Insight on Cardiac Chronobiology and Latest Developments of Chronotherapeutic Antihypertensive Interventions for Better Clinical Outcomes

Page: [106 - 122] Pages: 17

  • * (Excluding Mailing and Handling)

Abstract

Cardiac circadian rhythms are an important regulator of body functions, including cardiac activities and blood pressure. Disturbance of circadian rhythm is known to trigger and aggravate various cardiovascular diseases. Thus, modulating the circadian rhythm can be used as a therapeutic approach to cardiovascular diseases. Through this work, we intend to discuss the current understanding of cardiac circadian rhythms, in terms of quantifiable parameters like BP and HR. We also elaborate on the molecular regulators and the molecular cascades along with their specific genetic aspects involved in modulating circadian rhythms, with specific reference to cardiovascular health and cardiovascular diseases. Along with this, we also presented the latest pharmacogenomic and metabolomics markers involved in chronobiological control of the cardiovascular system along with their possible utility in cardiovascular disease diagnosis and therapeutics. Finally, we reviewed the current expert opinions on chronotherapeutic approaches for utilizing the conventional as well as the new pharmacological molecules for antihypertensive chronotherapy.

Graphical Abstract

[1]
WHO. Cardiovascular diseases (CVDs) Fact sheet 2021. Available from: https://www.who.int/news-room/factsheets/detail/cardiovascular-diseases-(cvds)
[2]
Mia S, Sonkar R, Williams L. et al. Impact of obesity on day‐night differences in cardiac metabolism. FASEB J 2021; 35(3): e21298.
[http://dx.doi.org/10.1096/fj.202001706RR] [PMID: 33660366]
[3]
Bøggild H, Knutsson A. Shift work, risk factors and cardiovascular disease. Scand J Work Environ Health 1999; 25(2): 85-99.
[http://dx.doi.org/10.5271/sjweh.410] [PMID: 10360463]
[4]
Zhu L, Zee PC. Circadian rhythm sleep disorders. Neurol Clin 2012; 30(4): 1167-91.
[http://dx.doi.org/10.1016/j.ncl.2012.08.011] [PMID: 23099133]
[5]
Sharma A, Tiwari S, Singaravel M. Circadian rhythm disruption: Health consequences. Biol Rhythm Res 2016; 47(2): 191-213.
[http://dx.doi.org/10.1080/09291016.2015.1103942]
[6]
Scheer FAJL, Hilton MF, Mantzoros CS, Shea SA. Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci 2009; 106(11): 4453-8.
[http://dx.doi.org/10.1073/pnas.0808180106] [PMID: 19255424]
[7]
Reutrakul S, Knutson KL. Consequences of circadian disruption on cardiometabolic health. Sleep Med Clin 2015; 10(4): 455-68.
[http://dx.doi.org/10.1016/j.jsmc.2015.07.005] [PMID: 26568122]
[8]
Savvidis C, Koutsilieris M. Circadian rhythm disruption in cancer biology. Mol Med 2012; 18(9): 1249-60.
[http://dx.doi.org/10.2119/molmed.2012.00077] [PMID: 22811066]
[9]
Crnko S, Du Pré BC, Sluijter JPG, Van Laake LW. Circadian rhythms and the molecular clock in cardiovascular biology and disease. Nat Rev Cardiol 2019; 16(7): 437-47.
[http://dx.doi.org/10.1038/s41569-019-0167-4] [PMID: 30796369]
[10]
Manfredini R, Bossone E. A journey into the science of cardiovascular chronobiology. Heart Fail Clin 2017; 13(4): xiii-v.
[http://dx.doi.org/10.1016/j.hfc.2017.06.001] [PMID: 28865786]
[11]
Goswami N, Abulafia C, Vigo D, Moser M, Cornelissen G, Cardinali D. Falls risk, circadian rhythms and melatonin: Current perspectives. Clin Interv Aging 2020; 15: 2165-74.
[http://dx.doi.org/10.2147/CIA.S283342] [PMID: 33204081]
[12]
Hermida RC, Ayala DE, Fernández JR, Mojón A, Smolensky MH. Hypertension: New perspective on its definition and clinical management by bedtime therapy substantially reduces cardiovascular disease risk. Eur J Clin Invest 2018; 48(5): e12909.
[http://dx.doi.org/10.1111/eci.12909] [PMID: 29423914]
[13]
Haspel JA, Anafi R, Brown MK. et al. Perfect timing: circadian rhythms, sleep, and immunity — an NIH workshop summary. JCI Insight 2020; 5(1): e131487.
[http://dx.doi.org/10.1172/jci.insight.131487] [PMID: 31941836]
[14]
Zhang J, Chatham JC, Young ME. Circadian regulation of cardiac physiology: rhythms that keep the heart beating. Annu Rev Physiol 2020; 82(1): 79-101.
[http://dx.doi.org/10.1146/annurev-physiol-020518-114349] [PMID: 31589825]
[15]
Sipahioglu NT, Sipahioglu F. Closer look at white-coat hypertension. World J Methodol 2014; 4(3): 144-50.
[http://dx.doi.org/10.5662/wjm.v4.i3.144] [PMID: 25332913]
[16]
Campbell PT, White WB. Utility of ambulatory blood pressure monitoring for the management of hypertension. Curr Opin Cardiol 2017; 32(4): 365-72.
[http://dx.doi.org/10.1097/HCO.0000000000000399] [PMID: 28306674]
[17]
Whelton PK, Carey RM, Aronow WS, Casey DE, Collins KJ, Dennison Himmelfarb C. et al. 2017 ACC/AHA/AAPA/ABC/ACPM/ AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the american college of cardiology/american heart association task force on clinical practice guidelines. Hypertension 2018; 71(6): 1269-324.
[http://dx.doi.org/10.1161/HYP.0000000000000066] [PMID: 29133354]
[18]
Franklin SS, O’Brien E, Staessen JA. Masked hypertension: understanding its complexity. Eur Heart J 2017; 38(15): 1112-8.
[PMID: 27836914]
[19]
Irvin MR, Booth JN III, Sims M. et al. The association of nocturnal hypertension and nondipping blood pressure with treatment-resistant hypertension: The Jackson Heart Study. J Clin Hypertens 2018; 20(3): 438-46.
[http://dx.doi.org/10.1111/jch.13199] [PMID: 29436105]
[20]
Kumar B, Chawla O, Bhattacharjee M, Singh A. Circadian rhythm of blood pressure: Implications for antihypertensive management. India J Med specialities 2021; 12(2): 53-8.
[http://dx.doi.org/10.4103/injms.injms_4_21]
[21]
Chapter 1. Epidemiology of hypertension. Hypertens Res 2014; 37(4): 260-5.
[http://dx.doi.org/10.1038/hr.2014.4]
[22]
Hypertension: Clinical management of primary hypertension in adults [Internet].Update of Clinical Guidelines 18 and 34. London: Royal College of Physicians (UK): National Clinical Guideline Centre (UK) 2011.
[23]
Mancia G, Fagard R, Narkiewicz K. et al. 2013 ESH/ESC Guidelines for the management of arterial hypertension. J Hypertens 2013; 31(7): 1281-357.
[http://dx.doi.org/10.1097/01.hjh.0000431740.32696.cc] [PMID: 23817082]
[24]
Kario K. First focusing on “morning hypertension”Essential Manual of 24 Hour Blood Pressure Management In from Morning to Nocturnal Hypertension. (1st ed.). Hoboken: John Wiley & Sons, Ltd 2015; pp. 1-14.
[http://dx.doi.org/10.1002/9781119087281.ch1]
[25]
Mancia G, Verdecchia P. Clinical value of ambulatory blood pressure: evidence and limits. Circ Res 2015; 116(6): 1034-45.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.303755] [PMID: 25767288]
[26]
Hermida RC, Fernández JR, Mojón A. Chronotherapy of hypertension, asleep ambulatory blood pressure, and glaucoma. Eur Heart J 2020; 41(16): 1605.
