Cardiovascular & Hematological Agents in Medicinal Chemistry

Author(s): Ayoub Amssayef, Ismail Bouadid and Mohamed Eddouks*

DOI: 10.2174/1871525721666230111150501

L-Tartaric Acid Exhibits Antihypertensive and Vasorelaxant Effects: The Possible Role of eNOS/NO/cGMP Pathways

Page: [202 - 212] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Aims: The aim of the study was to investigate the antihypertensive effect of L-Tartaric acid.

Background: L-Tartaric acid (L-TA) is a well-known weak organic acid that naturally occurs in a wide range of fruits, most notably in grapes, tamarind, and citrus.

Objective: The present study aimed to assess the effect of acute and subchronic administration of L-TA on blood pressure parameters in normotensive and hypertensive rats as well as its vasorelaxant potency.

Methods: In the current study, the antihypertensive activity of L-TA was pharmacologically studied. L-NAME-induced hypertensive and normotensive rats received L-TA (80 and 240 mg/kg) orally over six hours for the acute experiment and seven days for the subchronic treatment. Thereafter, systolic, diastolic, mean, mid arterial blood pressure, and pulse pressure as well as heart rate were evaluated. In the in vitro experiment, the vasorelaxant ability of L-TA was performed in ratisolated thoracic aorta.

Results: An important drop in blood pressure was recorded in L-NAME-induced hypertensives treated with L-TA. This molecule also produced a dose-dependent relaxation of the aorta precontracted with norepinephrine (NEP) and KCl. The study demonstrated that the vasorelaxant capacity of L-TA seems to be exerted through the activation of eNOS/NO/cGMP pathways.

