Impediment of Cancer by Dietary Plant-derived Alkaloids Through Oxidative Stress: Implications of PI3K/AKT Pathway in Apoptosis, Autophagy, and Ferroptosis

Page: [860 - 877] Pages: 18

  • * (Excluding Mailing and Handling)

Abstract

The adverse toxicities and stemness are two major factors that constrained the usage of therapeutic strategies to target several cancer types. Previous studies explored the efficacy of PI3K/mTOR inhibitors, pan-PI3K inhibitors, and isoform-specific inhibitors against several cancer types, and many of them are currently in clinical trials. The current review described the efficacy of alkaloids derived from dietary plant sources in developing a new anti-cancer to reduce the prevalence of cancer through the modulation of apoptosis, autophagy, and ferroptosis. We have substantially collected the information pertinent to several intracellular pathways, including PI3K signaling, apoptosis, ferroptosis, and autophagy in modulating cancer progression mediated by the plantderived alkaloids such as daurisoline, dauricine, vasicine, vasicinone, 2-Acetyl-benzylamine, nuciferine, liensinine, gramine, and berbamine. These alkaloids exhibit significant anti-cancer potential to inhibit cancer cells by enhancing the intracellular ROS level and modulation of several signaling pathways, mainly through the PI3K/AKT pathway. These alkaloids can modulate chemotherapeutic agents' efficacy in various cancer cells, both in vitro and in vivo models. Overall the futures for the continued use of alkaloids from natural sources against cancer have to be extended, with the implementation of significant enhancements in the chemistry of these alkaloids for targeted delivery. In this review, we have selected major bioactive alkaloids of dietary and medicinal plants origin and discussed the anti-cancer and combinatorial therapeutic implications of these compounds with several FDA-approved drugs against various cancer cells.

Graphical Abstract

[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Schirrmacher, V. From chemotherapy to biological therapy: A review of novel concepts to reduce the side effects of systemic cancer treatment. Int. J. Oncol., 2019, 54(2), 407-419.
[PMID: 30570109]
[3]
Pearce, A.; Haas, M.; Viney, R.; Pearson, S.A.; Haywood, P.; Brown, C.; Ward, R. Incidence and severity of self-reported chemotherapy side effects in routine care: A prospective cohort study. PLoS One, 2017, 12(10), e0184360.
[http://dx.doi.org/10.1371/journal.pone.0184360] [PMID: 29016607]
[4]
Prasath, M.; Narasimha, M.B.; Chih-Yang, H.; Viswanadha, V.P. Neferine and isoliensinine from Nelumbo nucifera induced reactive oxygen species (ROS)-mediated apoptosis in colorectal cancer HCT-15 cells. Afr. J. Pharm. Pharmacol., 2019, 13(8), 90-99.
[http://dx.doi.org/10.5897/AJPP2019.5036]
[5]
Laraia, L.; Waldmann, H. Natural product inspired compound collections: Evolutionary principle, chemical synthesis, phenotypic screening, and target identification. Drug Discov. Today. Technol., 2017, 23, 75-82.
[http://dx.doi.org/10.1016/j.ddtec.2017.03.003] [PMID: 28647090]
[6]
Choudhari, A.S.; Mandave, P.C.; Deshpande, M.; Ranjekar, P.; Prakash, O. Phytochemicals in cancer treatment: From preclinical studies to clinical practice. Front. Pharmacol., 2020, 10, 1614.
[http://dx.doi.org/10.3389/fphar.2019.01614] [PMID: 32116665]
[7]
Weaver, B.A. How taxol/paclitaxel kills cancer cells. Mol. Biol. Cell, 2014, 25(18), 2677-2681.
[http://dx.doi.org/10.1091/mbc.e14-04-0916] [PMID: 25213191]
[8]
Yang, J.; Nie, J.; Ma, X.; Wei, Y.; Peng, Y.; Wei, X. Targeting PI3K in cancer: Mechanisms and advances in clinical trials. Mol. Cancer, 2019, 18(1), 26.
[http://dx.doi.org/10.1186/s12943-019-0954-x] [PMID: 30782187]
[9]
Dallavalasa, S.; Beeraka, N.M.; Basavaraju, C.G.; Tulimilli, S.V.; Sa-dhu, S.P.; Rajesh, K.; Aliev, G.; Madhunapantula, S.V. The role of Tumor Associated Macrophages (TAMs) in cancer progression, chemoresistance, angiogenesis and metastasis-current status. Curr. Med. Chem., 2021, 28(39), 8203-8236.
[10]
Jiajing, L.; Kochurova, E.V.; Beeraka, N.M.; Lapina, N.V.; Weilong, C.; Belousov, D.M.; Mikhaylenko, E.V.; Nikolenko, V.N.; Muresanu, C.; Somasundaram, S.G.; Kirkland, C.E.; Avila-Rodríguez, M.; Aliev, G. Complex treatment and prosthetic rehabilitation of an acquired maxillofacial defect with tumor invasion: Brief report. Curr. Pharm. Des., 2021, 27(31), 3413-3421.
[http://dx.doi.org/10.2174/1381612827666210224141559] [PMID: 33655824]
[11]
Beeraka, N.M.; Bovilla, V.R.; Doreswamy, S.H.; Puttalingaiah, S.; Srinivasan, A.; Madhunapantula, S.V. The taming of nuclear factor erythroid-2-related factor-2 (Nrf2) deglycation by fructosamine-3-kinase (FN3K)-inhibitors-a novel strategy to combat cancers. Cancers, 2021, 13(2), 281.