[http://dx.doi.org/10.1093/eurheartj/ehaa215] [PMID: 32304207]
[27]
Parati G, Stergiou G, O’Brien E. et al. European Society of Hypertension practice guidelines for ambulatory blood pressure monitoring. J Hypertens 2014; 32(7): 1359-66.
[http://dx.doi.org/10.1097/HJH.0000000000000221] [PMID: 24886823]
[28]
Hermida RC. Treatment of sleep-disordered breathing, alone, is insufficient for proper management of sleep-time hypertension. Eur Heart J 2019; 40(38): 3208.
[http://dx.doi.org/10.1093/eurheartj/ehz606] [PMID: 31504433]
[29]
Ohkubo T, Imai Y, Tsuji I. et al. Relation between nocturnal decline in blood pressure and mortality. The Ohasama Study. Am J Hypertens 1997; 10(11): 1201-7.
[http://dx.doi.org/10.1016/S0895-7061(97)00274-4] [PMID: 9397237]
[30]
Satoh M, Asayama K, Kikuya M. et al. Nocturnal blood pressure decline based on different time intervals and long-term cardiovascular risk: the Ohasama Study. Clin Exp Hypertens 2018; 40(1): 1-7.
[http://dx.doi.org/10.1080/10641963.2016.1259324] [PMID: 29172733]
[31]
Salles GF, Reboldi G, Fagard RH. et al. Prognostic effect of the nocturnal blood pressure fall in hypertensive patients. Hypertension 2016; 67(4): 693-700.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.115.06981] [PMID: 26902495]
[32]
Kong TQ, Goldberger JJ, Parker M, Wang T, Kadish AH. Circadian variation in human ventricular refractoriness. Circulation 1995; 92(6): 1507-16.
[33]
Siegel D, Black DM, Seeley DG, Hulley SB. Circadian variation in ventricular arrhythmias in hypertensive men. Am J Cardiol 1992; 69(4): 344-7.
[http://dx.doi.org/10.1016/0002-9149(92)90231-M] [PMID: 1734646]
[34]
Das R, Mehta DK. Considering circadian pattern of blood pressure in the treatment of hypertension via chronotherapy: a conducive or maladroit approach. Curr Drug Targets 2019; 20(12): 1244-54.
[http://dx.doi.org/10.2174/1389450120666190527114529] [PMID: 31131750]
[35]
Portaluppi F, Manfredini R, Fersini C. From a static to a dynamic concept of risk: the circadian epidemiology of cardiovascular events. Chronobiol Int 1999; 16(1): 33-49.
[http://dx.doi.org/10.3109/07420529908998710] [PMID: 10023574]
[36]
Lee SH, Chang PC, Hung HF, Kuan P, Cheng JJ, Hung CR. Circadian variation of paroxysmal supraventricular tachycardia. Chest 1999; 115(3): 674-8.
[http://dx.doi.org/10.1378/chest.115.3.674] [PMID: 10084474]
[37]
Twidale N, Taylor S, Heddle WF, Ayres BF, Tonkin AM. Morning increase in the time of onset of sustained ventricular tachycardia. Am J Cardiol 1989; 64(18): 1204-6.
[http://dx.doi.org/10.1016/0002-9149(89)90881-3] [PMID: 2816774]
[38]
Muller JE, Stone PH, Turi ZG. et al. Circadian variation in the frequency of onset of acute myocardial infarction. N Engl J Med 1985; 313(21): 1315-22.
[http://dx.doi.org/10.1056/NEJM198511213132103] [PMID: 2865677]
[39]
Willich SN, Linderer T, Wegscheider K, Leizorovicz A, Alamercery I, Schröder R. Increased morning incidence of myocardial infarction in the ISAM Study: absence with prior beta-adrenergic blockade. Circulation 1989; 80(4): 853-8.
[http://dx.doi.org/10.1161/01.CIR.80.4.853] [PMID: 2571430]
[40]
Rigatelli G, Zuin M. Occurence of left main occlusion on Tuesday: Chronobiology of acute myocardial infarction due to left main disease. J Saudi Heart Assoc 2020; 32(1): 12-6.
[PMID: 33154886]
[41]
Čulić V. Chronobiological rhythms of acute cardiovascular events and underlying mechanisms. Int J Cardiol 2014; 174(2): 417-9.
[http://dx.doi.org/10.1016/j.ijcard.2014.04.043] [PMID: 24768379]
[42]
Aksit E, Gursul E, Aydin F, Samsa M, Ozcelik F. Non-dipper hypertension is associated with slow coronary flow among hypertensives with normal coronary angiogram. Cardiovasc J Afr 2017; 28(1): 14-8.
[http://dx.doi.org/10.5830/CVJA-2016-045] [PMID: 27177043]
[43]
Manfredini R, Boari B, Smolensky MH. et al. Circadian variation in stroke onset: identical temporal pattern in ischemic and hemorrhagic events. Chronobiol Int 2005; 22(3): 417-53.
[http://dx.doi.org/10.1081/CBI-200062927] [PMID: 16076646]
[44]
Elliott WJ. Circadian variation in the timing of stroke onset: a meta-analysis. Stroke 1998; 29(5): 992-6.
[http://dx.doi.org/10.1161/01.STR.29.5.992] [PMID: 9596248]
[45]
Witte K, Hu K, Swiatek J, Müssig C, Ertl G, Lemmer B. Experimental heart failure in rats: effects on cardiovascular circadian rhythms and on myocardial β-adrenergic signaling. Cardiovasc Res 2000; 47(2): 350-8.
[http://dx.doi.org/10.1016/S0008-6363(00)00099-7] [PMID: 10946071]
[46]
Portaluppi F, Tiseo R, Smolensky MH, Hermida RC, Ayala DE, Fabbian F. Circadian rhythms and cardiovascular health. Sleep Med Rev 2012; 16(2): 151-66.
[http://dx.doi.org/10.1016/j.smrv.2011.04.003] [PMID: 21641838]
[47]
O’Brien E. Sleepers versus nonsleepers: another twist to the dipper/nondipper concept. Hypertension 2007; 49(4): 769-70.
[http://dx.doi.org/10.1161/01.HYP.0000258152.29476.de] [PMID: 17283253]
[48]
Sharma GVRK, Frisbie JH, Tow DE, Yalla SV, Khuri SF. Circadian and circannual rhythm of nonfatal pulmonary embolism. Am J Cardiol 2001; 87(7): 922-4.
[http://dx.doi.org/10.1016/S0002-9149(00)01542-3] [PMID: 11274956]
[49]
Colantonio D, Casale R, Abruzzo BP, Lorenzetti G, Pasqualetti P. Circadian distribution in fatal pulmonary thromboembolism. Am J Cardiol 1989; 64(5): 403-4.
[http://dx.doi.org/10.1016/0002-9149(89)90548-1] [PMID: 2756888]
[50]
Manfredini R, Imberti D, Gallerani M. et al. Seasonal variation in the occurrence of venous thromboembolism: data from the MASTER Registry. Clin Appl Thromb Hemost 2009; 15(3): 309-15.
[http://dx.doi.org/10.1177/1076029608319947] [PMID: 18544594]
[51]
Guijarro R, Trujillo-Santos J, Bernal-Lopez MR. et al. Trend and seasonality in hospitalizations for pulmonary embolism: a time-series analysis. J Thromb Haemost 2015; 13(1): 23-30.
[http://dx.doi.org/10.1111/jth.12772] [PMID: 25363025]
[52]
Deng N, Kohn TP, Lipshultz LI, Pastuszak AW. The Relationship Between Shift Work and Men’s Health. Sex Med Rev 2018; 6(3): 446-56.
[http://dx.doi.org/10.1016/j.sxmr.2017.11.009] [PMID: 29371140]
[53]
Pimenta AM, Kac G, Campos e Souza RR, Maria de Barros Almeida Ferreira L, Maria de Fátima Silqueira S. Night-shift work and cardiovascular risk among employees of a public university. Rev Assoc Med Bras 2012; 58(2): 168-77.
[http://dx.doi.org/10.1016/S0104-4230(12)70177-X] [PMID: 22569611]
[54]
Yoon H, Choi SH, Kim SK. et al. Human heart rhythms synchronize while co-sleeping. Front Physiol 2019; 10: 190.