Graphical Abstract

[1]
Vasan, R.S.; Larson, M.G.; Leip, E.P.; Evans, J.C.; O’Donnell, C.J.; Kannel, W.B.; Levy, D. Impact of high-normal blood pressure on the risk of cardiovascular disease. N. Engl. J. Med., 2001, 345(18), 1291-1297.
[http://dx.doi.org/10.1056/NEJMoa003417] [PMID: 11794147]
[2]
Kiriyama, A.; Honbo, A.; Nishimura, A.; Shibata, N.; Iga, K. Pharmacokinetic-pharmacodynamic analyses of antihypertensive drugs, nifedipine and propranolol, in spontaneously hypertensive rats to investigate characteristics of effect and side effects. Regul. Toxicol. Pharmacol., 2016, 76, 21-29.
[http://dx.doi.org/10.1016/j.yrtph.2016.01.003] [PMID: 26773344]
[3]
Tang, F.; Yan, H.L.; Wang, L.X.; Xu, J.F.; Peng, C.; Ao, H.; Tan, Y.Z. Review of natural resources with vasodilation: Traditional medicinal plants, natural products, and their mechanism and clinical efficacy. Front. Pharmacol., 2021, 12, 627458.
[http://dx.doi.org/10.3389/fphar.2021.627458] [PMID: 33867985]
[4]
Ajebli, M.; Eddouks, M. Phytotherapy of hypertension: An updated overview. Endocr. Metab. Immune Disord. Drug Targets, 2020, 20(6), 812-839.
[http://dx.doi.org/10.2174/1871530320666191227104648] [PMID: 31880255]
[5]
Burbidge, C.A.; Ford, C.M.; Melino, V.J.; Wong, D.C.J.; Jia, Y.; Jenkins, C.L.D.; Soole, K.L.; Castellarin, S.D.; Darriet, P.; Rienth, M.; Bonghi, C.; Walker, R.P.; Famiani, F.; Sweetman, C. Biosynthesis and cellular functions of tartaric acid in grapevines. Front. Plant Sci., 2021, 12, 643024.
[http://dx.doi.org/10.3389/fpls.2021.643024] [PMID: 33747023]
[6]
Derewenda, Z.S. On wine, chirality and crystallography. Acta Crystallogr. A, 2008, 64(1), 246-258.
[http://dx.doi.org/10.1107/S0108767307054293] [PMID: 18156689]
[7]
Xuan, J.; Feng, Y. Enantiomeric tartaric acid production using cis-epoxysuccinate hydrolase: History and perspectives. Molecules, 2019, 24(5), 903.
[http://dx.doi.org/10.3390/molecules24050903] [PMID: 30841503]
[8]
Silva, M.M.; Lidon, F.C. An overview on applications and side effects of antioxidant food additives. Emir. J. Food Agric., 2016, 823-832.
[9]
Coban, H.B. Organic acids as antimicrobial food agents: Applications and microbial productions. Bioprocess Biosyst. Eng., 2020, 43(4), 569-591.
[http://dx.doi.org/10.1007/s00449-019-02256-w] [PMID: 31758240]
[10]
Spiller, G.A.; Story, J.A.; Furumoto, E.J.; Chezem, J.C.; Spiller, M. Effect of tartaric acid and dietary fibre from sun-dried raisins on colonic function and on bile acid and volatile fatty acid excretion in healthy adults. Br. J. Nutr., 2003, 90(4), 803-807.
[http://dx.doi.org/10.1079/BJN2003966] [PMID: 13129449]
[11]
Anasuya, A.; Sasikala, M. Tartaric acid inhibits urinary stone formation in rats. Nutr. Res., 1989, 9(5), 575-580.
[http://dx.doi.org/10.1016/S0271-5317(89)80182-4]
[12]
Bai, F.; Wang, Y.; Zhang, S.; Wang, Y.; Zhang, J.; Cao, J.; Sun, L. Caffeoyl substitution changes the inhibition mode of tartaric acid against α-amylase: Analysis of the enzyme inhibition by four caffeic and tartaric acid derivates. Lebensm. Wiss. Technol., 2020, 133, 109942.
[http://dx.doi.org/10.1016/j.lwt.2020.109942]
[13]
Amssayef, A.; Ajebli, M.; Eddouks, M. Aqueous extract of oakmoss produces antihypertensive activity in L-NAME-induced hypertensive rats through sGC-cGMP pathway. Clin. Exp. Hypertens., 2021, 43(1), 49-55.
[http://dx.doi.org/10.1080/10641963.2020.1797087] [PMID: 32706597]
[14]
Amssayef, A.; Eddouks, M. Aqueous extract of matricaria pubescens exhibits antihypertensive activity in L-NAME-induced hypertensiverats through its vasorelaxant effect. Cardiovasc. Hematol. Agents Med. Chem., 2019, 17(2), 135-143.
[http://dx.doi.org/10.2174/1871525717666191007151413] [PMID: 31589128]
[15]
Ajebli, M.; Eddouks, M. Antihypertensive activity of Petroselinum crispum through inhibition of vascular calcium channels in rats. J. Ethnopharmacol., 2019, 242, 112039.