[http://dx.doi.org/10.3390/cancers13020281] [PMID: 33466626]
[12]
Reddy, B.D.; Beeraka, N.M.; Chitturi, C.H.M.K.; Madhunapantula, S.V. An overview of targeting legumain for inhibiting cancers. Curr. Pharm. Des., 2021, 27(31), 3337-3348.
[http://dx.doi.org/10.2174/1381612826666201125111625] [PMID: 33238867]
[13]
Gilyazova, I.R.; Beeraka, N.M.; Klimentova, E.A.; Bulygin, K.V.; Nikolenko, V.N.; Izmailov, A.A.; Gilyazova, G.R.; Pavlov, V.N.; Khusnutdinova, E.K.; Somasundaram, S.G.; Kirkland, C.E.; Aliev, G. Novel microRNA binding site SNPs and the risk of clear cell renal cell carcinoma (ccRCC): A case-control study. Curr. Cancer Drug Targets, 2021, 21(3), 203-212.
[http://dx.doi.org/10.2174/1568009620666201120151226] [PMID: 33222672]
[14]
Chen, K.; Lu, P.; Beeraka, N.M.; Sukocheva, O.A.; Madhunapantula, S.V.; Liu, J.; Sinelnikov, M.Y.; Nikolenko, V.N.; Bulygin, K.V.; Mikhaleva, L.M. Mitochondrial mutations and mitoepigenetics: Focus on regulation of oxidative stress-induced responses in breast cancers. Semin. Cancer Biol., 2020, 83, 556-569.
[15]
Beylerli, O.; Beeraka, N.M.; Gareev, I.; Pavlov, V.; Yang, G.; Liang, Y.; Aliev, G. MiRNAs as noninvasive biomarkers and therapeutic agents of pituitary adenomas. Int. J. Mol. Sci., 2020, 21(19), 7287.
[http://dx.doi.org/10.3390/ijms21197287] [PMID: 33023145]
[16]
Beeraka, N.M.; Doreswamy, S.H.; Sadhu, S.P.; Srinivasan, A.; Pragada, R.R.; Madhunapantula, S.V.; Aliev, G. The role of exosomes in stemness and neurodegenerative diseases-chemoresistant-cancer therapeutics and phytochemicals. Int. J. Mol. Sci., 2020, 21(18), 6818.
[http://dx.doi.org/10.3390/ijms21186818] [PMID: 32957534]
[17]
Shi, X.; Wang, J.; Lei, Y.; Cong, C.; Tan, D.; Zhou, X. Research progress on the PI3K/AKT signaling pathway in gynecological cancer. Mol. Med. Rep., 2019, 19(6), 4529-4535.
[http://dx.doi.org/10.3892/mmr.2019.10121] [PMID: 30942405]
[18]
Liu, R.; Chen, Y.; Liu, G.; Li, C.; Song, Y.; Cao, Z.; Li, W.; Hu, J.; Lu, C.; Liu, Y. PI3K/AKT pathway as a key link modulates the multidrug resistance of cancers. Cell Death Dis., 2020, 11(9), 797.
[http://dx.doi.org/10.1038/s41419-020-02998-6] [PMID: 32973135]
[19]
Donahue, T.R.; Tran, L.M.; Hill, R.; Li, Y.; Kovochich, A.; Calvopina, J.H.; Patel, S.G.; Wu, N.; Hindoyan, A.; Farrell, J.J.; Li, X.; Dawson, D.W.; Wu, H. Integrative survival-based molecular profiling of human pancreatic cancer. Clin. Cancer Res., 2012, 18(5), 1352-1363.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-1539] [PMID: 22261810]
[20]
Katso, R.; Okkenhaug, K.; Ahmadi, K.; White, S.; Timms, J.; Waterfield, M.D. Cellular function of phosphoinositide 3-kinases: Implications for development, homeostasis, and cancer. Annu. Rev. Cell Dev. Biol., 2001, 17(1), 615-675.
[http://dx.doi.org/10.1146/annurev.cellbio.17.1.615] [PMID: 11687500]
[21]
Engelman, J.A.; Luo, J.; Cantley, L.C. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat. Rev. Genet., 2006, 7(8), 606-619.
[http://dx.doi.org/10.1038/nrg1879] [PMID: 16847462]
[22]
Yuan, T.L.; Cantley, L.C. PI3K pathway alterations in cancer: Variations on a theme. Oncogene, 2008, 27(41), 5497-5510.
[http://dx.doi.org/10.1038/onc.2008.245] [PMID: 18794884]
[23]
Pacold, M.E.; Suire, S.; Perisic, O.; Lara-Gonzalez, S.; Davis, C.T.; Walker, E.H.; Hawkins, P.T.; Stephens, L.; Eccleston, J.F.; Williams, R.L. Crystal structure and functional analysis of Ras binding to its effector phosphoinositide 3-kinase γ Cell, 2000, 103(6), 931-944.
[http://dx.doi.org/10.1016/S0092-8674(00)00196-3] [PMID: 11136978]
[24]
Hennessy, B.T.; Smith, D.L.; Ram, P.T.; Lu, Y.; Mills, G.B. Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat. Rev. Drug Discov., 2005, 4(12), 988-1004.
[http://dx.doi.org/10.1038/nrd1902] [PMID: 16341064]
[25]
Manning, B.D.; Cantley, L.C. AKT/PKB signaling: Navigating downstream. Cell, 2007, 129(7), 1261-1274.
[http://dx.doi.org/10.1016/j.cell.2007.06.009] [PMID: 17604717]
[26]
Benetatos, L.; Voulgaris, E.; Vartholomatos, G. The crosstalk between long non-coding RNAs and PI3K in cancer. Med. Oncol., 2017, 34(3), 39.