[http://dx.doi.org/10.3389/fphys.2019.00190] [PMID: 30914965]
[55]
Reppert SM, Weaver DR. Coordination of circadian timing in mammals. Nature 2002; 418(6901): 935-41.
[http://dx.doi.org/10.1038/nature00965] [PMID: 12198538]
[56]
Damkier HH, Brown PD, Praetorius J. Cerebrospinal fluid secretion by the choroid plexus. Physiol Rev 2013; 93(4): 1847-92.
[http://dx.doi.org/10.1152/physrev.00004.2013] [PMID: 24137023]
[57]
Soni SK, Basu P, Singaravel M. et al. Sirtuins and the circadian clock interplay in cardioprotection: focus on sirtuin 1. Cell Mol Life Sci 2021; 78(6): 2503-15.
[http://dx.doi.org/10.1007/s00018-020-03713-6] [PMID: 33388853]
[58]
Tosini G, Owino S, Guillaume JL, Jockers R. Understanding melatonin receptor pharmacology: Latest insights from mouse models, and their relevance to human disease. BioEssays 2014; 36(8): 778-87.
[http://dx.doi.org/10.1002/bies.201400017] [PMID: 24903552]
[59]
Hardeland R, Cardinali DP, Srinivasan V, Spence DW, Brown GM, Pandi-Perumal SR. Melatonin—A pleiotropic, orchestrating regulator molecule. Prog Neurobiol 2011; 93(3): 350-84.
[http://dx.doi.org/10.1016/j.pneurobio.2010.12.004] [PMID: 21193011]
[60]
Martino TA, Tata N, Belsham DD. et al. Disturbed diurnal rhythm alters gene expression and exacerbates cardiovascular disease with rescue by resynchronization. Hypertension 2007; 49(5): 1104-13.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.106.083568] [PMID: 17339537]
[61]
Durgan DJ, Pulinilkunnil T, Villegas-Montoya C. et al. Short communication: ischemia/reperfusion tolerance is time-of-day-dependent: mediation by the cardiomyocyte circadian clock. Circ Res 2010; 106(3): 546-50.
[http://dx.doi.org/10.1161/CIRCRESAHA.109.209346] [PMID: 20007913]
[62]
Miazgowski T, Taszarek A, Miazgowski B. Visceral fat, cardiometabolic risk factors, and nocturnal blood pressure fall in young adults with primary hypertension. J Clin Hypertens 2019; 21(9): 1406-14.
[http://dx.doi.org/10.1111/jch.13639] [PMID: 31369205]
[63]
Kerkhof G, Van Dongen HPA, Bobbert AC. Absence of endogenous circadian rhythmicity in blood pressure? Am J Hypertens 1998; 11(3): 373-7.
[http://dx.doi.org/10.1016/S0895-7061(97)00461-5] [PMID: 9544879]
[64]
Leproult R, Holmbäck U, Van Cauter E. Circadian misalignment augments markers of insulin resistance and inflammation, independently of sleep loss. Diabetes 2014; 63(6): 1860-9.
[http://dx.doi.org/10.2337/db13-1546] [PMID: 24458353]
[65]
Chaulin AM, Duplyakov DV. High-sensitivity cardiac troponins: Circadian rhythms. Cardiovasc Ther Prev 2021; 20(1): 82-8.
[66]
Qian J, Scheer FAJL. Circadian System and Glucose Metabolism: Implications for Physiology and Disease. Trends Endocrinol Metab 2016; 27(5): 282-93.
[http://dx.doi.org/10.1016/j.tem.2016.03.005] [PMID: 27079518]
[67]
Wefers J, van Moorsel D, Hansen J. et al. Circadian misalignment induces fatty acid metabolism gene profiles and compromises insulin sensitivity in human skeletal muscle. Proc Natl Acad Sci 2018; 115(30): 7789-94.
[http://dx.doi.org/10.1073/pnas.1722295115] [PMID: 29987027]
[68]
Brown DL, Feskanich D, Sánchez BN, Rexrode KM, Schernhammer ES, Lisabeth LD. Rotating night shift work and the risk of ischemic stroke. Am J Epidemiol 2009; 169(11): 1370-7.
[http://dx.doi.org/10.1093/aje/kwp056] [PMID: 19357324]
[69]
Knutsson A, Jonsson BG, Akerstedt T, Orth-Gomer K. Increased risk of ischaemic heart disease in shift workers. Lancet 1986; 328(8498): 89-92.
[http://dx.doi.org/10.1016/S0140-6736(86)91619-3] [PMID: 2873389]
[70]
Sakata K, Suwazono Y, Harada H, Okubo Y, Kobayashi E, Nogawa K. The relationship between shift work and the onset of hypertension in male Japanese workers. J Occup Environ Med 2003; 45(9): 1002-6.
[http://dx.doi.org/10.1097/01.jom.0000085893.98441.96] [PMID: 14506343]
[71]
Ha M, Park J. Shiftwork and metabolic risk factors of cardiovascular disease. J Occup Health 2005; 47(2): 89-95.
[http://dx.doi.org/10.1539/joh.47.89] [PMID: 15824472]
[72]
Tarzia P, Milo M, Di Franco A. et al. Effect of shift work on endothelial function in young cardiology trainees. Eur J Prev Cardiol 2012; 19(5): 908-13.
[http://dx.doi.org/10.1177/1741826711422765] [PMID: 21900367]
[73]
Vrijkotte TGM, van Doornen LJP, de Geus EJC. Effects of work stress on ambulatory blood pressure, heart rate, and heart rate variability. Hypertension 2000; 35(4): 880-6.
[http://dx.doi.org/10.1161/01.HYP.35.4.880] [PMID: 10775555]
[74]
Siddanagoudra S, Herlekar S, Doyozode A. Modulation of heart rate variability based on sleep pattern in shift workers of automobile sector. Natl J Physiol Pharm Pharmacol 2021; 11(5): 458-61.
[http://dx.doi.org/10.5455/njppp.2021.11.05113202027122020]
[75]
Dolan E, Stanton A, Thijs L. et al. Superiority of ambulatory over clinic blood pressure measurement in predicting mortality: the Dublin outcome study. Hypertension 2005; 46(1): 156-61.
[http://dx.doi.org/10.1161/01.HYP.0000170138.56903.7a] [PMID: 15939805]
[76]
Isobe S, Ohashi N, Fujikura T. et al. Disturbed circadian rhythm of the intrarenal renin-angiotensin system: relevant to nocturnal hypertension and renal damage. Clin Exp Nephrol 2015; 19(2): 231-9.
[http://dx.doi.org/10.1007/s10157-014-0973-2] [PMID: 24728489]
[77]
Boggia J, Li Y, Thijs L. et al. Prognostic accuracy of day versus night ambulatory blood pressure: a cohort study. Lancet 2007; 370(9594): 1219-29.
[http://dx.doi.org/10.1016/S0140-6736(07)61538-4] [PMID: 17920917]
[78]
Cha R, Kim S, Ae Yoon S. et al. Association between blood pressure and target organ damage in patients with chronic kidney disease and hypertension: results of the APrODiTe study. Hypertens Res 2014; 37(2): 172-8.
[http://dx.doi.org/10.1038/hr.2013.127] [PMID: 24048482]
[79]
Wang C, Qiu X, Lv L. et al. Chronotherapy for hypertension in patients with chronic kidney disease: a systematic review and meta-analysis in non-black patients. Int Urol Nephrol 2017; 49(4): 651-9.
[http://dx.doi.org/10.1007/s11255-016-1437-2] [PMID: 27844408]
[80]
Tocci G, Presta V, Figliuzzi I, Volpe M. Search of multiple markers of organ damage for better cardiovascular risk stratification in hypertension: Role of “SHATS” syndrome in the clinical practice. Int J Cardiol 2018; 263: 154-5.
[http://dx.doi.org/10.1016/j.ijcard.2018.03.140] [PMID: 29754912]
[81]
Kario K, Yano Y, Matsuo T, Hoshide S, Asada Y, Shimada K. Morning blood pressure surge, morning platelet aggregation, and silent cerebral infarction in older Japanese hypertensive patients. J Hypertens 2011; 29(12): 2433-9.
