Synthesis by Microwave Irradiation, Molecular Structural Analysis and Trypanocidal Activity of Novel Pyrazole-tetrahydropyrimidine Derivatives

Page: [707 - 715] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Background: A series of new eight 2-(1-aryl-3-methyl-1H-pyrazol-4-yl)-1,4,5,6-tetrahydropyrimidines 1(a-h) were synthesized by microwave irradiation technique. In vitro phenotypic screening was performed to evaluate the effect of these compounds on intracellular amastigotes forms of Trypanosoma cruzi, the etiological agent of Chagas disease.

Methods: Compounds 1(a-h) were synthesized from pyrazole-carbonitriles 2(a-h) employing microwave irradiation (50W) for 10-20 minutes. Physicochemical properties were calculated using OSIRIS DataWarrior. The toxic effect on mammalian cells (Vero Cells) and the trypanocidal activity against Trypanosoma cruzi (Dm28c-Luc) were also evaluated.

Results: Compounds 1(a-h) were obtained in 24-94% yields. They were completely characterized by Fourier Transform Infrared (FT-IR), Nuclear Magnetic Resonance (NMR) and High-Resolution Mass Spectrometry (HRMS) analyses. The derivatives showed low trypanocidal activity, with IC50 ranging from 47.16 to > 100 μM, with lower activity than benznidazole (1.93 μM) used as reference drug.

Conclusion: The attractive features of this synthetic methodology are mild conditions, short reaction time, and low power. All derivatives showed low toxicity in mammalian cells, good oral bioavailability, and did not violate Lipinski´s rule of 5.

Graphical Abstract

[1]
Knorr, L. Synthese von pyrrolderivaten. Ber. Dtsch. Chem. Ges., 1884, 17(2), 1635-1642.
[http://dx.doi.org/10.1002/cber.18840170220]
[2]
Faria, J.V.; Vegi, P.F.; Miguita, A.G.C.; dos Santos, M.S.; Boechat, N.; Bernardino, A.M.R. Recently reported biological activities of pyrazole compounds. Bioorg. Med. Chem., 2017, 25(21), 5891-5903.
[http://dx.doi.org/10.1016/j.bmc.2017.09.035] [PMID: 28988624]
[3]
Bennani, F.E.; Doudach, L.; Cherrah, Y.; Ramli, Y.; Karrouchi, K.; Ansar, M.; Faouzi, M.E.A. Overview of recent developments of pyrazole derivatives as an anticancer agent in different cell line. Bioorg. Chem., 2020, 97, 103470.
[http://dx.doi.org/10.1016/j.bioorg.2019.103470] [PMID: 32120072]
[4]
Pechmann, H.V. Ueber diazomethan. Ber. Dtsch. Chem. Ges., 1894, 27(2), 1888-1891.
[http://dx.doi.org/10.1002/cber.189402702141]
[5]
Küçükgüzel, Ş.G; Şenkardeş, S. Recent advances in bioactive pyrazoles. Eur. J. Med. Chem., 2015, 97, 786-815.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.059] [PMID: 25555743]
[6]
Fustero, S.; Sánchez-Roselló, M.; Barrio, P.; Simón-Fuentes, A. From 2000 to mid-2010: A fruitful decade for the synthesis of pyrazoles. Chem. Rev., 2011, 111(11), 6984-7034.
[http://dx.doi.org/10.1021/cr2000459] [PMID: 21806021]
[7]
Abdulla Afsina, C.M.; Aneeja, T.; Neetha, M.; Anilkumar, G. Recent advances in the synthesis of pyrazole derivatives. Curr. Org. Synth., 2021, 18(2), 197-213.
[http://dx.doi.org/10.2174/1570179417666201109151036] [PMID: 33167842]
[8]
Ansari, A.; Ali, A.; Asif, M.; Shamsuzzaman, S. Review: biologically active pyrazole derivatives. New J. Chem., 2017, 41(1), 16-41.
[http://dx.doi.org/10.1039/C6NJ03181A]
[9]
Khan, M.F.; Alam, M.M.; Verma, G.; Akhtar, W.; Akhter, M.; Shaquiquzzaman, M. The therapeutic voyage of pyrazole and its analogs: A review. Eur. J. Med. Chem., 2016, 120, 170-201.