[http://dx.doi.org/10.1007/s12032-017-0897-2] [PMID: 28176240]
[27]
Dong, P.; Konno, Y.; Watari, H.; Hosaka, M.; Noguchi, M.; Sakuragi, N. The impact of microRNA-mediated PI3K/AKT signaling on epithelial-mesenchymal transition and cancer stemness in endometrial cancer. J. Transl. Med., 2014, 12(1), 231.
[http://dx.doi.org/10.1186/s12967-014-0231-0] [PMID: 25141911]
[28]
Carneiro, B.A.; El-Deiry, W.S. Targeting apoptosis in cancer therapy. Nat. Rev. Clin. Oncol., 2020, 17(7), 395-417.
[http://dx.doi.org/10.1038/s41571-020-0341-y] [PMID: 32203277]
[29]
Redza-Dutordoir, M.; Averill-Bates, D.A. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. Biophys. Acta Mol. Cell Res., 2016, 1863(12), 2977-2992.
[http://dx.doi.org/10.1016/j.bbamcr.2016.09.012] [PMID: 27646922]
[30]
Wang, C.; Youle, R.J. The role of mitochondria in apoptosis. Annu. Rev. Genet., 2009, 43(1), 95-118.
[http://dx.doi.org/10.1146/annurev-genet-102108-134850] [PMID: 19659442]
[31]
Franco, R.; Cidlowski, J.A. Apoptosis and glutathione: Beyond an antioxidant. Cell Death Differ., 2009, 16(10), 1303-1314.
[http://dx.doi.org/10.1038/cdd.2009.107] [PMID: 19662025]
[32]
Poornima, P.; Quency, R.S.; Padma, V.V. Neferine induces reactive oxygen species mediated intrinsic pathway of apoptosis in HepG2 cells. Food Chem., 2013, 136(2), 659-667.
[http://dx.doi.org/10.1016/j.foodchem.2012.07.112] [PMID: 23122111]
[33]
Khandia, R.; Dadar, M.; Munjal, A.; Dhama, K.; Karthik, K.; Tiwari, R.; Yatoo, M.I.; Iqbal, H.M.N.; Singh, K.P.; Joshi, S.K.; Chaicumpa, W. A comprehensive review of autophagy and its various roles in infectious, non-infectious, and lifestyle diseases: Current knowledge and prospects for disease prevention, novel drug design, and therapy. Cells, 2019, 8(7), 674.
[http://dx.doi.org/10.3390/cells8070674] [PMID: 31277291]
[34]
Filomeni, G.; De Zio, D.; Cecconi, F. Oxidative stress and autophagy: The clash between damage and metabolic needs. Cell Death Differ., 2015, 22(3), 377-388.
[http://dx.doi.org/10.1038/cdd.2014.150] [PMID: 25257172]
[35]
Yun, C.; Lee, S. The roles of autophagy in cancer. Int. J. Mol. Sci., 2018, 19(11), 3466.
[http://dx.doi.org/10.3390/ijms19113466] [PMID: 30400561]
[36]
Kma, L.; Baruah, T.J. The interplay of ROS and the PI3K/Akt pathway in autophagy regulation. Biotechnol. Appl. Biochem., 2021.
[PMID: 33442914]
[37]
Ma, Z.; Lou, S.; Jiang, Z. PHLDA2 regulates EMT and autophagy in colorectal cancer via the PI3K/AKT signaling pathway. Aging (Albany NY), 2020, 12(9), 7985-8000.
[http://dx.doi.org/10.18632/aging.103117] [PMID: 32385195]
[38]
Kumar, D.; Shankar, S.; Srivastava, R.K. Rottlerin induces autophagy and apoptosis in prostate cancer stem cells via PI3K/Akt/mTOR signaling pathway. Cancer Lett., 2014, 343(2), 179-189.
[http://dx.doi.org/10.1016/j.canlet.2013.10.003] [PMID: 24125861]
[39]
Stockwell, B.R.; Friedmann Angeli, J.P.; Bayir, H.; Bush, A.I.; Conrad, M.; Dixon, S.J.; Fulda, S.; Gascón, S.; Hatzios, S.K.; Kagan, V.E.; Noel, K.; Jiang, X.; Linkermann, A.; Murphy, M.E.; Overholtzer, M.; Oyagi, A.; Pagnussat, G.C.; Park, J.; Ran, Q.; Rosenfeld, C.S.; Salnikow, K.; Tang, D.; Torti, F.M.; Torti, S.V.; Toyokuni, S.; Woerpel, K.A.; Zhang, D.D. Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease. Cell, 2017, 171(2), 273-285.
[http://dx.doi.org/10.1016/j.cell.2017.09.021] [PMID: 28985560]
[40]
Friedmann Angeli, J.P.; Krysko, D.V.; Conrad, M. Ferroptosis at the crossroads of cancer-acquired drug resistance and immune evasion. Nat. Rev. Cancer, 2019, 19(7), 405-414.
[http://dx.doi.org/10.1038/s41568-019-0149-1] [PMID: 31101865]
[41]
Hassannia, B.; Vandenabeele, P.; Vanden Berghe, T. Targeting ferroptosis to iron out cancer. Cancer Cell, 2019, 35(6), 830-849.
[http://dx.doi.org/10.1016/j.ccell.2019.04.002] [PMID: 31105042]
[42]
Gao, M.; Jiang, X. To eat or not to eat — the metabolic flavor of ferroptosis. Curr. Opin. Cell Biol., 2018, 51, 58-64.
[http://dx.doi.org/10.1016/j.ceb.2017.11.001] [PMID: 29175614]
[43]
Zhang, Y.; Shi, J.; Liu, X.; Feng, L.; Gong, Z.; Koppula, P.; Sirohi, K.; Li, X.; Wei, Y.; Lee, H.; Zhuang, L.; Chen, G.; Xiao, Z.D.; Hung, M.C.; Chen, J.; Huang, P.; Li, W.; Gan, B. BAP1 links metabolic regulation of ferroptosis to tumour suppression. Nat. Cell Biol., 2018, 20(10), 1181-1192.