[http://dx.doi.org/10.1097/HJH.0b013e32834cf1c0] [PMID: 22025234]
[82]
Bowe A, Grünig M, Schubert J. et al. Circadian variation in arterial blood pressure and glaucomatous optic neuropathy-a systematic review and meta-analysis. Am J Hypertens 2015; 28(9): 1077-82.
[http://dx.doi.org/10.1093/ajh/hpv016] [PMID: 25767134]
[83]
Melgarejo JD, Lee JH, Petitto M. et al. Glaucomatous optic neuropathy associated with nocturnal dip in blood pressure. Ophthalmology 2018; 125(6): 807-14.
[http://dx.doi.org/10.1016/j.ophtha.2017.11.029] [PMID: 29310962]
[84]
Young ME. Cardiac surgery in the morning or not in the morning: “When?” is the question. Lancet Reg Health Eur 2021; 7: 100143.
[http://dx.doi.org/10.1016/j.lanepe.2021.100143] [PMID: 34557844]
[85]
Ohkubo T, Hozawa A, Yamaguchi J. et al. Prognostic significance of the nocturnal decline in blood pressure in individuals with and without high 24-h blood pressure. J Hypertens 2002; 20(11): 2183-9.
[http://dx.doi.org/10.1097/00004872-200211000-00017] [PMID: 12409956]
[86]
Ritz E, Bakris G. World Kidney Day: hypertension and chronic kidney disease. Lancet 2009; 373(9670): 1157-8.
[http://dx.doi.org/10.1016/S0140-6736(09)60355-X] [PMID: 19282027]
[87]
Torbjörnsdotter TB, Jaremko GA, Berg UB. Nondipping and its relation to glomerulopathy and hyperfiltration in adolescents with type 1 diabetes. Diabetes Care 2004; 27(2): 510-6.
[http://dx.doi.org/10.2337/diacare.27.2.510] [PMID: 14747237]
[88]
Tiwari V, Chaudhary A, Dasgupta S. et al. Effect of chronotherapy of antihypertensives in chronic kidney disease: A randomized control trial. Indian J Nephrol 2021; 31(1): 9-15.
[http://dx.doi.org/10.4103/ijn.IJN_322_19] [PMID: 33994681]
[89]
Hermida RC, Ayala DE, Mojón A, Fernández JR. Sleep-time BP: prognostic marker of type 2 diabetes and therapeutic target for prevention. Diabetologia 2016; 59(2): 244-54.
[http://dx.doi.org/10.1007/s00125-015-3748-8] [PMID: 26399403]
[90]
Shalimova A, Graff B, Szyndler A. et al. A1850 Blood pressure dipping status affects the relationship between glucose fluctuation and heart rate variability in type 1 diabetic patients. J Hypertens 2018; 36: e114.
[http://dx.doi.org/10.1097/01.hjh.0000548457.80310.74]
[91]
Kario K. Systemic hemodynamic atherothrombotic syndrome and resonance hypothesis of Blood pressure variability: Triggering cardiovascular events. Korean Circ J 2016; 46(4): 456-67.
[http://dx.doi.org/10.4070/kcj.2016.46.4.456] [PMID: 27482253]
[92]
Aguas-Salazar OC, Villaveces-Buelvas MA, Martínez-Ocampo JC, Lozada-Martinez ID. Systemic hemodynamic atherothrombotic syndrome: The real agent to consider for 24-h management of hypertension and cardiovascular events. India J Med specialities 2021; 12(4): 235-6.
[93]
Kario K, Chirinos JA, Townsend RR. et al. Systemic hemodynamic atherothrombotic syndrome (SHATS) – Coupling vascular disease and blood pressure variability: Proposed concept from pulse of Asia. Prog Cardiovasc Dis 2020; 63(1): 22-32.
[http://dx.doi.org/10.1016/j.pcad.2019.11.002] [PMID: 31810526]
[94]
Scheer FAJL, Michelson AD, Frelinger AL III. et al. The human endogenous circadian system causes greatest platelet activation during the biological morning independent of behaviors. PLoS One 2011; 6(9): e24549.
[http://dx.doi.org/10.1371/journal.pone.0024549] [PMID: 21931750]
[95]
Sennels HP, Jørgensen HL, Hansen ALS, Goetze JP, Fahrenkrug J. Diurnal variation of hematology parameters in healthy young males: The Bispebjerg study of diurnal variations. Scand J Clin Lab Invest 2011; 71(7): 532-41.
[http://dx.doi.org/10.3109/00365513.2011.602422] [PMID: 21988588]
[96]
Steffens S, Winter C, Schloss MJ, Hidalgo A, Weber C, Soehnlein O. Circadian control of inflammatory processes in atherosclerosis and its complications. Arterioscler Thromb Vasc Biol 2017; 37(6): 1022-8.
[http://dx.doi.org/10.1161/ATVBAHA.117.309374] [PMID: 28450299]
[97]
Portaluppi F, Smolensky MH. Perspectives on the chronotherapy of hypertension based on the results of the MAPEC study. Chronobiol Int 2010; 27(8): 1652-67.
[http://dx.doi.org/10.3109/07420528.2010.510788] [PMID: 20854140]
[98]
Pyatin V, Maslova O, Romanchuk N, Bulgakova S, Volobuev A. Hemostasis and Cognitive Brain: 5P-Medicine and Chronotherapy of Arterial Hypertension. Bulletin of Science and Practice 2021; 7(5): 127-83.
[http://dx.doi.org/10.33619/2414-2948/66/16]
[99]
Mia S, Kane MS, Latimer MN. et al. Differential effects of REV-ERBα/β agonism on cardiac gene expression, metabolism, and contractile function in a mouse model of circadian disruption. Am J Physiol Heart Circ Physiol 2020; 318(6): H1487-508.
[http://dx.doi.org/10.1152/ajpheart.00709.2019] [PMID: 32357113]
[100]
Giebultowicz JM. Peripheral clocks and their role in circadian timing: insights from insects. Philos Trans R Soc Lond B Biol Sci 2001; 356(1415): 1791-9.
[http://dx.doi.org/10.1098/rstb.2001.0960] [PMID: 11710986]
[101]
Matsumura R, Tsuchiya Y, Tokuda I. et al. The mammalian circadian clock protein period counteracts cryptochrome in phosphorylation dynamics of circadian locomotor output cycles kaput (CLOCK). J Biol Chem 2014; 289(46): 32064-72.
[http://dx.doi.org/10.1074/jbc.M114.578278] [PMID: 25271155]
[102]
Lecour S, Du Pré BC, Bøtker HE. et al. Circadian rhythms in ischaemic heart disease: key aspects for preclinical and translational research: position paper of the ESC working group on cellular biology of the heart. Cardiovasc Res 2022; 118(12): 2566-81.
[http://dx.doi.org/10.1093/cvr/cvab293] [PMID: 34505881]
[103]
Hastings M, O’Neill JS, Maywood ES. Circadian clocks: regulators of endocrine and metabolic rhythms. J Endocrinol 2007; 195(2): 187-98.
[http://dx.doi.org/10.1677/JOE-07-0378] [PMID: 17951531]
[104]
Ko CH, Takahashi JS. Molecular components of the mammalian circadian clock. Hum Mol Genet 2006; 15(2): R271-7.
[http://dx.doi.org/10.1093/hmg/ddl207]
[105]
Tarquini R, Mazzoccoli G. Clock genes, metabolism, and cardiovascular risk. Heart Fail Clin 2017; 13(4): 645-55.
[http://dx.doi.org/10.1016/j.hfc.2017.05.001] [PMID: 28865774]
[106]
Preitner N, Damiola F. Luis-Lopez-Molina , et al. The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 2002; 110(2): 251-60.
[http://dx.doi.org/10.1016/S0092-8674(02)00825-5] [PMID: 12150932]
[107]
Young ME. Circadian control of cardiac metabolism: physiologic roles and pathologic implications. Methodist DeBakey Cardiovasc J 2017; 13(1): 15-9.