[http://dx.doi.org/10.1016/j.jep.2019.112039] [PMID: 31252093]
[16]
Amssayef, A.; Bouadid, I.; Eddouks, M.; Vitamin, C. Vitamin C inhibits angiotensin-converting enzyme-2 in isolated rat aortic ring. Cardiovasc. Hematol. Disord. Drug Targets, 2021, 21(4), 235-242.
[http://dx.doi.org/10.2174/1871529X21666211214153308] [PMID: 34906063]
[17]
Huang, P.L.; Huang, Z.; Mashimo, H.; Bloch, K.D.; Moskowitz, M.A.; Bevan, J.A.; Fishman, M.C. Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature, 1995, 377(6546), 239-242.
[http://dx.doi.org/10.1038/377239a0] [PMID: 7545787]
[18]
Rees, D.D.; Palmer, R.M.J.; Schulz, R.; Hodson, H.F.; Moncada, S. Characterization of three inhibitors of endothelial nitric oxide synthase in vitro and in vivo. Br. J. Pharmacol., 1990, 101(3), 746-752.
[http://dx.doi.org/10.1111/j.1476-5381.1990.tb14151.x] [PMID: 1706208]
[19]
Lorenz, M.; Wessler, S.; Follmann, E.; Michaelis, W.; Düsterhöft, T.; Baumann, G.; Stangl, K.; Stangl, V. A constituent of green tea, epigallocatechin-3-gallate, activates endothelial nitric oxide synthase by a phosphatidylinositol-3-OH-kinase-, cAMP-dependent protein kinase-, and Akt-dependent pathway and leads to endothelial-dependent vasorelaxation. J. Biol. Chem., 2004, 279(7), 6190-6195.
[http://dx.doi.org/10.1074/jbc.M309114200] [PMID: 14645258]
[20]
Fleming, I.; Busse, R. Molecular mechanisms involved in the regulation of the endothelial nitric oxide synthase. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2003, 284(1), R1-R12.
[http://dx.doi.org/10.1152/ajpregu.00323.2002] [PMID: 12482742]
[21]
Badran, A.; Baydoun, E.; Samaha, A.; Pintus, G.; Mesmar, J.; Iratni, R.; Issa, K.; Eid, A.H. Marjoram relaxes rat thoracic aorta via a PI3-K/eNOS/cGMP pathway. Biomolecules, 2019, 9(6), 227.
[http://dx.doi.org/10.3390/biom9060227]
[22]
Yam, M.F.; Tan, C.S.; Ahmad, M.; Shibao, R. Mechanism of vasorelaxation induced by eupatorin in the rats aortic ring. Eur. J. Pharmacol., 2016, 789, 27-36.
[http://dx.doi.org/10.1016/j.ejphar.2016.06.047] [PMID: 27370961]
[23]
Zhang, C.; Wang, X.H.; Zhong, M.F.; Liu, R.H.; Li, H.L.; Zhang, W.D.; Chen, H. Mechanisms underlying vasorelaxant action of astragaloside IV in isolated rat aortic rings. Clin. Exp. Pharmacol. Physiol., 2007, 34(5-6), 387-392.
[http://dx.doi.org/10.1111/j.1440-1681.2007.04564.x] [PMID: 17439405]
[24]
Kang, D.; Choi, D.; Lee, J.; Lee, Y.; Moon, M.; Yang, S.; Kwon, T.; Kwon, J.; Kim, J.; Lee, H. Endothelial NO/cGMP-dependent vascular relaxation of cornuside isolated from the fruit of Cornus officinalis. Planta Med., 2007, 73(14), 1436-1440.
[http://dx.doi.org/10.1055/s-2007-990243] [PMID: 17926269]
[25]
Tan, C.S.; Loh, Y.C.; Tew, W.Y.; Yam, M.F. Vasorelaxant effect of 3,5,4′-trihydroxy-trans-stilbene (resveratrol) and its underlying mechanism. Inflammopharmacology, 2020, 28(4), 869-875.
[http://dx.doi.org/10.1007/s10787-019-00682-6] [PMID: 31925617]
[26]
Sahinturk, S.; Demirel, S.; Isbil, N.; Ozyener, F. Potassium channels contributes to apelin-induced vasodilation in rat thoracic aorta. Protein Pept. Lett., 2022, 29(6), 538-549.
[http://dx.doi.org/10.2174/0929866529666220516141317] [PMID: 35578855]
[27]
Sahinturk, S.; Demirel, S.; Ozyener, F.; Isbil, N. Vascular functional effect mechanisms of elabela in rat thoracic aorta. Ann. Vasc. Surg., 2022, 84, 381-397.
[http://dx.doi.org/10.1016/j.avsg.2022.04.033] [PMID: 35472496]
[28]
Demirel, S.; Sahinturk, S.; Isbil, N.; Ozyener, F. Physiological role of K+ channels in irisin-induced vasodilation in rat thoracic aorta. Peptides, 2022, 147, 170685.
[http://dx.doi.org/10.1016/j.peptides.2021.170685] [PMID: 34748790]
[29]
Şahintürk, S.; İşbil, N. The role of potassium channels on vasorelaxant effects of elabela in rat thoracic aorta. Turkish J. Thoracic Cardiovas. Surg., 2022, 30(1), 18-25.
[http://dx.doi.org/10.5606/tgkdc.dergisi.2022.22756] [PMID: 35444849]