[http://dx.doi.org/10.1038/s41556-018-0178-0] [PMID: 30202049]
[44]
Jiang, L.; Kon, N.; Li, T.; Wang, S.J.; Su, T.; Hibshoosh, H.; Baer, R.; Gu, W. Ferroptosis as a p53-mediated activity during tumour suppression. Nature, 2015, 520(7545), 57-62.
[http://dx.doi.org/10.1038/nature14344] [PMID: 25799988]
[45]
Gao, M.; Yi, J.; Zhu, J.; Minikes, A.M.; Monian, P.; Thompson, C.B.; Jiang, X. Role of mitochondria in ferroptosis. Mol. Cell, 2019, 73(2), 354-363.
[http://dx.doi.org/10.1016/j.molcel.2018.10.042]
[46]
Jennis, M.; Kung, C.P.; Basu, S.; Budina-Kolomets, A.; Leu, J.I.J.; Khaku, S.; Scott, J.P.; Cai, K.Q.; Campbell, M.R.; Porter, D.K.; Wang, X.; Bell, D.A.; Li, X.; Garlick, D.S.; Liu, Q.; Hollstein, M.; George, D.L.; Murphy, M.E. An African-specific polymorphism in the TP53 gene impairs p53 tumor suppressor function in a mouse model. Genes Dev., 2016, 30(8), 918-930.
[http://dx.doi.org/10.1101/gad.275891.115] [PMID: 27034505]
[47]
Wang, W.; Green, M.; Choi, J.E.; Gijón, M.; Kennedy, P.D.; Johnson, J.K.; Liao, P.; Lang, X.; Kryczek, I.; Sell, A.; Xia, H.; Zhou, J.; Li, G.; Li, J.; Li, W.; Wei, S.; Vatan, L.; Zhang, H.; Szeliga, W.; Gu, W.; Liu, R.; Lawrence, T.S.; Lamb, C.; Tanno, Y.; Cieslik, M.; Stone, E.; Georgiou, G.; Chan, T.A.; Chinnaiyan, A.; Zou, W. CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy. Nature, 2019, 569(7755), 270-274.
[http://dx.doi.org/10.1038/s41586-019-1170-y] [PMID: 31043744]
[48]
Lang, X.; Green, M.D.; Wang, W.; Yu, J.; Choi, J.E.; Jiang, L.; Liao, P.; Zhou, J.; Zhang, Q.; Dow, A.; Saripalli, A.L.; Kryczek, I.; Wei, S.; Szeliga, W.; Vatan, L.; Stone, E.M.; Georgiou, G.; Cieslik, M.; Wahl, D.R.; Morgan, M.A.; Chinnaiyan, A.M.; Lawrence, T.S.; Zou, W. Radiotherapy and immunotherapy promote tumoral lipid oxidation and ferroptosis via synergistic repression of SLC7A11. Cancer Discov., 2019, 9(12), 1673-1685.
[http://dx.doi.org/10.1158/2159-8290.CD-19-0338] [PMID: 31554642]
[49]
Ye, L.F.; Chaudhary, K.R.; Zandkarimi, F.; Harken, A.D.; Kinslow, C.J.; Upadhyayula, P.S.; Dovas, A.; Higgins, D.M.; Tan, H.; Zhang, Y.; Buonanno, M.; Wang, T.J.C.; Hei, T.K.; Bruce, J.N.; Canoll, P.D.; Cheng, S.K.; Stockwell, B.R. Radiation-induced lipid peroxidation triggers ferroptosis and synergizes with ferroptosis inducers. ACS Chem. Biol., 2020, 15(2), 469-484.
[http://dx.doi.org/10.1021/acschembio.9b00939] [PMID: 31899616]
[50]
Lei, G.; Zhang, Y.; Koppula, P.; Liu, X.; Zhang, J.; Lin, S.H.; Ajani, J.A.; Xiao, Q.; Liao, Z.; Wang, H.; Gan, B. The role of ferroptosis in ionizing radiation-induced cell death and tumor suppression. Cell Res., 2020, 30(2), 146-162.
[http://dx.doi.org/10.1038/s41422-019-0263-3] [PMID: 31949285]
[51]
Viswanathan, V.S.; Ryan, M.J.; Dhruv, H.D.; Gill, S.; Eichhoff, O.M.; Seashore-Ludlow, B.; Kaffenberger, S.D.; Eaton, J.K.; Shimada, K.; Aguirre, A.J.; Viswanathan, S.R.; Chattopadhyay, S.; Tamayo, P.; Yang, W.S.; Rees, M.G.; Chen, S.; Boskovic, Z.V.; Javaid, S.; Huang, C.; Wu, X.; Tseng, Y.Y.; Roider, E.M.; Gao, D.; Cleary, J.M.; Wolpin, B.M.; Mesirov, J.P.; Haber, D.A.; Engelman, J.A.; Boehm, J.S.; Kotz, J.D.; Hon, C.S.; Chen, Y.; Hahn, W.C.; Levesque, M.P.; Doench, J.G.; Berens, M.E.; Shamji, A.F.; Clemons, P.A.; Stockwell, B.R.; Schreiber, S.L. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature, 2017, 547(7664), 453-457.
[http://dx.doi.org/10.1038/nature23007] [PMID: 28678785]
[52]
Wu, J.; Minikes, A.M.; Gao, M.; Bian, H.; Li, Y.; Stockwell, B.R.; Chen, Z.N.; Jiang, X. Intercellular interaction dictates cancer cell ferroptosis via NF2–YAP signalling. Nature, 2019, 572(7769), 402-406.