[http://dx.doi.org/10.14797/mdcj-13-1-15] [PMID: 28413577]
[108]
Dunlap JC. Molecular bases for circadian clocks. Cell 1999; 96(2): 271-90.
[http://dx.doi.org/10.1016/S0092-8674(00)80566-8] [PMID: 9988221]
[109]
Takeda N, Maemura K. Circadian clock and cardiovascular disease. J Cardiol 2011; 57(3): 249-56.
[http://dx.doi.org/10.1016/j.jjcc.2011.02.006] [PMID: 21441015]
[110]
Chen YL, Chuang JH, Wang HT, Chen HC, Liu WH, Yang MY. Altered expression of circadian clock genes in patients with atrial fibrillation is associated with atrial high-rate episodes and left atrial remodeling. Diagnostics 2021; 11(1): 90.
[http://dx.doi.org/10.3390/diagnostics11010090] [PMID: 33430447]
[111]
Young ME. The circadian clock within the heart: potential influence on myocardial gene expression, metabolism, and function. Am J Physiol Heart Circ Physiol 2006; 290(1): H1-H16.
[http://dx.doi.org/10.1152/ajpheart.00582.2005] [PMID: 16373589]
[112]
Wang Y, Anderson C, Dobrzynski H, Hart G, D’Souza A, Boyett MR. RNAseq shows an all-pervasive day-night rhythm in the transcriptome of the pacemaker of the heart. Sci Rep 2021; 11(1): 3565.
[http://dx.doi.org/10.1038/s41598-021-82202-7] [PMID: 33574422]
[113]
Yoshida Y, Matsunaga N, Nakao T. et al. Alteration of circadian machinery in monocytes underlies chronic kidney disease-associated cardiac inflammation and fibrosis. Nat Commun 2021; 12(1): 2783.
[http://dx.doi.org/10.1038/s41467-021-23050-x] [PMID: 33986294]
[114]
Gottlieb LA, Larsen K, Halade GV, Young ME, Thomsen MB. Prolonged QT intervals in mice with cardiomyocyte‐specific deficiency of the molecular clock. Acta Physiol 2021; 233(1): e13707.
[http://dx.doi.org/10.1111/apha.13707] [PMID: 34176211]
[115]
Anea CB, Zhang M, Stepp DW. et al. Vascular disease in mice with a dysfunctional circadian clock. Circulation 2009; 119(11): 1510-7.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.108.827477] [PMID: 19273720]
[116]
Anea CB, Cheng B, Sharma S. et al. Increased superoxide and endothelial NO synthase uncoupling in blood vessels of Bmal1-knockout mice. Circ Res 2012; 111(9): 1157-65.
[http://dx.doi.org/10.1161/CIRCRESAHA.111.261750] [PMID: 22912383]
[117]
Lefta M, Campbell KS, Feng HZ, Jin JP, Esser KA. Development of dilated cardiomyopathy in Bmal1 -deficient mice. Am J Physiol Heart Circ Physiol 2012; 303(4): H475-85.
[http://dx.doi.org/10.1152/ajpheart.00238.2012] [PMID: 22707558]
[118]
Bunger MK, Wilsbacher LD, Moran SM. et al. Mop3 is an essential component of the master circadian pacemaker in mammals. Cell 2000; 103(7): 1009-17.
[http://dx.doi.org/10.1016/S0092-8674(00)00205-1] [PMID: 11163178]
[119]
Wang N, Yang G, Jia Z. et al. Vascular PPARgamma controls circadian variation in blood pressure and heart rate through Bmal1. Cell Metab 2008; 8(6): 482-91.
[http://dx.doi.org/10.1016/j.cmet.2008.10.009] [PMID: 19041764]
[120]
Nikolaeva S, Pradervand S, Centeno G. et al. The circadian clock modulates renal sodium handling. J Am Soc Nephrol 2012; 23(6): 1019-26.
[http://dx.doi.org/10.1681/ASN.2011080842] [PMID: 22440902]
[121]
Sei H, Oishi K, Chikahisa S, Kitaoka K, Takeda E, Ishida N. Diurnal amplitudes of arterial pressure and heart rate are dampened in Clock mutant mice and adrenalectomized mice. Endocrinology 2008; 149(7): 3576-80.
[http://dx.doi.org/10.1210/en.2007-1714] [PMID: 18403480]
[122]
Alibhai FJ, LaMarre J, Reitz CJ. et al. Disrupting the key circadian regulator CLOCK leads to age-dependent cardiovascular disease. J Mol Cell Cardiol 2017; 105: 24-37.
[http://dx.doi.org/10.1016/j.yjmcc.2017.01.008] [PMID: 28223222]
[123]
Gumz ML, Stow LR, Lynch IJ. et al. The circadian clock protein Period 1 regulates expression of the renal epithelial sodium channel in mice. J Clin Invest 2009; 119(8): 2423-34.
[http://dx.doi.org/10.1172/JCI36908] [PMID: 19587447]
[124]
Stow LR, Richards J, Cheng KY. et al. The circadian protein period 1 contributes to blood pressure control and coordinately regulates renal sodium transport genes. Hypertension 2012; 59(6): 1151-6.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.112.190892] [PMID: 22526258]
[125]
Richards J, Cheng KY, All S. et al. A role for the circadian clock protein Per1 in the regulation of aldosterone levels and renal Na + retention. Am J Physiol Renal Physiol 2013; 305(12): F1697-704.
[http://dx.doi.org/10.1152/ajprenal.00472.2013] [PMID: 24154698]
[126]
Vukolic A, Antic V, Van Vliet BN, Yang Z, Albrecht U, Montani JP. Role of mutation of the circadian clock gene Per2 in cardiovascular circadian rhythms. Am J Physiol Regul Integr Comp Physiol 2010; 298(3): R627-34.
[http://dx.doi.org/10.1152/ajpregu.00404.2009] [PMID: 20053965]
[127]
Viswambharan H, Carvas JM, Antic V. et al. Mutation of the circadian clock gene Per2 alters vascular endothelial function. Circulation 2007; 115(16): 2188-95.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.653303] [PMID: 17404161]
[128]
Okamura H, Doi M, Goto K, Kojima R. Clock genes and salt-sensitive hypertension: a new type of aldosterone-synthesizing enzyme controlled by the circadian clock and angiotensin II. Hypertens Res 2016; 39(10): 681-7.
[http://dx.doi.org/10.1038/hr.2016.91] [PMID: 27439492]
[129]
Yang L, Chu Y, Wang L. et al. Overexpression of CRY1 protects against the development of atherosclerosis via the TLR/NF-κB pathway. Int Immunopharmacol 2015; 28(1): 525-30.
[http://dx.doi.org/10.1016/j.intimp.2015.07.001] [PMID: 26218278]
[130]
Allison DB, Ren G, Peliciari-Garcia RA. et al. Diurnal, metabolic and thermogenic alterations in a murine model of accelerated aging. Chronobiol Int 2020; 37(8): 1119-39.
[http://dx.doi.org/10.1080/07420528.2020.1796699] [PMID: 32819176]
[131]
Adachi S, Ito H, Tamamori-Adachi M. et al. Cyclin A/cdk2 activation is involved in hypoxia-induced apoptosis in cardiomyocytes. Circ Res 2001; 88(4): 408-14.
[http://dx.doi.org/10.1161/01.RES.88.4.408] [PMID: 11230108]
[132]
Pourcet B, Duez H. Nuclear receptors and clock components in cardiovascular diseases. Int J Mol Sci 2021; 22(18): 9721.
[http://dx.doi.org/10.3390/ijms22189721] [PMID: 34575881]
[133]
Zhang L, Zhang R, Tien CL. et al. REV-ERBα ameliorates heart failure through transcription repression. JCI Insight 2017; 2(17): e95177.
[http://dx.doi.org/10.1172/jci.insight.95177] [PMID: 28878135]
[134]
He X, Yang S, Deng J, Wu Q, Zang WJ. Amelioration of circadian disruption and calcium-handling protein defects by choline alleviates cardiac remodeling in abdominal aorta coarctation rats. Lab Invest 2021; 101(7): 878-96.
