
B.D. Rouhani, M.S. Riazi, and F. Koushanfar, "Deepsecure: Scalable provably-secure deep learning", In Proceedings of the 55th annual design automation conference, 2018.
[57]
B. Ghazi, R. Pagh, and A. Velingker, "Scalable and differentially private distributed aggregation in the shuffled model", arXiv preprint arXiv:1906.08320, 2019.
[58]
R.C. Geyer, T. Klein, and M. Nabi, "Differentially private federated learning: A client level perspective", preprint arXiv:1712.07557, 2017.
[59]
O. Thakkar, G. Andrew, and H.B. McMahan, "Differentially private learning with adaptive clipping", Adv. Neural Inform. Process. Syst., vol. 34, pp. 17455-17466, 2021.
[60]
J. Li, M. Khodak, S. Caldas, and A. Talwalkar, "Differentially-private gradient-based meta-learning", Technical Report, 2019.
[61]
N. Agarwal, A.T. Suresh, F.X.X. Yu, S. Kumar, and B. McMahan, ‘cpSGD: Communication-efficient and differentially-private distributed sgd’, In. Advances in Neural Information Processing Systems, 2018.
[62]
W. Stallings, Cryptography and Network Security Principles and Practices., 7th ed Pearson Education, Inc., 2017.
[63]
P. Voigt, and A. Von dem Bussche, The EU General Data Protection Regulation (GDPR)., Springer International Publishing, 2017.
[http://dx.doi.org/10.1007/978-3-319-57959-7]
[64]
R.L. Rivest, L. Adleman, and M.L. Dertouzos, "On data banks and privacy homomorphisms", Found. Sec. Comput., vol. 11, no. 4, pp. 169-179, 1978.
[65]
R. Li, Y. Xiao, C. Zhang, T. Song, and C. Hu, "Cryptographic algorithms for privacy-preserving online applications", Math. Found. Comput., vol. 311, 2018.
[66]
M. Van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, "Fully homomorphic encryption over the integers", Proceedings of the Annual International Conference on the Theory and Applications of Cryptographic Techniques, pp. 24-43, 2010.
[67]
A. Shamir, "How to share a secret", Commun. ACM, vol. 22, no. 11, pp. 612-613, 1979.
[http://dx.doi.org/10.1145/359168.359176]
[68]
A.C. Yao, "Protocols for secure computations", Proceedings of the Annual Symposium on Foundations of Computer Science, pp. 160-164, 1982.
[69]
C. Dwork, and A. Roth, "The Algorithmic foundations of differential privacy", Found. Trends Theor. Comput. Sci., pp. 211-407, 2014.
[70]
G. Cormode, S. Jha, T. Kulkarni, N. Li, D. Srivastava, and T. Wang, "Privacy at Scale: Local differential privacy in practice", SIGMOD '18: Proceedings of the 2018 International Conference on Management of Data, pp. May 1655-1658, 2018.
[http://dx.doi.org/10.1145/3183713.3197390]
[71]
X. Ren, C.M. Yu, W. Yu, S. Yang, X. Yang, J.A. McCann, and P.S. Yu, "LoPub: High- dimensional crowdsourced data publication with local differential privacy", IEEE Trans. Inf. Forensics Security, vol. 13, no. 9, pp. 2151-2166, 2018.
[http://dx.doi.org/10.1109/TIFS.2018.2812146]
[72]
D. Agrawal, and C. Aggarwal, "On the design and quantification of privacy preserving data mining algorithms", Proceedings of the ACM SIGMOD- SIGACT-SIGART Symposium on Principles of Database Systems, pp. 247-255, 2001.
[http://dx.doi.org/10.1145/375551.375602]
[73]
A. Farooq, and M. Samar, "Multiplicative perturbation bounds for the block Cholesky downdating problem", Int. J. Comput. Math., vol. 97, no. 12, pp. 2421-2435, 2020.