[http://dx.doi.org/10.1038/s41586-019-1426-6] [PMID: 31341276]
[53]
Hangauer, M.J.; Viswanathan, V.S.; Ryan, M.J.; Bole, D.; Eaton, J.K.; Matov, A.; Galeas, J.; Dhruv, H.D.; Berens, M.E.; Schreiber, S.L.; McCormick, F.; McManus, M.T. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature, 2017, 551(7679), 247-250.
[http://dx.doi.org/10.1038/nature24297] [PMID: 29088702]
[54]
Kiruthiga, C.; Devi, K.P.; Nabavi, S.M.; Bishayee, A. Autophagy: A potential therapeutic target of polyphenols in hepatocellular carcinoma. Cancers, 2020, 12(3), 562.
[http://dx.doi.org/10.3390/cancers12030562] [PMID: 32121322]
[55]
Kaur, V.; Kumar, M.; Kumar, A.; Kaur, K.; Dhillon, V.S.; Kaur, S. Pharmacotherapeutic potential of phytochemicals: Implications in cancer chemoprevention and future perspectives. Biomed. Pharmacother., 2018, 97, 564-586.
[http://dx.doi.org/10.1016/j.biopha.2017.10.124] [PMID: 29101800]
[56]
Sun, C.Y.; Zhang, Q.Y.; Zheng, G.J.; Feng, B. Autophagy and its potent modulators from phytochemicals in cancer treatment. Cancer Chemother. Pharmacol., 2019, 83(1), 17-26.
[http://dx.doi.org/10.1007/s00280-018-3707-4] [PMID: 30353226]
[57]
Byun, S.; Lee, E.; Lee, K.W. Therapeutic implications of autophagy inducers in immunological disorders, infection, and cancer. Int. J. Mol. Sci., 2017, 18(9), 1959.
[http://dx.doi.org/10.3390/ijms18091959] [PMID: 28895911]
[58]
Yang, Z.; Li, C.; Wang, X.; Zhai, C.; Yi, Z.; Wang, L.; Liu, B.; Du, B.; Wu, H.; Guo, X.; Liu, M.; Li, D.; Luo, J. Dauricine induces apoptosis, inhibits proliferation and invasion through inhibiting NF-κB signaling pathway in colon cancer cells. J. Cell. Physiol., 2010, 225(1), 266-275.
[http://dx.doi.org/10.1002/jcp.22261] [PMID: 20509140]
[59]
Zhou, X.; Qu, Y.Q.; Zheng, Z.; Law, B.Y.K.; Mok, S.W.F.; Jiang, Z.H.; Wong, V.K.W.; Bai, L.P. Novel dauricine derivatives suppress cancer via autophagy-dependent cell death. Bioorg. Chem., 2019, 83, 450-460.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.074] [PMID: 30448723]
[60]
Zhang, S.; Ren, Y.; Qiu, J. Dauricine inhibits viability and induces cell cycle arrest and apoptosis via inhibiting the PI3K/Akt signaling pathway in renal cell carcinoma cells. Mol. Med. Rep., 2018, 17(5), 7403-7408.
[http://dx.doi.org/10.3892/mmr.2018.8732] [PMID: 29568902]
[61]
Tian, Y.; Qian, S.; Jiang, Y.; Shen, Q.; Zheng, J.; Zhou, H.; Zeng, S. The interaction between human breast cancer resistance protein (BCRP) and five bisbenzylisoquinoline alkaloids. Int. J. Pharm., 2013, 453(2), 371-379.
[http://dx.doi.org/10.1016/j.ijpharm.2013.05.053] [PMID: 23742976]
[62]
Wang, J.; Li, Y.; Zu, X.B.; Chen, M.F.; Qi, L. Dauricine can inhibit the activity of proliferation of urinary tract tumor cells. Asian Pac. J. Trop. Med., 2012, 5(12), 973-976.
[http://dx.doi.org/10.1016/S1995-7645(12)60185-0] [PMID: 23199717]
[63]
Law, B.Y.K.; Chan, W.K.; Xu, S.W.; Wang, J.R.; Bai, L.P.; Liu, L.; Wong, V.K.W. Natural small-molecule enhancers of autophagy induce autophagic cell death in apoptosis-defective cells. Sci. Rep., 2015, 4(1), 5510.
[http://dx.doi.org/10.1038/srep05510] [PMID: 24981420]
[64]
Li, W.; Qiu, Y.; Hao, J.; Zhao, C.; Deng, X.; Shu, G. Dauricine upregulates the chemosensitivity of hepatocellular carcinoma cells: Role of repressing glycolysis via miR-199a:HK2/PKM2 modulation. Food Chem. Toxicol., 2018, 121, 156-165.
[http://dx.doi.org/10.1016/j.fct.2018.08.030] [PMID: 30171973]
[65]
Wu, M.Y.; Wang, S.F.; Cai, C.Z.; Tan, J.Q.; Li, M.; Lu, J.J.; Chen, X.P.; Wang, Y.T.; Zheng, W.; Lu, J.H. Natural autophagy blockers, dauricine (DAC) and daurisoline (DAS), sensitize cancer cells to camptothecin-induced toxicity. Oncotarget, 2017, 8(44), 77673-77684.
[http://dx.doi.org/10.18632/oncotarget.20767] [PMID: 29100416]
[66]
Wang, D.; Yang, N.; Zhang, X.; Li, M.; Li, X.; Zhao, L.; Yuan, Q.; Yu, Y.; Lu, J.; Zhao, J. Daurisoline suppresses growth of esophageal squamous cell carcinoma by inhibiting MEK1/2 in vitro and in vivo. Research Square, 2021.