[http://dx.doi.org/10.1038/s41374-021-00578-6] [PMID: 33649466]
[135]
Saini C, Petrenko V, Pulimeno P. et al. A functional circadian clock is required for proper insulin secretion by human pancreatic islet cells. Diabetes Obes Metab 2016; 18(4): 355-65.
[http://dx.doi.org/10.1111/dom.12616] [PMID: 26662378]
[136]
Hsieh M-C, Yang S-C, Tseng H-L, Hwang L-L, Chen C-T, Shieh K-R. Abnormal expressions of circadian-clock and circadian clock-controlled genes in the livers and kidneys of long-term, high-fat-diet-treated mice. Int J Obes 2010; 34(2): 227-39.
[http://dx.doi.org/10.1038/ijo.2009.228] [PMID: 19901953]
[137]
Pistrosch F, Reissmann E, Wildbrett J, Koehler C, Hanefeld M. Relationship between diurnal blood pressure variation and diurnal blood glucose levels in type 2 diabetic patients. Am J Hypertens 2007; 20(5): 541-5.
[http://dx.doi.org/10.1016/j.amjhyper.2006.10.010] [PMID: 17485018]
[138]
Chow E, Bernjak A, Williams S. et al. Risk of cardiac arrhythmias during hypoglycemia in patients with type 2 diabetes and cardiovascular risk. Diabetes 2014; 63(5): 1738-47.
[http://dx.doi.org/10.2337/db13-0468] [PMID: 24757202]
[139]
Akashi M, Matsumura R, Matsuo T, Kubo Y, Komoda H, Node K. Hypercholesterolemia causes circadian dysfunction: A potential risk factor for cardiovascular disease. EBioMedicine 2017; 20: 127-36.
[http://dx.doi.org/10.1016/j.ebiom.2017.04.034] [PMID: 28499924]
[140]
Chaulin AM. Updated information about methods of identification and diagnostic opportunities of cardiac troponins. Riv Ital Med Lab 2021; 17(3): 154-64.
[http://dx.doi.org/10.23736/S1825-859X.21.00116-X]
[141]
Woon PY, Kaisaki PJ, Bragança J. et al. Aryl hydrocarbon receptor nuclear translocator-like (BMAL1) is associated with susceptibility to hypertension and type 2 diabetes. Proc Natl Acad Sci USA 2007; 104(36): 14412-7.
[http://dx.doi.org/10.1073/pnas.0703247104] [PMID: 17728404]
[142]
Corella D, Asensio EM, Coltell O. et al. CLOCK gene variation is associated with incidence of type-2 diabetes and cardiovascular diseases in type-2 diabetic subjects: Dietary modulation in the PREDIMED randomized trial. Cardiovasc Diabetol 2016; 15(1): 4.
[http://dx.doi.org/10.1186/s12933-015-0327-8] [PMID: 26739996]
[143]
Wirtwein M, Melander O, Sjőgren M. et al. The relationship between gene polymorphisms and dipping profile in patients with coronary heart disease. Am J Hypertens 2016; 29(9): 1094-102.
[http://dx.doi.org/10.1093/ajh/hpw040] [PMID: 27189819]
[144]
Wirtwein M, Melander O, Sjőgren M. et al. Elevated ambulatory systolic-diastolic pressure regression index is genetically determined in hypertensive patients with coronary heart disease. Blood Press 2017; 26(3): 174-80.
[http://dx.doi.org/10.1080/08037051.2016.1273741] [PMID: 28092973]
[145]
Leu HB, Chung CM, Lin SJ. et al. Association of circadian genes with diurnal blood pressure changes and non-dipper essential hypertension: a genetic association with young-onset hypertension. Hypertens Res 2015; 38(2): 155-62.
[http://dx.doi.org/10.1038/hr.2014.152] [PMID: 25410879]
[146]
Depner CM, Melanson EL, McHill AW, Wright KP Jr. Mistimed food intake and sleep alters 24-hour time-of-day patterns of the human plasma proteome. Proc Natl Acad Sci 2018; 115(23): E5390-9.
[http://dx.doi.org/10.1073/pnas.1714813115] [PMID: 29784788]
[147]
Ruben MD, Wu G, Smith DF. et al. A database of tissue-specific rhythmically expressed human genes has potential applications in circadian medicine. Sci Transl Med 2018; 10(458): eaat8806.
[http://dx.doi.org/10.1126/scitranslmed.aat8806] [PMID: 30209245]
[148]
Dame ZT, Aziat F, Mandal R. et al. The human saliva metabolome. Metabolomics 2015; 11(6): 1864-83.
[http://dx.doi.org/10.1007/s11306-015-0840-5]
[149]
Liu S, Brown JD, Stanya KJ. et al. A diurnal serum lipid integrates hepatic lipogenesis and peripheral fatty acid use. Nature 2013; 502(7472): 550-4.
[http://dx.doi.org/10.1038/nature12710] [PMID: 24153306]
[150]
Pizarro A, Hayer K, Lahens NF, Hogenesch JB, Circa DB. A database of mammalian circadian gene expression profiles. Nucleic Acids Res 2013; 41(Database issue): D1009-13.
[http://dx.doi.org/10.1093/nar/gks1161] [PMID: 23180795]
[151]
Rhoades SD, Sengupta A, Weljie AM. Time is ripe: Maturation of metabolomics in chronobiology. Curr Opin Biotechnol 2017; 43: 70-6.
[http://dx.doi.org/10.1016/j.copbio.2016.09.007] [PMID: 27701007]
[152]
Hermida RC, Ayala DE, Mojón A, Fernández JR. Influence of circadian time of hypertension treatment on cardiovascular risk: results of the MAPEC study. Chronobiol Int 2010; 27(8): 1629-51.
[http://dx.doi.org/10.3109/07420528.2010.510230] [PMID: 20854139]
[153]
Smolensky M, Hermida R, Ayala D, Portaluppi F. Bedtime hypertension chronotherapy: Concepts and patient outcomes. Curr Pharm Des 2014; 21(6): 773-90.
[http://dx.doi.org/10.2174/1381612820666141024150542] [PMID: 25341856]
[154]
Baka T, Stanko P, Šimko F. Hypertension chronotherapy: Does dosing antihypertensive medication at bedtime determine cardiovascular prognosis? Klinická farmakologie a farmacie Clin. Pharmacol Pharm 2021; 35(2): 74-7.
[http://dx.doi.org/10.36290/far.2021.012]
[155]
Hermida RC, Ayala DE, Mojón A, Fernández JR. Cardiovascular risk of essential hypertension: influence of class, number, and treatment-time regimen of hypertension medications. Chronobiol Int 2013; 30(1-2): 315-27.
[http://dx.doi.org/10.3109/07420528.2012.701534] [PMID: 23181712]
[156]
Fernández JR, Mojón A, Hermida RC. Chronotherapy of hypertension: Advantages of 48-h ambulatory blood pressure monitoring assessments in MAPEC and Hygia Chronotherapy Trial. Chronobiol Int 2020; 37(5): 739-50.
[http://dx.doi.org/10.1080/07420528.2020.1771355] [PMID: 32684004]
[157]
Hermida RC, Crespo JJ, Otero A. et al. Asleep blood pressure: Significant prognostic marker of vascular risk and therapeutic target for prevention. Eur Heart J 2018; 39(47): 4159-71.
[http://dx.doi.org/10.1093/eurheartj/ehy475] [PMID: 30107515]
[158]
Lemmer B, Middeke M. A commentary on the Spanish hypertension studies MAPEC and HYGIA. Chronobiol Int 2020; 37(5): 728-30.
[http://dx.doi.org/10.1080/07420528.2020.1761374] [PMID: 32419504]
[159]
Mackenzie IS, Rogers A, Poulter NR. et al. Cardiovascular outcomes in adults with hypertension with evening versus morning dosing of usual antihypertensives in the UK (TIME study): A prospective, randomised, open-label, blinded-endpoint clinical trial. Lancet 2022; 400(10361): 1417-25.