[http://dx.doi.org/10.1080/00207160.2019.1699072]
[74]
J. Wang, Z. Cai, and J. Yu, "Achieving personalized k-anonymity-based content privacy for autonomous vehicles in CPS", IEEE Trans. Industr. Inform., vol. 16, no. 6, pp. 4242-4251, 2020.
[http://dx.doi.org/10.1109/TII.2019.2950057]
[75]
H.Y. Tran, and J. Hu, "Privacy-preserving big data analytics a comprehensive survey", J. Parallel Distrib. Comput., vol. 134, no. 1, pp. 207-218, 2019.
[http://dx.doi.org/10.1016/j.jpdc.2019.08.007]
[76]
R. Wang, Y. Zhu, T.S. Chen, and C.C. Chang, "Privacy-preserving algorithms for multiple sensitive attributes satisfying t-closeness", J. Comput. Sci. Technol., vol. 33, no. 6, pp. 1231-1242, 2018.
[http://dx.doi.org/10.1007/s11390-018-1884-6]
[77]
L. Melis, C. Song, E. De Cristofaro, and V. Shmatikov, "Exploiting unintended feature leakage in collaborative learning", In IEEE Symposium on Security & Privacy, 19-23 May 2019, San Francisco, CA, USA, IEEE, 2019.
[http://dx.doi.org/10.1109/SP.2019.00029]
[78]
L. Lyu, H. Yu, and Q. Yang, "Threats to federated learning", Available from: https://arxiv.org/pdf/2003.02133.pdf
[79]
Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, "Federated learning with non-iid data", arXiv, 1806.00582, 2018.
[80]
S. Awan, F. Li, B. Luo, and M. Liu, "A reliable and accountable privacy-preserving federated earning framework using the blockchain", In CCS '19: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, November 2019, pp. 2561-2563
[http://dx.doi.org/10.1145/3319535.3363256]
[81]
C. Valêncio, N.A. Jos, N.A. Eacute, C.D. Freitas, and W. Tenório, "Analysing research collaboration through co-authorship networks in a big data environment: An efficient parallel approach", Int. J. Comput. Sci. Eng., vol. 21, no. 3, pp. 364-374, 2020.
[82]
Q. Wu, K. He, and X. Chen, "Personalized federated learning for intelligent iot applications: A cloud-edge based framework", IEEE Comput. Graph. Appl., vol. 1, no. 5, pp. 35-44, 2020.
[PMID: 32396074]
[83]
J. Jiang, L. Hu, C. Hu, J. Liu, and Z. Wang, "BACombo-bandwidth-aware decentralized federated learning", Electronics (Basel), vol. 9, no. 3, p. 440, 2020.
[http://dx.doi.org/10.3390/electronics9030440]
[84]
X. Wang, Y. Han, C. Wang, Q. Zhao, X. Chen, and M. Chen, "In-edge AI: Intelligentizing mobile edge computing, caching and communication by federated learning", IEEE Netw., vol. 33, no. 5, pp. 156-165, 2019.
[http://dx.doi.org/10.1109/MNET.2019.1800286]
[85]
P. Kairouz, and B. McMahan, "Advances and open problems in federated learning", arXiv, 2019.
[86]
V. Paul, A. Bellet, and M. Tommasi, "Decentralized Collaborative Learning of Personalized Models over Networks Paul Vanhaesebrouck, Aurélien Bellet, Marc Tommasi", In Artificial Intelligence and Statistics, PMLR, pp. 509-517, 2013.
[87]
S. Savazzi, M. Nicoli, and V. Rampa, "Federated Learning With Cooperating Devices: A Consensus Approach for Massive IoT Networks", IEEE Internet Things J., vol. 7, no. 5, pp. 4641-4654, 2020.