[67]
Huang, X.H.; Yan, X.; Zhang, Q.H.; Hong, P.; Zhang, W.X.; Liu, Y.P.; Xu, W.W.; Li, B.; He, Q.Y. Direct targeting of HSP90 with daurisoline destabilizes β-catenin to suppress lung cancer tumorigenesis. Cancer Lett., 2020, 489, 66-78.
[http://dx.doi.org/10.1016/j.canlet.2020.05.024] [PMID: 32544514]
[68]
Tabeshpour, J.; Imenshahidi, M.; Hosseinzadeh, H. A review of the effects of Berberis vulgaris and its major component, berberine, in metabolic syndrome. Iran. J. Basic Med. Sci., 2017, 20(5), 557-568.
[PMID: 28656091]
[69]
Kapoor, S.; Liang, Y.; Qiu, X.; Xu, R.; Zhao, X. Emerging role of berbamine as an anti-cancer agent in systemic malignancies besides chronic myeloid leukemia. J. Zhejiang Univ. Sci. B, 2012, 13(9), 761-762.
[http://dx.doi.org/10.1631/jzus.B1200110] [PMID: 22949368]
[70]
Han, C.; Wang, Z.; Chen, S.; Li, L.; Xu, Y.; Kang, W.; Wei, C.; Ma, H.; Wang, M.; Jin, X. Berbamine suppresses the progression of bladder cancer by modulating the ROS/NF-κB axis. Oxid. Med. Cell. Longev., 2021, 2021, 8851763.
[71]
Zhang, H.; Jiao, Y.; Shi, C.; Song, X.; Chang, Y.; Ren, Y.; Shi, X. Berbamine suppresses cell proliferation and promotes apoptosis in ovarian cancer partially via the inhibition of Wnt/β-catenin signaling. Acta Biochim. Biophys. Sin. (Shanghai), 2018, 50(6), 532-539.
[http://dx.doi.org/10.1093/abbs/gmy036] [PMID: 29701777]
[72]
Zhang, H.; Jiao, Y.; Shi, C.; Song, X.; Chang, Y.; Ren, Y.; Shi, X. Berbamine suppresses cell viability and induces apoptosis in colorectal cancer via activating p53-dependent apoptotic signaling pathway. Cytotechnology, 2018, 70(1), 321-329.
[http://dx.doi.org/10.1007/s10616-017-0146-8] [PMID: 28965196]
[73]
Zhao, Y.; Lv, J.J.; Chen, J.; Jin, X.B.; Wang, M.W.; Su, Z.H.; Wang, L.Y.; Zhang, H.Y. Berbamine inhibited the growth of prostate cancer cells in vivo and in vitro via triggering intrinsic pathway of apoptosis. Prostate Cancer Prostatic Dis., 2016, 19(4), 358-366.
[http://dx.doi.org/10.1038/pcan.2016.29] [PMID: 27431500]
[74]
Manogaran, P.; Beeraka, N.M.; Padma, V.V. The cytoprotective and anti-cancer potential of bisbenzylisoquinoline alkaloids from Nelumbo nucifera. Curr. Top. Med. Chem., 2020, 19(32), 2940-2957.
[http://dx.doi.org/10.2174/1568026619666191116160908] [PMID: 31738137]
[75]
Zhu, H.; Ruan, S.; Jia, F.; Chu, J.; Zhu, Y.; Huang, Y.; Liu, G. In vitro and in vivo superior radiosensitizing effect of berbamine for head and neck squamous cell carcinoma. OncoTargets Ther., 2018, 11, 8117-8125.
[http://dx.doi.org/10.2147/OTT.S171212] [PMID: 30532553]
[76]
Jia, F.; Ruan, S.; Liu, N.; Fu, L. Synergistic antitumor effects of berbamine and paclitaxel through ROS/Akt pathway in glioma cells. Evid. Based Complement. Alternat. Med., 2017, 2017, 8152526.
[77]
Fu, R.; Deng, Q.; Zhang, H.; Hu, X.; Li, Y.; Liu, Y.; Hu, J.; Luo, Q.; Zhang, Y.; Jiang, X.; Li, L.; Yang, C.; Gao, N. A novel autophagy inhibitor berbamine blocks SNARE-mediated autophagosome-lysosome fusion through upregulation of BNIP3. Cell Death Dis., 2018, 9(2), 243.
[http://dx.doi.org/10.1038/s41419-018-0276-8] [PMID: 29445175]
[78]
Wu, J.; Bu, X.; Dou, L.; Fang, L.; Shen, Q. Co-delivery of docetaxel and berbamine by chitosan/sulfobutylether-β-cyclodextrin nanoparticles for enhancing bioavailability and anticancer activities. J. Biomed. Nanotechnol., 2015, 11(10), 1847-1857.
[http://dx.doi.org/10.1166/jbn.2015.2110] [PMID: 26502647]
[79]
Parhi, P.; Suklabaidya, S.; Kumar Sahoo, S. Enhanced anti-metastatic and anti-tumorigenic efficacy of Berbamine loaded lipid nanoparticles in vivo. Sci. Rep., 2017, 7(1), 5806.
[http://dx.doi.org/10.1038/s41598-017-05296-y] [PMID: 28724926]
[80]
Liang, Y.; He, X.; Li, X.; Zhang, X.; Zhang, X.; Zhang, L.; Qiu, X.; Zhao, X.; Xu, R. 4-Chlorbenzoyl berbamine, a novel derivative of the natural product berbamine, potently inhibits the growth of human myeloma cells by modulating the NF-κB and JNK signalling pathways. Cancer Invest., 2016, 34(10), 496-505.