[http://dx.doi.org/10.1016/j.ejmech.2016.04.077] [PMID: 27191614]
[10]
Othman, I.M.M.; Gad-Elkareem, M.A.M.; Amr, A.E.G.E.; Al-Omar, M.A.; Nossier, E.S.; Elsayed, E.A. Novel heterocyclic hybrids of pyrazole targeting dihydrofolate reductase: design, biological evaluation and in silico studies. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 1491-1502.
[http://dx.doi.org/10.1080/14756366.2020.1791842] [PMID: 32668994]
[11]
Kerru, N.; Singh, P.; Koorbanally, N.; Raj, R.; Kumar, V. Recent advances (2015–2016) in anticancer hybrids. Eur. J. Med. Chem., 2017, 142, 179-212.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.033] [PMID: 28760313]
[12]
Darandale, S.N.; Pansare, D.N.; Mulla, N.A.; Shinde, D.B. Green synthesis of tetrahydropyrimidine analogues and evaluation of their antimicrobial activity. Bioorg. Med. Chem. Lett., 2013, 23(9), 2632-2635.
[http://dx.doi.org/10.1016/j.bmcl.2013.02.099] [PMID: 23522562]
[13]
Elumalai, K.; Ali, M.A.; Srinivasan, S.; Elumalai, M.; Eluri, K. Antimicrobial and in vitro cytotoxicity of novel sulphanilamide condensed 1,2,3,4-tetrahydropyrimidines. J. Taibah Univ. Sci., 2017, 11(1), 46-56.
[http://dx.doi.org/10.1016/j.jtusci.2015.01.005]
[14]
Okuda, T.; Nomura, Y.; Konishi, A.; Misawa, H. Competitive inhibition of the high-affinity choline transporter by tetrahydropyrimidine anthelmintics. Eur. J. Pharmacol., 2021, 898, 173986.
[http://dx.doi.org/10.1016/j.ejphar.2021.173986] [PMID: 33640406]
[15]
Fazylov, S.D.; Nurkenov, O.A.; Zhivotova, T.S.; Arinova, A.E.; Tolepbek, I.S.; Zhakupova, A.N.; Bakirova, R.E.; Muravleva, L.E. Synthesis and hypotensive activity of novel styryl derivatives based on ethyl-4-(4-methoxyphenyl)-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate. Pharm. Chem. J., 2016, 50(7), 440-442.
[http://dx.doi.org/10.1007/s11094-016-1466-2]
[16]
Lokwani, D.K.; Mokale, S.N.; Shinde, D.B. 3D QSAR studies based in silico screening of 4,5,6-triphenyl-1,2,3,4-tetrahydropyrimidine analogs for anti-inflammatory activity. Eur. J. Med. Chem., 2014, 73, 233-242.
[http://dx.doi.org/10.1016/j.ejmech.2013.10.083] [PMID: 24412499]
[17]
Salem, M.S.; Farhat, M.; Errayes, A.O.; Madkour, H.M.F. Antioxidant activity of novel fused heterocyclic compounds derived from tetrahydropyrimidine derivative. Chem. Pharm. Bull., 2015, 63(11), 866-872.
[http://dx.doi.org/10.1248/cpb.c15-00452] [PMID: 26521851]
[18]
Dolatkhah, Z.; Javanshir, S.; Sadr, A.S.; Hosseini, J.; Sardari, S. Synthesis, molecular docking, molecular dynamics studies, and biological evaluation of 4H-chromone-1,2,3,4-tetrahydropyrimidine-5-carboxylate derivatives as potential antileukemic agents. J. Chem. Inf. Model., 2017, 57(6), 1246-1257.
[http://dx.doi.org/10.1021/acs.jcim.6b00138] [PMID: 28524659]
[19]
Gein, V.L.; Zamaraeva, T.M.; Buzmakova, N.A.; Syropyatov, B.Y.; Alikina, N.V. Synthesis and analgesic activity of N,6-diaryl-4-methyl-2-thioxo-1,2,3,6-tetrahydropyrimidine-5-carboxamides. Pharm. Chem. J., 2016, 50(4), 226-228.