[http://dx.doi.org/10.1109/JIOT.2020.2964162]
[88]
X. Li, M. Jiang, X. Zhang, M. Kamp, and Q. Dou, "Fedbn: Federated learning on non-iid features via local batch normalization", arXiv, 2021. Available from: https://arxiv.org/pdf/2102.07623.pdf
[89]
E. Diao, J. Ding, and V. Tarokh, "HeteroFL: Computation and communication efficient federated learning for heterogeneous clients". Available from: https://arxiv.org/pdf/2010.01264.pdf
[90]
O. Gupta, and R. Raskar, "Distributed learning of deep neural network over multiple agents", J. Netw. Comput. Appl., vol. 116, pp. 1-8, 2018.
[http://dx.doi.org/10.1016/j.jnca.2018.05.003]
[91]
P. Vepakomma, O. Gupta, T. Swedish, and R. Raskar, "Split learning for health: Distributed deep learning without sharing raw patient data", arXiv, 2018. Available from: https://arxiv.org/pdf/1812.00564.pdf
[92]
K. Hsieh, A. Phanishayee, O. Mutlu, and P. Gibbons, "The non-IID data quagmire of decentralized machine learning", In. Proceedings of the 37th International Conference on Machine Learning, Online, PMLR, vol. 119, 2020.
[93]
Collaborative Deep Learning in Fixed Topology Networks, Zhanhong Jiang., Aditya Balu, Chinmay Hegde, Soumik Sarkar, 2017.
[94]
GossipGraD, Scalable Deep Learning using Gossip Communication based Asynchronous Gradient Descent., Jeff Daily, Abhinav Vishnu, Charles Siegel, Thomas Warfel, Vinay Amatya, 2018.
[95]
How To Backdoor Federated Learning, Eugene Bagdasaryan., 2018. Available from: https://arxiv.org/abs/1807.00459
[96]
Diao Vahid, Enmao Ding, and Jie Tarokh, "SemiFL: Communication Efficient Semi-Supervised Federated Learning with Unlabeled Clients". Available from: https://arxiv.org/abs/2106.01432
[97]
B. McMahan, E. Moore, D. Ramage, S. Hampson, and B.A. Arcas, Communication-efficient learning of deep networks from decentralized data. Artificial intelligence and statistics., PMLR, 2017, pp. 1273-1282.
[98]
N. Rodríguez-Barroso, D.J. López, M. Luzón, F. Herrera, and E. Martínez-Cámara, "Survey on Federated Learning Threats: concepts, taxonomy on attacks and defences, experimental study and challenges", arXiv, 2022. Available from: https://arxiv.org/pdf/2201.08135.pdf
[99]
T. Zou, Y. Liu, Y. Kang, W. Liu, Y. He, Z. Yi, Q. Yang, and Y-Q. Zhang, "Defending batch-level label inference and replacement attacks in vertical federated learning", IEEE Trans. Big Data, pp. 1-12, 2022.
[http://dx.doi.org/10.1109/TBDATA.2022.3192121]
[100]
A. Qayyum, M.U. Janjua, and J. Qadir, "Making federated learning robust to adversarial attacks by learning data and model association", Comput. Secur., vol. 121, p. 102827, 2022.
[http://dx.doi.org/10.1016/j.cose.2022.102827]
[101]
S. Shen, T. Zhu, D. Wu, W. Wang, and W. Zhou, "From distributed machine learning to federated learning: In the view of data privacy and security", Concurr. Comput., vol. 34, no. 16, p. e6002, 2022.
[http://dx.doi.org/10.1002/cpe.6002]
[102]
N. Aljaafari, M. Nazzal, A.H. Sawalmeh, A. Khreishah, M. Anan, A. Algosaibi, M.A. Alnaeem, A. Aldalbahi, A. Alhumam, and C.P. Vizcarra, "Investigating the factors impacting adversarial attack and defense performances in federated learning", IEEE Trans. Eng. Manage., pp. 1-14, 2022.