[http://dx.doi.org/10.1080/07357907.2016.1235709] [PMID: 27768381]
[81]
Ramu, A.; Kathiresan, S.; Ali Ahmed, B. Gramine inhibits angiogenesis and induces apoptosis via modulation of TGF-β signalling in 7,12 dimethylbenz[a]anthracene (DMBA) induced hamster buccal pouch carcinoma. Phytomedicine, 2017, 33, 69-76.
[http://dx.doi.org/10.1016/j.phymed.2017.05.008] [PMID: 28887922]
[82]
Ramu, A.; Kathiresan, S.; Ramadoss, H.; Nallu, A.; Kaliyan, R.; Azamuthu, T. Gramine attenuates EGFR-mediated inflammation and cell proliferation in oral carcinogenesis via regulation of NF-κB and STAT3 signaling. Biomed. Pharmacother., 2018, 98, 523-530.
[http://dx.doi.org/10.1016/j.biopha.2017.12.049] [PMID: 29287200]
[83]
Ke, S.; Shi, L.; Cao, X.; Yang, Q.; Liang, Y.; Yang, Z. Heterocycle-functional gramine analogues: Solvent and catalyst-free synthesis and their inhibition activities against cell proliferation. Eur. J. Med. Chem., 2012, 54, 248-254.
[http://dx.doi.org/10.1016/j.ejmech.2012.05.003] [PMID: 22647218]
[84]
Zhang, X.; Wang, X.; Wu, T.; Li, B.; Liu, T.; Wang, R.; Liu, Q.; Liu, Z.; Gong, Y.; Shao, C. Isoliensinine induces apoptosis in triple-negative human breast cancer cells through ROS generation and p38 MAPK/JNK activation. Sci. Rep., 2015, 5(1), 12579.
[http://dx.doi.org/10.1038/srep12579] [PMID: 26219228]
[85]
Kang, EJ; Lee, SK; Park, K-K; Son, SH; Kim, KR; Chung, W-Y Liensinine and nuciferine, bioactive components of Nelumbo nucifera, inhibit the growth of breast cancer cells and breast cancer-associated bone loss. Evid. Based Complement. Altern. Med.,, 2017.
[http://dx.doi.org/10.1155/2017/1583185]
[86]
Yang, J.; Yu, K.; Si, X.; Li, S.; Cao, Y.; Li, W.; Zhang, J. Liensinine inhibited gastric cancer cell growth through ROS generation and the PI3K/AKT pathway. J. Cancer, 2019, 10(25), 6431-6438.
[http://dx.doi.org/10.7150/jca.32691] [PMID: 31772676]
[87]
Shen, Y.; Bian, R.; Li, Y.; Gao, Y.; Liu, Y.; Xu, Y.; Song, X.; Zhang, Y. Liensinine induces gallbladder cancer apoptosis and G2/M arrest by inhibiting ZFX-induced PI3K/AKT pathway. Acta Biochim. Biophys. Sin., 2019, 51(6), 606-613.
[http://dx.doi.org/10.1093/abbs/gmz041] [PMID: 31074773]
[88]
Wang, Y.; Li, Y.J.; Huang, X.H.; Zheng, C.C.; Yin, X.F.; Li, B.; He, Q.Y. Liensinine perchlorate inhibits colorectal cancer tumorigenesis by inducing mitochondrial dysfunction and apoptosis. Food Funct., 2018, 9(11), 5536-5546.
[http://dx.doi.org/10.1039/C8FO01137K] [PMID: 30207364]
[89]
Zhou, J.; Li, G.; Zheng, Y.; Shen, H.M.; Hu, X.; Ming, Q.L.; Huang, C.; Li, P.; Gao, N. A novel autophagy/mitophagy inhibitor liensinine sensitizes breast cancer cells to chemotherapy through DNM1L-mediated mitochondrial fission. Autophagy, 2015, 11(8), 1259-1279.
[http://dx.doi.org/10.1080/15548627.2015.1056970] [PMID: 26114658]
[90]
Liu, C.M.; Kao, C.L.; Wu, H.M.; Li, W.J.; Huang, C.T.; Li, H.T.; Chen, C.Y. Antioxidant and anticancer aporphine alkaloids from the leaves of Nelumbo nucifera Gaertn. cv. Rosa-plena. Molecules, 2014, 19(11), 17829-17838.
[http://dx.doi.org/10.3390/molecules191117829] [PMID: 25372397]
[91]
Tungmunnithum, D.; Pinthong, D.; Hano, C. Flavonoids from Nelumbo nucifera Gaertn., a medicinal plant: Uses in traditional medicine, phytochemistry and pharmacological activities. Medicines, 2018, 5(4), 127.
[http://dx.doi.org/10.3390/medicines5040127] [PMID: 30477094]
[92]
Liu, W.; Yi, D.D.; Guo, J.L.; Xiang, Z.X.; Deng, L.F.; He, L. Nuciferine, extracted from Nelumbo nucifera Gaertn, inhibits tumor-promoting effect of nicotine involving Wnt/β-catenin signaling in non-small cell lung cancer. J. Ethnopharmacol., 2015, 165, 83-93.
[http://dx.doi.org/10.1016/j.jep.2015.02.015] [PMID: 25698245]
[93]
Li, Z.; Chen, Y.; An, T.; Liu, P.; Zhu, J.; Yang, H.; Zhang, W.; Dong, T.; Jiang, J.; Zhang, Y.; Jiang, M.; Yang, X. Nuciferine inhibits the progression of glioblastoma by suppressing the SOX2-AKT/STAT3-Slug signaling pathway. J. Exp. Clin. Cancer Res., 2019, 38(1), 139.