[http://dx.doi.org/10.1007/s11094-016-1427-9]
[20]
Khan, S.; Kale, M.; Siddiqui, F.; Nema, N. Novel pyrimidine-benzimidazole hybrids with antibacterial and antifungal properties and potential inhibition of SARS-CoV-2 main protease and spike glycoprotein. Digital Chinese Med., 2021, 4(2), 102-119.
[http://dx.doi.org/10.1016/j.dcmed.2021.06.004]
[21]
Ghorai, M.K.; Das, K.; Kumar, A.; Das, A. A convenient synthetic route to 2-aryl-N-tosylazetidines and their ZnX2 (X=I, OTf) mediated regioselective nucleophilic ring opening reactions: synthesis of γ-iodoamines and tetrahydropyrimidines. Tetrahedron Lett., 2006, 47(30), 5393-5397.
[http://dx.doi.org/10.1016/j.tetlet.2006.05.058]
[22]
Mohammadpoor-Baltork, I.; Moghadam, M.; Tangestaninejad, S.; Mirkhani, V.; Eskandari, Z. A green and selective synthesis of 2-aryloxazines and 2-aryltetrahydropyrimidines. J. Heterocycl. Chem., 2011, 48(2), 479-483.
[http://dx.doi.org/10.1002/jhet.557]
[23]
Mohammadpoor-Baltork, I.; Moghadama, M.; Tangestaninejad, S.; Mirkhani, V.; Eskandari, Z.; Salavati, H. Chemoselective synthesis of 2-aryloxazines and 2-aryltetrahydropyrimidines using nano-SiO2 as a reusable solid acid catalyst under thermal conditions and microwave irradiation. J. Indian Chem. Soc., 2011, 8(S1), S17-S27.
[http://dx.doi.org/10.1007/BF03254278]
[24]
Kappe, C.O. Controlled microwave heating in modern organic synthesis. Angew. Chem. Int. Ed., 2004, 43(46), 6250-6284.
[http://dx.doi.org/10.1002/anie.200400655] [PMID: 15558676]
[25]
Barthakur, M.G.; Gogoi, S.; Dutta, M.; Boruah, R.C. A facile three-component solid phase synthesis of steroidal A-ring fused pyrimidines under microwave irradiation. Steroids, 2009, 74(9), 730-734.
[http://dx.doi.org/10.1016/j.steroids.2009.03.006] [PMID: 19541000]
[26]
Yıldırım, M.; Çelikel, D.; Dürüst, Y.; Knight, D.W.; Kariuki, B.M. A rapid and efficient protocol for the synthesis of novel nitrothiazolo[3,2-c]pyrimidines via microwave-mediated Mannich cyclisation. Tetrahedron, 2014, 70(12), 2122-2128.
[http://dx.doi.org/10.1016/j.tet.2014.02.003]
[27]
Bhat, A.R.; Shalla, A.H.; Dongre, R.S. Microwave assisted one-pot catalyst free green synthesis of new methyl-7-amino-4-oxo-5-phenyl-2-thioxo-2,3,4,5-tetrahydro-1H-pyrano[2,3-d]pyrimidine-6-carboxylates as potent in vitro antibacterial and antifungal activity. J. Adv. Res., 2015, 6(6), 941-948.
[http://dx.doi.org/10.1016/j.jare.2014.10.007] [PMID: 26644932]
[28]
Dandia, A.; Saha, M.; Taneja, H. Synthesis of fluorinated ethyl 4-aryl-6-methyl-1,2,3,4-tetrahydropyrimidin-2-one/thione-5-carboxylates under microwave irradiation. J. Fluor. Chem., 1998, 90(1), 17-21.
[http://dx.doi.org/10.1016/S0022-1139(98)00140-7]
[29]
Rosa, G.; Souto, B.A.; Pereira, C.N.; Teixeira, B.C.; Santos, M.S. A convenient synthesis of pyrazole-imidazoline derivatives by microwave irradiation. J. Heterocycl. Chem., 2019, 56(6), 1825-1830.