[http://dx.doi.org/10.1016/S0140-6736(22)01786-X] [PMID: 36240838]
[160]
Salah HM, Mehta JL. Best time for administration of antihypertensive medications: Morning or evening? Lancet 2022; 400(10361): 1383-5.
[http://dx.doi.org/10.1016/S0140-6736(22)01900-6] [PMID: 36240839]
[161]
Hermida RC, Hermida-Ayala RG, Mojón A, Smolensky MH, Fernández JR. Systematic review and quality evaluation of published human ingestion-time trials of blood pressure-lowering medications and their combinations. Chronobiol Int 2021; 38(10): 1460-76.
[http://dx.doi.org/10.1080/07420528.2021.1931280] [PMID: 34107831]
[162]
Shurkevich N, Shipitcina N, Vetoshkin A, Gapon L, Gubin D, Poshinov F. Personalized approach to chronotherapy of hypertension in artic shift-workers. J Hypertens 2015; 33: e453.
[http://dx.doi.org/10.1097/01.hjh.0000468808.41697.57]
[163]
Hermida RC, Hermida-Ayala RG, Smolensky M. Cronoterapia para reducción de riesgo cardiovascular. Med Clin 2020; 154(12): 505-11.
[http://dx.doi.org/10.1016/j.medcli.2020.02.004] [PMID: 32336474]
[164]
Dong D, Yang D, Lin L, Wang S, Wu B. Circadian rhythm in pharmacokinetics and its relevance to chronotherapy. Biochem Pharmacol 2020; 178: 114045.
[http://dx.doi.org/10.1016/j.bcp.2020.114045] [PMID: 32446886]
[165]
Hermida RC, Hermida-Ayala RG, Smolensky MH, Mojón A, Fernández JR. Ingestion-time differences in the pharmacodynamics of hypertension medications: Systematic review of human chronopharmacology trials. Adv Drug Deliv Rev 2021; 170: 200-13.
[http://dx.doi.org/10.1016/j.addr.2021.01.013] [PMID: 33486007]
[166]
Hermida RC, Crespo JJ, Domínguez-Sardiña M. et al. Bedtime hypertension treatment improves cardiovascular risk reduction: The Hygia Chronotherapy Trial. Eur Heart J 2020; 41(48): 4565-76.
[http://dx.doi.org/10.1093/eurheartj/ehz754] [PMID: 31641769]
[167]
Kenig A, Kolben Y, Asleh R, Amir O, Ilan Y. Improving diuretic response in heart failure by implementing a patient-tailored variability and chronotherapy-guided algorithm. Front Cardiovasc Med 2021; 8: 695547.
[http://dx.doi.org/10.3389/fcvm.2021.695547] [PMID: 34458334]
[168]
Palatini P. Can an angiotensin-converting enzyme inhibitor with a short half-life effectively lower blood pressure for 24 hours? Am Heart J 1992; 123(5): 1421-5.
[http://dx.doi.org/10.1016/0002-8703(92)91064-8] [PMID: 1575169]
[169]
Witte K, Weisser K, Neubeck M. et al. Cardiovascular effects, pharmacokinetics, and converting enzyme inhibition of enalapril after morning versus evening administration. Clin Pharmacol Ther 1993; 54(2): 177-86.
[http://dx.doi.org/10.1038/clpt.1993.129] [PMID: 8394796]
[170]
Zhao D, Liu H, Dong P. Chronotherapy of hypertension with angiotensin receptor blockers–a meta-analysis of blood pressure measured by ambulatory blood pressure monitoring in randomized trials. Am J Med Sci 2021; 361(1): 36-42.
[http://dx.doi.org/10.1016/j.amjms.2020.07.031] [PMID: 32948291]
[171]
Ushijima K, Nakashima H, Shiga T. et al. Different chronotherapeutic effects of valsartan and olmesartan in non-dipper hypertensive patients during valsartan treatment at morning. J Pharmacol Sci 2015; 127(1): 62-8.
[http://dx.doi.org/10.1016/j.jphs.2014.09.004] [PMID: 25704020]
[172]
Koga H, Hayashi J, Yamamoto M, Kitamoto K. Prevention of morning surge of hypertension by the evening administration of carvedilol. Japan Med Assoc J 2005; 48(8): 398-403.
[173]
Acelajado MC, Pisoni R, Dudenbostel T, Oparil S, Calhoun DA, Glasser SP. Both morning and evening dosing of nebivolol reduces trough mean blood pressure surge in hypertensive patients. J Am Soc Hypertens 2012; 6(1): 66-72.
[http://dx.doi.org/10.1016/j.jash.2011.09.001] [PMID: 22024668]
[174]
Hermida RC, Calvo C, Ayala DE. et al. Dose- and administration time-dependent effects of nifedipine gits on ambulatory blood pressure in hypertensive subjects. Chronobiol Int 2007; 24(3): 471-93.
[http://dx.doi.org/10.1080/07420520701420683] [PMID: 17612946]
[175]
Hermida RC, Calvo C, Ayala DE. et al. Administration-time-dependent effects of doxazosin GITS on ambulatory blood pressure of hypertensive subjects. Chronobiol Int 2004; 21(2): 277-96.
[http://dx.doi.org/10.1081/CBI-120037772] [PMID: 15332347]
[176]
Hermida RC, Ayala DE, Mojón A. et al. Comparison of the effects on ambulatory blood pressure of awakening versus bedtime administration of torasemide in essential hypertension. Chronobiol Int 2008; 25(6): 950-70.
[http://dx.doi.org/10.1080/07420520802544589] [PMID: 19005898]
[177]
Zeng J, Jia M, Ran H. et al. Fixed-combination of amlodipine and diuretic chronotherapy in the treatment of essential hypertension: improved blood pressure control with bedtime dosing—a multicenter, open-label randomized study. Hypertens Res 2011; 34(6): 767-72.
[http://dx.doi.org/10.1038/hr.2011.36] [PMID: 21471971]
[178]
Hermida RC, Ayala DE, Mojón A, Fontao MJ, Fernández JR. Chronotherapy with valsartan/hydrochlorothiazide combination in essential hypertension: improved sleep-time blood pressure control with bedtime dosing. Chronobiol Int 2011; 28(7): 601-10.
[http://dx.doi.org/10.3109/07420528.2011.589935] [PMID: 21823969]
[179]
Saris A, van Oostrom M, Snoep J. et al. Effect of aspirin intake at bedtime versus on awakening on circadian rhythm of platelet reactivity. Thromb Haemost 2014; 112(12): 1209-18.
[http://dx.doi.org/10.1160/th14-05-0453] [PMID: 25208590]
[180]
Bonten TN, Snoep JD, Assendelft WJJ. et al. Time-dependent effects of aspirin on blood pressure and morning platelet reactivity: a randomized cross-over trial. Hypertension 2015; 65(4): 743-50.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.114.04980] [PMID: 25691622]
[181]
Sica DA, Neutel JM, Weber MA, Manowitz N. The antihypertensive efficacy and safety of a chronotherapeutic formulation of propranolol in patients with hypertension. J Clin Hypertens 2004; 6(5): 231-41.
[http://dx.doi.org/10.1111/j.1076-7460.2004.3624.x] [PMID: 15133405]
[182]
Smolensky MH, Hermida RC, Ayala DE, Mojón A, Fernández JR. Bedtime chronotherapy with conventional hypertension medications to target increased asleep blood pressure results in markedly better chronoprevention of cardiovascular and other risks than customary on-awakening therapy. Heart Fail Clin 2017; 13(4): 775-92.
[http://dx.doi.org/10.1016/j.hfc.2017.05.011] [PMID: 28865784]
[183]
Xie Z, Zhang J, Wang C, Yan X. Chronotherapy for morning blood pressure surge in hypertensive patients: A systematic review and meta-analysis. BMC Cardiovasc Disord 2021; 21(1): 274.
[http://dx.doi.org/10.1186/s12872-021-02081-8] [PMID: 34088274]
[184]
Agarkov NM, Okhotnikov OI, Korneeva SI. et al. Psychological status of elderly patients suffering arterial hypertension in metabolic syndrome against the background of chronotherapy. Bull Russian Military Med Acad 2021; 23(2): 59-66.