[http://dx.doi.org/10.1109/TEM.2022.3155353]
[103]
W. Shi, S. Zhou, and Z. Niu, "Device scheduling with fast convergence for wireless federated learning", In. ICC 2020-2020 IEEE International Conference on Communications (ICC), pp. 1-6, 2020.
[104]
G. Severi, M. Jagielski, G. Yar, Y. Wang, A. Oprea, and C. Nita-Rotaru, "Network-Level Adversaries in Federated Learning", In. 2022 IEEE Conference on Communications and Network Security (CNS), IEEE, pp. 19-27, 2022.
[105]
T. Markovic, M. Leon, D. Buffoni, and S. Punnekkat, "Random forest based on federated learning for intrusion detection", IFIP International Conference on Artificial Intelligence Applications and Innovations, pp. 132-144, 2022.
[http://dx.doi.org/10.1007/978-3-031-08333-4_11]
[106]
P. Manoharan, R. Walia, C. Iwendi, T.A. Ahanger, S.T. Suganthi, M.M. Kamruzzaman, S. Bourouis, W. Alhakami, and M. Hamdi, "SVM‐based generative adverserial networks for federated learning and edge computing attack model and outpoising", Expert Syst., p. 13072, 2022.
[http://dx.doi.org/10.1111/exsy.13072]
[107]
Z. Zhang, A. Panda, L. Song, Y. Yang, M. Mahoney, and P. Mittal, "Neurotoxin: durable backdoors in federated learning", In. Proceedings of the 39th International Conference on Machine Learning, PMLR, pp. 26429-26446, 2022.
[108]
Q. Cai, Y. Guo, P. Li, A. Bogris, K.A. Shore, Y. Zhang, and Y. Wang, "Modulation format identification in fiber communications using single dynamical node-based photonic reservoir computing", Photon. Res., vol. 9, no. 1, pp. B1-B8, 2021.
[http://dx.doi.org/10.1364/PRJ.409114]
[109]
C. Mignon, D.J. Tobin, M. Zeitouny, and N.E. Uzunbajakava, "Shedding light on the variability of optical skin properties: finding a path towards more accurate prediction of light propagation in human cutaneous compartments", Biomed. Opt. Express, vol. 9, no. 2, pp. 852-872, 2018.
[http://dx.doi.org/10.1364/BOE.9.000852] [PMID: 29552418]
[110]
Q. Sun, Y. He, K. Liu, S. Fan, E.P.J. Parrott, and E. Pickwell-MacPherson, "Recent advances in terahertz technology for biomedical applications", Quant. Imaging Med. Surg., vol. 7, no. 3, pp. 345-355, 2017.
[http://dx.doi.org/10.21037/qims.2017.06.02] [PMID: 28812001]
[111]
G. Genty, L. Salmela, J.M. Dudley, D. Brunner, A. Kokhanovskiy, S. Kobtsev, and S.K. Turitsyn, "Machine learning and applications in ultrafast photonics", Nat. Photonics, vol. 15, no. 2, pp. 91-101, 2021.
[http://dx.doi.org/10.1038/s41566-020-00716-4]
[112]
T.F. de Lima, H-T. Peng, A.N. Tait, M.A. Nahmias, H.B. Miller, B.J. Shastri, and P.R. Prucnal, "Machine learning with neuromorphic photonics", J. Lightwave Technol., vol. 37, no. 5, pp. 1515-1534, 2019.
[http://dx.doi.org/10.1109/JLT.2019.2903474]
[113]
Z.A. Kudyshev, V.M. Shalaev, and A. Boltasseva, "Machine learning for integrated quantum photonics", ACS Photonics, vol. 8, no. 1, pp. 34-46, 2021.
[http://dx.doi.org/10.1021/acsphotonics.0c00960]
[114]
Iraj Sadegh Amiri, "Introduction to photonics: Principles and the most recent applicationsofmicrostructures", Micromachines 9.9, p. 452, 2018.