[http://dx.doi.org/10.1002/jhet.3557]
[30]
Monteiro, M.E.; Lechuga, G.; Lara, L.S.; Souto, B.A.; Viganó, M.G.; Bourguignon, S.C.; Calvet, C.M.; Oliveira, F.O.R., Jr; Alves, C.R.; Souza-Silva, F.; Santos, M.S.; Pereira, M.C.S. Synthesis, structure-activity relationship and trypanocidal activity of pyrazole-imidazoline and new pyrazole-tetrahydropyrimidine hybrids as promising chemotherapeutic agents for Chagas disease. Eur. J. Med. Chem., 2019, 182, 111610.
[http://dx.doi.org/10.1016/j.ejmech.2019.111610] [PMID: 31434040]
[31]
Orlando, L.M.R.; Lechuga, G.C.; da Silva Lara, L.; Ferreira, B.S.; Pereira, C.N.; Silva, R.C.; dos Santos, M.S.; Pereira, M.C.S. Structural optimization and biological activity of pyrazole derivatives: virtual computational analysis, recovery assay and 3d culture model as potential predictive tools of effectiveness against Trypanosoma cruzi. Molecules, 2021, 26(21), 6742.
[http://dx.doi.org/10.3390/molecules26216742] [PMID: 34771151]
[32]
Lara, L.S.; Lechuga, G.C.; Orlando, L.M.R.; Ferreira, B.S.; Souto, B.A.; dos Santos, M.S.; Pereira, M.C.S. Bioactivity of novel pyrazole-thiazolines scaffolds against Trypanosoma cruzi: computational approaches and 3d spheroid model on drug discovery for chagas disease. Pharmaceutics, 2022, 14(5), 995.
[http://dx.doi.org/10.3390/pharmaceutics14050995] [PMID: 35631581]
[33]
dos Santos, M.S.; Oliveira, M.L.V.; Bernardino, A.M.R.; de Léo, R.M.; Amaral, V.F.; de Carvalho, F.T.; Leon, L.L.; Canto-Cavalheiro, M.M. Synthesis and antileishmanial evaluation of 1-aryl-4-(4,5-dihydro-1H-imidazol-2-yl)-1H-pyrazole derivatives. Bioorg. Med. Chem. Lett., 2011, 21(24), 7451-7454.
[http://dx.doi.org/10.1016/j.bmcl.2011.09.134] [PMID: 22055204]
[34]
Faria, J.V.; dos Santos, M.S.; Bernardino, A.M.R.; Becker, K.M.; Machado, G.M.C.; Rodrigues, R.F.; Canto-Cavalheiro, M.M.; Leon, L.L. Synthesis and activity of novel tetrazole compounds and their pyrazole-4-carbonitrile precursors against Leishmania spp. Bioorg. Med. Chem. Lett., 2013, 23(23), 6310-6312.
[http://dx.doi.org/10.1016/j.bmcl.2013.09.062] [PMID: 24125880]
[35]
Henriques, C.; Castro, D.P.; Gomes, L.H.F.; Garcia, E.S.; de Souza, W. Bioluminescent imaging of Trypanosoma cruzi infection in Rhodnius prolixus. Parasit. Vectors, 2012, 5(1), 214.
[http://dx.doi.org/10.1186/1756-3305-5-214] [PMID: 23013827]
[36]
Sander, T.; Freyss, J.; von Korff, M.; Rufener, C. DataWarrior: an open-source program for chemistry aware data visualization and analysis. J. Chem. Inf. Model., 2015, 55(2), 460-473.
[http://dx.doi.org/10.1021/ci500588j] [PMID: 25558886]
[37]
Lagorce, D.; Sperandio, O.; Baell, J.B.; Miteva, M.A.; Villoutreix, B.O. FAF-Drugs3: a web server for compound property calculation and chemical library design. Nucleic Acids Res., 2015, 43(W1), W200-W207.
[http://dx.doi.org/10.1093/nar/gkv353] [PMID: 25883137]
[38]
Sumaryada, T.; Astarina, A.S.; Ambarsari, L. Molecular docking and physicochemical analysis of the active compounds of soursop (annona muricata linn) for an anti-breast cancer agent. Biointerface Res. Appl. Chem., 2020, 11(4), 11380-11389.
[http://dx.doi.org/10.33263/BRIAC114.1138011389]