[http://dx.doi.org/10.1186/s13046-019-1134-y] [PMID: 30922391]
[94]
Qi, Q.; Li, R.; Li, H.; Cao, Y.; Bai, M.; Fan, X.; Wang, S.; Zhang, B.; Li, S. Identification of the anti-tumor activity and mechanisms of nuciferine through a network pharmacology approach. Acta Pharmacol. Sin., 2016, 37(7), 963-972.
[http://dx.doi.org/10.1038/aps.2016.53] [PMID: 27180984]
[95]
Farrell, M.S.; McCorvy, J.D.; Huang, X.P.; Urban, D.J.; White, K.L.; Giguere, P.M.; Doak, A.K.; Bernstein, A.I.; Stout, K.A.; Park, S.M.; Rodriguiz, R.M.; Gray, B.W.; Hyatt, W.S.; Norwood, A.P.; Webster, K.A.; Gannon, B.M.; Miller, G.W.; Porter, J.H.; Shoichet, B.K.; Fantegrossi, W.E.; Wetsel, W.C.; Roth, B.L. In vitro and in vivo characterization of the alkaloid nuciferine. PLoS One, 2016, 11(3), e0150602.
[http://dx.doi.org/10.1371/journal.pone.0150602] [PMID: 26963248]
[96]
Zhou, L.; Wang, Q.; Zhang, H.; Li, Y.; Xie, S.; Xu, M. YAP inhibition by nuciferine via AMPK-mediated downregulation of HMGCR sensitizes pancreatic cancer cells to gemcitabine. Biomolecules, 2019, 9(10), 620.
[http://dx.doi.org/10.3390/biom9100620] [PMID: 31627466]
[97]
Singh, B.; Sharma, R.A. Anti-inflammatory and antimicrobial properties of pyrroloquinazoline alkaloids from Adhatoda vasica Nees. Phytomedicine, 2013, 20(5), 441-445.
[http://dx.doi.org/10.1016/j.phymed.2012.12.015] [PMID: 23357363]
[98]
Barth, A.; Hovhannisyan, A.; Jamalyan, K.; Narimanyan, M. Antitussive effect of a fixed combination of Justicia adhatoda, Echinacea purpurea and Eleutherococcus senticosus extracts in patients with acute upper respiratory tract infection: A comparative, randomized, double-blind, placebo-controlled study. Phytomedicine, 2015, 22(13), 1195-1200.
[http://dx.doi.org/10.1016/j.phymed.2015.10.001] [PMID: 26598919]
[99]
Dey, T.; Dutta, P.; Manna, P.; Kalita, J.; Boruah, H.P.D.; Buragohain, A.K.; Unni, B. Anti-proliferative activities of vasicinone on lung carcinoma cells mediated via activation of both mitochondria-dependent and independent pathways. Biomol. Ther., 2018, 26(4), 409-416.
[http://dx.doi.org/10.4062/biomolther.2017.097] [PMID: 29310422]
[100]
Qazi, A.K.; Hussain, A.; Khan, S.; Aga, M.A.; Behl, A.; Ali, S.; Singh, S.K.; Taneja, S.C.; Shah, B.A.; Saxena, A.K.; Mondhe, D.M.; Hamid, A. Quinazoline based small molecule exerts potent tumour suppressive properties by inhibiting PI3K/Akt/FoxO3a signalling in experimental colon cancer. Cancer Lett., 2015, 359(1), 47-56.
[http://dx.doi.org/10.1016/j.canlet.2014.12.034] [PMID: 25554016]
[101]
Qazi, A.K.; Hussain, A.; Aga, M.A.; Ali, S.; Taneja, S.C.; Sharma, P.R.; Saxena, A.K.; Mondhe, D.M.; Hamid, A. Cell specific apoptosis by RLX is mediated by NFκB in human colon carcinoma HCT-116 cells. BMC Cell Biol., 2014, 15(1), 36.
[http://dx.doi.org/10.1186/1471-2121-15-36] [PMID: 25303828]
[102]
Eckschlager, T.; Plch, J.; Stiborova, M.; Hrabeta, J. Histone deacetylase inhibitors as anticancer drugs. Int. J. Mol. Sci., 2017, 18(7), 1414.
[http://dx.doi.org/10.3390/ijms18071414] [PMID: 28671573]
[103]
Ahmad, M.; Aga, M.A.; Bhat, J.A.; Kumar, B.; Rouf, A.; Capalash, N.; Mintoo, M.J.; Kumar, A.; Mahajan, P.; Mondhe, D.M.; Nargotra, A.; Sharma, P.R.; Zargar, M.A.; Vishwakarma, R.A.; Shah, B.A.; Taneja, S.C.; Hamid, A. Exploring derivatives of quinazoline alkaloid L-vasicine as cap groups in the design and biological mechanistic evaluation of novel antitumor histone deacetylase inhibitors. J. Med. Chem., 2017, 60(8), 3484-3497.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00322] [PMID: 28368585]
[104]
Duraipandiyan, V.; Al-Dhabi, N.; Balachandran, C.; Ignacimuthu, S.; Sankar, C.; Balakrishna, K. Antimicrobial, antioxidant, and cytotoxic properties of vasicine acetate synthesized from vasicine isolated from Adhatoda vasica L. BioMed Res. Int., 2015, 2015, 727304.
[105]
Balachandran, C.; Arun, Y.; Sangeetha, B.; Duraipandiyan, V.; Awale, S.; Emi, N.; Ignacimuthu, S.; Perumal, P.T. In vitro and in vivo anticancer activity of 2-acetyl-benzylamine isolated from Adhatoda vasica L. leaves. Biomed. Pharmacother., 2017, 93, 796-806.
[http://dx.doi.org/10.1016/j.biopha.2017.06.096] [PMID: 28715864]