[http://dx.doi.org/10.17816/brmma71306]
[185]
Prisant LM. Chronotherapeutics:A surge of ideas. Clin Cornerstone 2004; 6(4): 7-15.
[http://dx.doi.org/10.1016/S1098-3597(04)80074-7] [PMID: 15850762]
[186]
Fitchett DH, Casanova A, Jaffer S. et al. Bedtime administration of graded-release diltiazem in patients with inadequate BP control: A tolerability and efficacy study. Am J Cardiovasc Drugs 2006; 6(6): 393-400.
[http://dx.doi.org/10.2165/00129784-200606060-00006] [PMID: 17192129]
[187]
Glasser SP, Gana TJ, Pascual LG, Albert KS. Efficacy and safety of a once-daily graded-release diltiazem formulation dosed at bedtime compared to placebo and to morning dosing in chronic stable angina pectoris. Am Heart J 2005; 149(2): e1-9.
[http://dx.doi.org/10.1016/j.ahj.2004.08.002] [PMID: 15846251]
[188]
Claas SA, Glasser SP. Long-acting diltiazem HCL for the chronotherapeutic treatment of hypertension and chronic stable angina pectoris. Expert Opin Pharmacother 2005; 6(5): 765-76.
[http://dx.doi.org/10.1517/14656566.6.5.765] [PMID: 15934903]
[189]
Swanson DR, Barclay BL, Wong PSL, Theeuwes F. Nifedipine gastrointestinal therapeutic system. Am J Med 1987; 83(6): 3-9.
[http://dx.doi.org/10.1016/0002-9343(87)90629-2] [PMID: 3503595]
[190]
Hermida RC, Ayala DE, Mojón A, Fernández JR. Chronotherapy with nifedipine GITS in hypertensive patients: Improved efficacy and safety with bedtime dosing. Am J Hypertens 2008; 21(8): 948-54.
[http://dx.doi.org/10.1038/ajh.2008.216] [PMID: 18600215]
[191]
Hermida RC, Ayala DE, Calvo C, Portaluppi F, Smolensky MH. Chronotherapy of hypertension: Administration-time-dependent effects of treatment on the circadian pattern of blood pressure. Adv Drug Deliv Rev 2007; 59(9-10): 923-39.
[http://dx.doi.org/10.1016/j.addr.2006.09.021] [PMID: 17659803]
[192]
Han C, Wirianto M, Kim E, Burish MJ, Yoo SH, Chen Z. Clock-modulating activities of the anti-arrhythmic drug moricizine. Clocks Sleep 2021; 3(3): 351-65.
[http://dx.doi.org/10.3390/clockssleep3030022] [PMID: 34206497]
[193]
Smolensky MH, Hermida RC, Geng YJ. Chronotherapy of cardiac and vascular disease: Timing medications to circadian rhythms to optimize treatment effects and outcomes. Curr Opin Pharmacol 2021; 57: 41-8.
[http://dx.doi.org/10.1016/j.coph.2020.10.014] [PMID: 33279870]
[194]
Saleem U, Iman S, Akhtar MF, Saleem A, Anwar F, Ahmad B. Chronopharmacology: Appraising the influencof biorhythms on the efficacy and safety of antihypertensive drugs. Crit Rev Eukaryot Gene Expr 2019; 29(6): 499-509.
[http://dx.doi.org/10.1615/CritRevEukaryotGeneExpr.2019028841] [PMID: 32422005]
[195]
Tsuey Tse M. Circadian rhythm drug approved. Nat Biotechnol 2014; 32(4): 303.
[http://dx.doi.org/10.1038/nbt0414-303b]
[196]
Johnsa JD, Neville MW. Tasimelteon: A melatonin receptor agonist for non-24-hour sleep wake disorder. Ann Pharmacother 2014; 48(12): 1636-41.
[http://dx.doi.org/10.1177/1060028014550476] [PMID: 25204464]
[197]
Uchinaka A, Kawashima Y, Sano Y. et al. YIA 03-06 ramelteon attenuates cardiac injury, improves insulin signaling in white adipose tissue, and attenuates whitening of brown adipose tissue in rats with metabolic syndrome. J Hypertens 2016; 34 (Suppl. 1): e205.
[http://dx.doi.org/10.1097/01.hjh.0000500445.61472.7d]
[198]
Kolben Y, Weksler-Zangen S, Ilan Y. Adropin as a potential mediator of the metabolic system‐autonomic nervous system‐chronobiology axis: Implementing a personalized signature‐based platform for chronotherapy. Obes Rev 2021; 22(2): e13108.
[http://dx.doi.org/10.1111/obr.13108] [PMID: 32720402]
[199]
Ghosh RK, Bandyopadhyay D, Hajra A, Biswas M, Gupta A. Cardiovascular outcomes of sodium-glucose cotransporter 2 inhibitors: A comprehensive review of clinical and preclinical studies. Int J Cardiol 2016; 212: 29-36.
[http://dx.doi.org/10.1016/j.ijcard.2016.02.134] [PMID: 27017118]
[200]
Staels B. Cardiovascular protection by sodium glucose cotransporter 2 inhibitors: Potential mechanisms. Am J Med 2017; 130(6): S30-9.
[http://dx.doi.org/10.1016/j.amjmed.2017.04.009] [PMID: 28526184]
[201]
Rahman A, Fujisawa Y, Nakano D, Hitomi H, Nishiyama A. Effect of a selective SGLT2 inhibitor, luseogliflozin, on circadian rhythm of sympathetic nervous function and locomotor activities in metabolic syndrome rats. Clin Exp Pharmacol Physiol 2017; 44(4): 522-5.
[http://dx.doi.org/10.1111/1440-1681.12725] [PMID: 28063156]
[202]
He B, Nohara K, Park N. et al. The small molecule nobiletin targets the molecular oscillator to enhance circadian rhythms and protect against metabolic syndrome. Cell Metab 2016; 23(4): 610-21.
[http://dx.doi.org/10.1016/j.cmet.2016.03.007] [PMID: 27076076]
[203]
Shuff S, Oyama Y, Walker L, Eckle T. Circadian angiopoietin-like-4 as a novel therapy in cardiovascular disease. Trends Mol Med 2021; 27(7): 627-9.
[http://dx.doi.org/10.1016/j.molmed.2021.04.007] [PMID: 33980464]
[204]
Winter C, Silvestre-Roig C, Ortega-Gomez A. et al. Chrono-pharmacological targeting of the CCL2-CCR2 axis ameliorates atherosclerosis. Cell Metab 2018; 28(1): 175-182.e5.
[http://dx.doi.org/10.1016/j.cmet.2018.05.002] [PMID: 29861387]
[205]
Virag JAI, Anderson EJ, Kent SD. et al. Cardioprotection via preserved mitochondrial structure and function in the mPer2-mutant mouse myocardium. Am J Physiol Heart Circ Physiol 2013; 305(4): H477-83.
[http://dx.doi.org/10.1152/ajpheart.00914.2012] [PMID: 23771689]
[206]
Kim DW, Zavala E, Kim JK. Wearable technology and systems modeling for personalized chronotherapy. Curr Opin Syst Biol 2020; 21: 9-15.
[http://dx.doi.org/10.1016/j.coisb.2020.07.007]
[207]
Lee HJ, Choi N, Yoon ES, Cho IJ. MEMS devices for drug delivery. Adv Drug Deliv Rev 2018; 128: 132-47.
[http://dx.doi.org/10.1016/j.addr.2017.11.003] [PMID: 29117510]
[208]
Sánchez-Sánchez C, López-Caballero C, Contreras I, Puerto B, Blazquez-Bermejo Z. Is bedtime treatment appropriate for all hypertensive patients? Eur Heart J 2020; 41(16): 1604.
[http://dx.doi.org/10.1093/eurheartj/ehaa212] [PMID: 32304209]
[209]
Dickman MM, Marshall FB. et al. PURLs: Is it better to take that antihypertensive at night? J Fam Pract 2020; 69(7): 362-4.
[PMID: 32936845]